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Abstract. Spectral residual methods are derivative-free and low-cost per iteration procedures for solving
nonlinear systems of equations. They are generally coupled with a nonmonotone linesearch strategy and compare
well with Newton-based methods for large nonlinear systems and sequences of nonlinear systems. The residual
vector is used as the search direction and choosing the steplength has a crucial impact on the performance. In
this work we address both theoretically and experimentally the steplength selection and provide results on a real
application such as a rolling contact problem.
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1. Introduction. This work addresses the solution of the nonlinear system of equations

F (x) = 0, (1.1)

with F : Rn → Rn continuously differentiable, by means of spectral residual methods. Spectral
residual methods were introduced in [25] and starting from the proposal in [26] consist of iterative
procedures for solving (1.1) without the use of derivative information. Given the iterate xk, these
methods use the residual vectors ±F (xk) in a systematic way and select the step xk+1− xk along
either the direction (−βkF (xk)) or (βkF (xk)) with βk being a nonzero steplength inspired by the
Barzilai and Borwein method for the unconstrained minimization problem minx∈Rn f(x). Simi-
larly to the Barzilai and Borwein method for unconstrained optimization, ‖F‖ does not decrease
monotonically along iterations and its effectiveness heavily relies on the steplength βk used.

Spectral residual methods have received a large attention since they are low-cost per iteration
and require a low memory storage being matrix free, see e.g. [21, 25–27, 31, 34, 35, 41]. They
belong to the class of Quasi-Newton methods which are particularly attractive when the Jacobian
matrix of F is not available analytically or its computation is not relatively easy. Quasi-Newton
methods showed to be effective both in the solution of large nonlinear systems and in the solution
of sequences of medium-size nonlinear systems as those arising in applications where sequences
are generated by model refinement procedures, see e.g., [5, 21,25,26,31,41].

It is well known that the performance of the Barzilai and Borwein method does not depend on
the decrease of the objective function at each iteration but relies on the relationship between the
steplengths used and the eigenvalues of the average Hessian matrix of f [3,15,36]. Based on such
feature, several strategies for steplength selection have been proposed to enhance the performance
of the method, see e.g., [8–10,12,15,16]. On the other hand, to our knowledge, an analogous study
of the relationship between the steplengths originated by spectral methods and the eigenvalues
of the average Jacobian matrix of F has not been carried out, and the impact of the choice of
the steplenghts on the convergence history has not been investigated in details. The aim of this
paper is to analyze the properties of the spectral residual steplengths and study how they affect
the performance of the methods. This aim is addressed both from a theoretical and experimental
point of view.

The main contributions of this work are: the theoretical analysis of the steplengths proposed
in the literature and of their impact on the norm of F also with respect to the nonmonotone
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behaviour imposed by globalization strategies; the analysis of the performance of spectral methods
with various rule for updating the steplengths. Rules based on adaptive strategies that suitably
combine small and large steplengths result by far more effective than rules based on static choices of
βk and, inspired by the steplength rules proposed in the literature for unconstrained minimization
problems, we propose and extensively test adaptive steplength strategies. Numerical experience
is conducted on sequences of nonlinear systems arising from rolling contact models which play a
central role in many important applications, such as rolling bearings and wheel-rail interaction
[23,24]. Solving these models gives rise to sequences which consist of a large number of medium-size
nonlinear systems and represent a relevant benchmark test set for the purpose of this work.

The paper is organized as follows. Section 2 introduces spectral residual methods. In Section 3
and 4 we provide a theoretical analysis of the steplengths including their impact on the behaviour
of ‖Fk‖ and on a standard nonmonotone linesearch. In Section 5 we introduce the spectral
residual method used in our tests and provide a theoretical investigation. The experimental part
is developed in Section 6 where we describe several strategies for selecting the steplength, introduce
our test set and discuss the numerical results obtained. Some conclusions are presented in Section
7.

1.1. Notations. The symbol ‖·‖ denotes the Euclidean norm, I denotes the identity matrix,
J denotes the Jacobian matrix of F . Given a symmetric matrix M , {λi(M)}ni=1 denotes the set
of eigenvalues of M , λmin(M) and λmax(M) denote the minimum and maximum eigenvalue of M
respectively, and {vi}ni=1 denotes a set of associated orthonormal eigenvectors. Given a sequence
of vectors {xk}, for any function f we let fk = f(xk).

2. Preliminaries. In the seminal paper [2] Barzilai and Borwein proposed a gradient method
for the unconstrained minimization

min
x∈Rn

f(x), (2.1)

where f : Rn → R is a given differentiable function. Given an initial guess x0 ∈ Rn, the Barzilai-
Borwein (BB) iteration is defined by

xk+1 = xk − αk∇fk, (2.2)

where αk is a positive steplength inspired by Quasi-Newton methods for unconstrained optimiza-
tion [11]. In Quasi-Newton methods, the step pk = xk+1 − xk solves the linear system

Bkpk = −∇fk, (2.3)

and Bk, k ≥ 1, satisfies the secant equation, i.e.,

Bkpk−1 = zk−1, pk−1 = xk − xk−1, zk−1 = ∇fk −∇fk−1. (2.4)

Letting Bk = α−1 I and imposing condition (2.4), Barzilai and Borwein derived two steplengths
which are the least-square solutions of the following problems:

αk,1= argmin
α
‖α−1pk−1 − zk−1‖22 =

pTk−1pk−1

pTk−1zk−1
, (2.5)

αk,2= argmin
α
‖pk−1 − αzk−1‖22 =

pTk−1zk−1

zTk−1zk−1
. (2.6)

The second least-squares formulation is obtained from the first by symmetry. The steplength αk
in (2.2) is set to be positive, bounded away from zero and not too large, i.e., αk ∈ [αmin, αmax] for
some positive αmin, αmax; to this end, one of the two scalars αk,1, αk,2 is used and the thresholds
αmin, αmax are applied to it, see e.g., [3, 12,15].

Choosing Bk = α−1 I yields a low-cost iteration while the use of the steplengths αk,1, αk,2
yields a considerable improvement in the performance with respect to the classical steepest descent
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method [2, 15]. The BB method is commonly employed in the solution of large unconstrained
optimization problems (2.1) and the behaviour of the sequence {f(xk)} is typically nonmonotone,
possibly severely nonmonotone, in both the cases of quadratic and general nonlinear functions f
[15,17,38]. The performance of the BB method depends on the relationship between the steplength

αk and the eigenvalues of the average Hessian matrix
∫ 1

0
∇2f(xk−1+t pk−1) dt; hence this approach

is also denoted as spectral method and an extensive investigation on steplength’s selection has been
carried on [8–10,12,15,16].

The extension of this approach to the solution of nonlinear systems of equations (1.1) was firstly
proposed by La Cruz and Raydan in [25]. Here we summarize such a proposal and the issues that
were inherited by subsequent procedures falling into such framework and designed for both general
nonlinear systems [21, 25–27, 31, 34, 41] and for monotone nonlinear systems [1, 29, 30, 32, 40, 44].
Instead of applying the spectral method to the merit function

f(x) = ‖F (x)‖2, (2.7)

the BB approach is specialized to the Newton equation yielding the so-called spectral residual
method. Thus, let p− satisfy the linear system

Bkp− = −Fk, (2.8)

and let Bk = β−1I satisfy the secant equation

Bkpk−1 = yk−1, pk−1 = xk − xk−1, yk−1 = Fk − Fk−1.

Reasoning as in BB method, two steplengths are derived:

βk,1 =
pTk−1pk−1

pTk−1yk−1
, (2.9)

βk,2 =
pTk−1yk−1

yTk−1yk−1
. (2.10)

These scalars may be positive, negative or even null; moreover βk,1 is not well defined if pTk−1yk−1 =
0 and βk,2 is not well defined if yk−1 = 0. In practice, the steplength βk is chosen equal either to
βk,1 or to βk,2 as long as it results to be bounded away from zero and |βk| is not too large, i.e.,
|βk| ∈ [βmin, βmax] for some positive βmin, βmax. The step resulting from (2.8) turns to be of the
form p− = −βkFk. But, once βk is fixed, the kth iteration of the spectral residual method employs
the residual directions ±Fk in a systematic way and tests both the steps

p− = −βkFk and p+ = +βkFk,

for acceptance using a suitable linesearch strategy. The use of both directions ±Fk is motivated
by the fact that, contrary to (−αk∇fk), αk > 0, in (2.2), (−βkFk) is not necessarily a descent
direction for (2.7) at xk; the value ∇fTk (−βkFk) = −2βkF

T
k JkFk could be positive, negative or

null. On the other hand, if FTk JkFk 6= 0, trivially either (−βkFk) or βkFk is a descent direction
for f .

Analogously to the spectral method, the spectral residual method is characterized by a non-
monotone behaviour of {‖Fk‖} and is implemented using nonmonotone line search strategies. The
adaptation of the spectral method to nonlinear systems is low-cost per iteration since the compu-
tation of βk,1 and βk,2 is inexpensive and the memory storage is low, and turned out to be effective
in the solution of medium and large nonlinear systems, see e.g., [21, 25–27,34,41].

Unlike the context of BB method for unconstrained optimization, to our knowledge a system-
atic analysis of the stepsizes βk,1 and βk,2 in the context of the solution of nonlinear systems and
their impact on convergence history has not been carried out. The steplength βk,1 has been used
in most of the works on this subject [25–27, 31, 34]. On the other hand, in [21] it was observed
experimentally that alternating βk,1 and βk,2 along iterations was beneficial for the performance
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and in [41] it was observed experimentally that using βk,2 performed better in terms of robustness
with respect to using βk,1.

In the next two sections we will analyze the two steplengths βk,1 and βk,2 and provide: their
expression in terms of the spectrum of average matrices associated to the Jacobian matrix of F ;
their mutual relationship; their impact on the behaviour of ‖Fk‖ and on a standard nonmonotone
linesearch.

The matrices involved in our analysis are the following. Given a square matrix A, we let
AS = 1

2 (A + AT ) be the symmetric part of A, Gk−1 be the average matrix associated to the
Jacobian J of F around xk−1

Gk−1
def
=

∫ 1

0

J(xk−1 + t pk−1) dt, (2.11)

and (GS)k−1 be the average matrix associated to the symmetric part JS of J around xk−1

(GS)k−1
def
=

∫ 1

0

JS(xk−1 + t pk−1) dt. (2.12)

Moreover, given a symmetric matrix M and a nonzero vector p, we employ the Rayleigh quotient
defined as

q(M,p) =
pTMp

pT p
, (2.13)

and the following property [18, Theorem 8.1-2]

λmin(M) ≤ q(M,p) ≤ λmax(M). (2.14)

3. Analysis of the steplengths βk,1 and βk,2. We analyze the stepsizes βk,1 and βk,2 given
in (2.9) and (2.10) making the following assumptions.

Assumption 3.1. The scalars βk,1 and βk,2 are well defined and nonzero.
Assumption 3.2. Given x and p, F is continuously differentiable in an open convex set

D ⊂ Rn containing x+ tp with t ∈ [0, 1].

We note that Assumption 3.1 holds whenever pTk−1yk−1 6= 0.
In the following lemma we analyze the mutual relationship between the stepsizes βk,1 and βk,2

and give their characterization in terms of suitable Rayleigh quotients for the average matrices in
(2.11) and (2.12). We use repeatedly the property

pTAp = pTASp, (3.1)

which holds for any square matrices A, AS = 1
2 (A+AT ), and any vector p of suitable dimension.

Lemma 3.3. Let Assumption 3.1 hold and Assumption 3.2 hold with x = xk−1, p = pk−1 =
±βk−1Fk−1. The steplengths βk,1, βk,2 are such that:
P1) they have the same sign and |βk,2| ≤ |βk,1|;
P2) either it holds βk,1 ≤ βk,2 < 0 or 0 < βk,2 ≤ βk,1;
P3) they take the form

βk,1 =
1

q
(
(GS)k−1, pk−1

)=
1

q
(
(GS)k−1, Fk−1

) , (3.2)

and

βk,2 =
q
(
(GS)k−1, pk−1

)
q(GTk−1Gk−1, pk−1)

=
q
(
(GS)k−1, Fk−1

)
q(GTk−1Gk−1, Fk−1)

, (3.3)

with q(·, ·) being the Rayleigh quotient in (2.13), Gk−1 and (GS)k−1 being the matrices in
(2.11) and (2.12), respectively.
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Proof. By (2.9) and (2.10), we can write

βk,2 =
pTk−1pk−1

pTk−1yk−1

(pTk−1yk−1)2

(yTk−1yk−1)(pTk−1pk−1)

= βk,1
‖pk−1‖2‖yk−1‖2cos2ϕk−1

‖pk−1‖2‖yk−1‖2

= βk,1 cos2 ϕk−1, (3.4)

where ϕk−1 is the angle between pk−1 and yk−1, and P1) follows.
Property P2) follows as well since βk,2 6= 0 by Assumption 3.1.
As for property P3), by the Mean Value Theorem [11, Lemma 4.1.9] and (2.11) we have

yk−1 = Fk − Fk−1 =

∫ 1

0

J(xk−1 + tpk−1)pk−1 dt = Gk−1pk−1.

Then using (3.1) and (2.13), βk,1 takes the form

βk,1 =
pTk−1pk−1

pTk−1Gk−1pk−1
=

pTk−1pk−1

pTk−1(GS)k−1pk−1
=

1

q
(
(GS)k−1, pk−1

) ,
while βk,2 takes the form

βk,2 =
pTk−1Gk−1pk−1

pTk−1(GTk−1Gk−1)pk−1

pTk−1pk−1

pTk−1pk−1
=

q
(
(GS)k−1, pk−1

)
q(GTk−1Gk−1, pk−1)

.

The rightmost equalities in (3.2) and (3.3) easily follow using the form of the step pk−1 =
±βk−1Fk−1. 2

The above characterization P3) allows to derive bounds on the stepsizes βk,1 and βk,2 diver-
sifying cases according to the spectral properties of the Jacobian matrix and the average matrices
in (2.11) and (2.12). The relationship between βk,1 and the spectral information of the symmetric
part of average matrix (2.11) was observed in [25,26,34] but the following results are not contained
in such references.

Lemma 3.4. Let Assumption 3.1 hold and Assumption 3.2 hold with x = xk−1, p = pk−1.
Then, the steplengths βk,1 and βk,2 are such that:
(i) If the Jacobian J is symmetric and positive definite on the line segment in between xk−1 and

xk−1 + pk−1 then βk,1 and βk,2 are positive and

1

λmax(Gk−1)
≤ βk,2 ≤ βk,1 ≤

1

λmin(Gk−1)
; (3.5)

(ii) if (GS)k−1 in (2.12) is positive definite, then βk,1 and βk,2 are positive and

max

{
1

λmax

(
(GS)k−1

) , βk,2} ≤ βk,1 ≤ 1

λmin

(
(GS)k−1

) , (3.6)

λmin

(
(GS)k−1

)
λmax(GTk−1Gk−1)

≤ βk,2 ≤ min

{
λmax

(
(GS)k−1

)
λmin(GTk−1Gk−1)

, βk,1

}
; (3.7)

(iii) if (GS)k−1 in (2.12) is indefinite and Gk−1 in (2.11) is nonsingular, then
(iii.1) βk,1 satisfies either

βk,1 ≤ min

{
1

λmin ((GS)k−1)
, βk,2

}
or βk,1 ≥ max

{
1

λmax ((GS)k−1)
, βk,2

}
; (3.8)
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(iii.2) βk,2 satisfies either

0 < βk,2 ≤ min

{
λmax

(
(GS)k−1

)
λmin(GTk−1Gk−1)

, βk,1

}
, (3.9)

or

max

{
λmin

(
(GS)k−1,

)
λmax(GTk−1Gk−1)

, βk,1

}
≤ βk,2 < 0. (3.10)

Proof. Consider properties P1), P2) and P3) from Lemma 3.3.
(i) Steplengths βk,1 and βk,2 are positive due to (3.2), (3.3). The rightmost inequality of (3.5)

follows from (3.2) and (2.14). The remaining part of (3.5) is proved observing that (3.3)
yields

βk,2 =
pTk−1G

1/2
k−1G

1/2
k−1pk−1

pTk−1G
1/2
k−1Gk−1G

1/2
k−1pk−1

=
1

q(Gk−1, G
1/2
k−1pk−1)

, (3.11)

and using P2) and (2.14).
(ii) Using (3.2),(2.14) and P2) we get positivity of βk,1 and (3.6). Consequently, βk,2 is positive

by property P1), and bounds (3.7) can be derived using (3.3), (2.14) and item P2) of
Lemma 3.3.

(iii) If (GS)k−1 is indefinite then its extreme eigenvalues have opposite sign, i.e., λmin

(
(GS)k−1

)
<

0 and λmax

(
(GS)k−1

)
> 0. Hence, (3.2), (2.14) and P2) give (3.8). Moreover, since

GTk−1Gk−1 is symmetric and positive definite, we can use, as before, P1) and (2.14) and
get (3.9) and (3.10).

2

Remark 3.5. Lemma 3.4 easily extends to the case where matrices are negative definite.
Item (ii) of Lemma 3.4 includes the case where F is strictly monotone, i.e., (F (x)−F (y))T (x−

y) > 0 for any x, y ∈ Rn with x 6= y, see e.g. [14].

4. On the impact of the steplength βk on ‖Fk+1‖. In this section we investigate how
the choice of the steplength βk may affect ‖Fk+1‖ in a spectral residual method. Results are first
derived using a generic βk and discussed thereafter with respect to the choice of either βk,1 or βk,2.

The first result concerns the case where J is symmetric and analyzes the residual vector Fk+1

componentwise. It heavily relies on the existence of a set of orthonormal eigenvectors for the
average matrix Gk.

Lemma 4.1. Suppose that Assumption 3.2 holds with x = xk and p = pk and that the Jacobian
J is symmetric. Let pk = p− = −βkFk 6= 0, xk+1 = xk + pk,

{
λi
(
Gk
)}n
i=1

be the eigenvalues of
matrix Gk in (2.11) and {vi}ni=1 be a set of associated orthonormal eigenvectors. Let Fk and Fk+1

be expressed as

Fk =

n∑
i=1

µikvi, Fk+1 =

n∑
i=1

µik+1vi,

where µik, µ
i
k+1, i = 1, . . . , n, are scalars. Then

Fk+1 = (I − βkGk)Fk, (4.1)

µik+1 = µik
(
1− βkλi(Gk)

)
, i = 1, . . . , n. (4.2)

Moreover, it holds:
(a) if βkλi(Gk) = 1, then |µik+1| = 0;
(b) if 0 < βkλi(Gk) < 2, then |µik+1| < |µik|; otherwise |µik+1| ≥ |µik|.
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Proof. The Mean Value Theorem [11, Lemma 4.1.9] gives

Fk+1 = Fk +

∫ 1

0

J(xk + tpk)pk dt,

and pk = −βkFk and (2.11) yield (4.1). Moreover, since {vi}ni=1 are orthonormal we have for
i = 1, . . . , n

µik+1 = (vi)
TFk+1

= (vi)
T (I − βkGk)Fk

= µik
(
1− βkλi(Gk)

)
,

i.e., equation (4.2). Consequently, Item (a) follows trivially; Item (b) follows noting that
∣∣1 −

βkλi(Gk)
∣∣ < 1 if and only if 0 < βkλi(Gk) < 2. 2

Remark 4.2. Lemma 4.1 trivially extends to the case where pk = p+ = βkFk.

If the nonlinear system (1.1) represents the first-order optimality condition of the optimization
problem (2.1) where f(x) = 1

2x
TAx− bTx is quadratic and A is symmetric and positive definite,

then the previous lemma reduces to well known results on the behaviour of the gradient method
in terms of the spectrum of the Hessian matrix A, see [36]. In fact, the nonlinear residual is
F (x) = Ax− b and its Jacobian is constant J(x) = A, ∀x. Then the following strict relationship
between Fk and the ith eigenvalue λi(A) of the Jacobian holds throughout the iterations

µik+1 = µik(1− βkλi(A)) = µi0

k∏
j=0

(1− βjλi(A)),

where µik+1 and µik, i = 1, . . . n, are the eigencomponents of Fk+1 and Fk respectively, with respect
to the eigendecomposition of A. As a consequence, a small steplength βk, i.e., close to 1/λmax(A),
can significantly reduce the values |µik+1| corresponding to large eigenvalues λi(A) while a small
reduction is expected for the scalars |µik+1| corresponding to small eigenvalues λi(A). On the
contrary, a large steplength βk, i.e., close to 1/λmin(A), can significantly reduce the values |µik+1|
corresponding to small eigenvalues λi(A) while tends to increase the scalar |µik+1| corresponding to
large eigenvalues λi(A). This offers some intuition for choosing the steplengths by alternating in a
balanced way small and large steplengths in order to reduce the eigencomponents, see e.g., [12, p.
178].

On the other hand, if F is a general nonlinear mapping then Gk changes at each iteration and
Lemma 4.1 suggests the expected change of F from iteration k to iteration k+ 1 and the following
guidelines. The first guideline concerns the case where J is positive definite. A nonmonotone
behaviour of the sequence {‖Fk‖} is expected. By Item (i) of Lemma 3.4, both βk,1 or βk,2 are

positive and βkλi(Gk) lies in the interval

[
λi(Gk)

λmax(Gk−1)
,

λi(Gk)

λmin(Gk−1)

]
for i = 1, . . . , n. Assuming

without loss of generality that the eigenvalues are numbered in nondecreasing order, by standard
arguments on perturbation theory for the eigenvalues it holds

|λi(Gk)− λi(Gk−1)| ≤ ‖Gk −Gk−1‖,

i = 1, . . . , n, [18, Theorem 8.1-6]. Thus, if the Jacobian is Lipschitz continuous in an open convex
set containing xk−1 + tpk−1 and xk + tpk with constant LJ > 0, it follows

‖Gk −Gk−1‖ ≤
LJ
2

(
‖pk−1‖+ ‖pk‖

)
.

Hence, if ‖pk−1‖ and/or ‖pk‖ are large, by Item (b) no decrease of µik+1 may occur. On the
contrary, for small values of ‖pk−1‖ and ‖pk‖, as occurs if {xk} is convergent, Gk undergoes small
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changes with respect to Gk−1 and the behaviour of µik+1 shows similarities with the case where J
is constant. Thus, a small steplength βk close to 1/λmax(Gk−1) can significantly reduce the scalars
|µik+1| corresponding to large eigenvalues λi(Gk), while a small reduction is expected for the values
|µik+1| corresponding to small eigenvalues λi(Gk). A large steplength βk close to 1/λmin(Gk−1) can
significantly reduce the scalars |µik+1| corresponding to small eigenvalues λi(Gk) while tends to
increase the eigencomponents |µik+1| corresponding to large eigenvalues λi(Gk). As for the case of
a constant Jacobian, these features suggest to choose the steplengths by alternating in a balanced
way small and large steplengths in order to reduce the eigencomponents.

The second guideline concerns the case where J is indefinite and λmin(Gk) < 0 < λmax(Gk). If
βk > 0, from Item (b) it follows that |µik+1| corresponding to positive λi(Gk) are smaller than |µik|
if βkλi(Gk) is small enough while all |µik+1| corresponding to negative eigenvalues increase with
respect to |µik| and the amplification depends on the magnitude of βkλi(Gk). If βk < 0 similar
conclusions hold. In general, a nonmonotone behaviour of the sequence {‖Fk‖} is expected but a
possibly large increase of ‖Fk+1‖ with respect to ‖Fk‖ does not occur if {|βkλi(Gk)|}i=1,...,n are
small or of moderate size. Since a small value of {|βkλi(Gk)|}i=1,...,n might be induced by a small
value of |βk|, the use of βk,2 might be advisable taking into account that |βk,2| ≤ |βk,1| and βk,1
can arbitrarily grow in the indefinite case (see Lemma 3.4).

4.1. On the impact of the steplength βk in the approximate norm descent line-
search. In this section we embed the spectral residual method in a general globalization scheme
based on the so-called approximate norm descent condition [28]

‖Fk+1‖ ≤ (1 + ηk)‖Fk‖, (4.3)

where {ηk} is a positive sequence satisfying

∞∑
k=0

ηk < η <∞. (4.4)

Intuitively, large values of ηk allow a highly nonmonotone behaviour of ‖Fk‖ while small values
of ηk promote the decrease of ‖F‖. Several linesearch strategies in the literature fall in this
scheme [19,28,31,34]. The main idea is that, given xk, the steps take the form

p− = −γkβkFk or p+ = +γkβkFk (4.5)

where the sign ± and γk ∈ (0, 1] are selected so that (4.3) is satisfied. The scalar γk can be
computed using a backtracking process. Enforcing condition (4.3) ensures the convergence of the
sequence {‖Fk‖} [28, Lemma 2.4].

We now analyse the properties of ‖Fk+1‖ as a function of the stepsize γkβk and determine
conditions on γkβk which enforce (4.3). First of all we observe that by the Mean Value Theorem [11,
Lemma 4.1.9] and (4.5) we have

Fk+1 = (I ± γkβkGk)Fk. (4.6)

Using this equation we can write

‖Fk+1‖2 = ‖Fk‖2 ± 2γkβkF
T
k (GS)kFk + γ2kβ

2
kF

T
k G

T
kGkFk, (4.7)

and analyze the fulfillment of either the decrease of ‖F‖ or (4.3) as given below.

Theorem 4.3. Suppose that Assumption 3.1 holds and Assumption 3.2 holds with x = xk and

p = pk. Suppose FTk JkFk 6= 0 and FTk GkFk 6= 0 with Gk given in (2.11). Let ∆ = q
(
(GS)k, Fk

)2
+

(η2k + 2ηk)q(GTkGk, Fk), then
(1) If xk+1 = xk + pk, pk = p− = −γkβkFk, γk ∈ (0, 1], we have that ‖Fk+1‖ < ‖Fk‖ when

βkq
(
(GS)k, Fk

)
> 0 and γk

∣∣βk∣∣ < 2

∣∣q((GS)k, Fk
)∣∣

q(GTkGk, Fk)
. (4.8)
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Condition (4.3) is satisfied when

q
(
(GS)k, Fk

)
−
√

∆

q(GTkGk, Fk)
≤ γkβk ≤

q
(
(GS)k, Fk

)
+
√

∆

q(GTkGk, Fk)
. (4.9)

(2) If xk+1 = xk + pk, pk = p+ = γkβkFk, γk ∈ (0, 1], we have that ‖Fk+1‖ < ‖Fk‖ when

βkq
(
(GS)k, Fk

)
< 0 and γk

∣∣βk∣∣ < 2

∣∣q((GS)k, Fk
)∣∣

q(GTkGk, Fk)
(4.10)

Condition (4.3) is satisfied when

−q
(
(GS)k, Fk

)
−
√

∆

q(GTkGk, Fk)
≤ γkβk ≤

−q
(
(GS)k, Fk

)
+
√

∆

q(GTkGk, Fk)
. (4.11)

Proof. Concerning Item (1), using (4.6) we get

‖Fk+1‖2 = ‖(I − γkβkGk)Fk‖2

=
(

1− 2γkβk
FTk (GS)kFk
‖Fk‖2

+ γ2kβ
2
k

FTk G
T
kGkFk
‖Fk‖2

)
‖Fk‖2

=
(

1− 2γkβkq
(
(GS)k, Fk

)
+ γ2kβ

2
kq(G

T
kGk, Fk)

)
‖Fk‖2.

Noting that by assumption q
(
(GS)k, Fk

)
6= 0 and q(GTkGk, Fk) > 0, ‖Fk+1‖ < ‖Fk‖ holds if

βkq
(
(GS)k, Fk

)
> 0 and − 2γkβkq

(
(GS)k, Fk

)
+ γ2kβ

2
kq(G

T
kGk, Fk) < 0,

and these conditions can be rewritten as in (4.8). Condition (4.9) follows trivially.

Item (2) follows analogously. From (4.6) and imposing and ‖Fk+1‖ < ‖Fk‖ we get the condition

βkq
(
(GS)k, Fk

)
< 0 and 2γkβkq

(
(GS)k, Fk

)
+ γ2kβ

2
kq(G

T
kGk, Fk) < 0

which is equivalent to (4.10). Condition (4.11) follows trivially. 2

We remark that, due to the form of Gk and (GS)k, conditions (4.8)–(4.11) are implicit in γkβk.
The above theorem supports testing the two steps (4.5) systematically because of the following fact.
At k-th iteration, βk, q

(
Jk, Fk

)
and q(JTk Jk, Fk) are given and by continuity of the Jacobian, the

Rayleigh quotients q
(
(GS)k, Fk

)
and q(GTkGk, Fk) tend to q

(
Jk, Fk

)
and q(JTk Jk, Fk) respectively

as γk tends to zero. Hence, if γk is sufficiently small then

q
(
Jk, Fk

)
− ε

q
(
JTk Jk, Fk

)
+ ε
≤
q
(
(GS)k, Fk

)
q
(
GTkGk, Fk

) ≤ q
(
Jk, Fk

)
+ ε

q
(
JTk Jk, Fk

)
− ε

,

and if 0 < ε < 1
2 min{

∣∣q(Jk, Fk)∣∣ , q(JTk Jk, Fk)} then
q
(
(GS)k,Fk

)
q
(
GT

kGk,Fk

) has the same sign as
q
(
Jk,Fk

)
q
(
JT
k Jk,Fk

) .

Consequently, for γk sufficiently small, either condition (4.8) or (4.10) is fulfilled. Analogous
considerations can be made for conditions (4.9) and (4.11).

As a final comment, the previous theorem suggests that a small |βk| promotes the fulfillment
of conditions (4.8) and (4.10) or (4.9) and (4.11). Again, by Lemma 3.4, the use of βk,2 may
be advisable taking into account that |βk,2| ≤ |βk,1| and that βk,1 can arbitrarily grow in the
indefinite case; taking the steplength equal to βk,1 may cause a large number of backtracks and
an erratic behaviour of {‖Fk‖} as long as ηk is sufficiently large.
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5. A spectral residual approximate norm descent method. In this section we describe
a spectral residual algorithm which implements a line-search along ±Fk and enforces the approxi-
mate norm descent condition (4.3). We also discuss the convergence properties of the method and
provide sufficient conditions for the convergence of the sequence {‖Fk‖} to zero.

The Projected Approximate Norm Descent (Pand) algorithm was developed in [34] for solv-
ing convexly constrained nonlinear systems. Among its variants proposed in [31, 34] and based
on Quasi-Newton methods, we consider the spectral residual implementation for unconstrained
nonlinear systems which is the focus of this work and denote it as Spectral Residual Approximate
Norm Descent (Srand) method.

Given the current iterate xk, a new iterate xk+1 is computed as xk+1 = xk + pk with pk given
by either (−γkβkFk) or (+γkβkFk), γk ∈ (0, 1]. The main phases of Srand are as follows. First,
the scalar βk is chosen to that |βk| ∈ [βmin, βmax]. Second, the scalar γk ∈ (0, 1] is fixed using a
backtracking strategy so that either the linesearch condition

‖F (xk + pk)‖ ≤
(
1− ρ(1 + γk)

)
‖Fk‖, (5.1)

holds or the linesearch condition

‖F (xk + pk)‖ ≤ (1 + ηk − ργk)‖Fk‖, (5.2)

holds where ρ ∈ (0, 1) is quite small [11, 34] and {ηk} is a positive sequence satisfying (4.4).
The linesearch conditions (5.1) and (5.2) are derivative-free; the first condition imposes at each
iteration a sufficient decrease in ‖F‖ which can be accomplished for suitable values of ±γkβkFk as
long as FTk JkFk 6= 0, and is crucial for establishing results on the convergence of {‖Fk‖} to zero.
On the other hand, the second condition allows for an increase of ‖F‖ depending on the magnitude
of ηk. Trivially, (5.1) implies (5.2) and both imply the approximate norm descent condition (4.3).

The formal description of the Srand method is reported in Algorithm 5.1 where we de-
liberately do not specify the form of the stepsize βk. Termination of Step 2 is guaranteed by
Theorem 4.3. The theoretical properties of Srand given in [34, Theorem 4.2 and Theorem 4.3]
are summarized in the following theorem.

Theorem 5.1. Let the positive sequence {ηk} satisfy (4.4) and let {xk} be the sequence
generated by the Srand algorithm. Then

1. the sequence {xk} is convergent and consequently the sequence {‖Fk‖} is convergent;
2. the sequence {γk‖Fk‖} is convergent and such that limk→∞ γk‖Fk‖ = 0;
3. if (5.1) is satisfied for infinitely many k, then limk→∞ ‖Fk‖ = 0.

The above results hold for any choice of the steplenght βk and Item 3 identifies one occurrence
where the Srand algorithm solves problem (1.1), i.e., {‖Fk‖} converges to zero. In this section
we complete the theoretical analysis of the Srand algorithm by providing sufficient conditions
that ensures that the sequence {‖Fk‖} converges to zero.

We start by recalling a simple result.
Lemma 5.2. Suppose that Assumption 3.2 holds. Then for pk = ±γkβkFk, it holds

‖Fk+1‖2 =

(
1± 2γkβkq((GS)k, Fk)± 2

γkβk
‖Fk‖2

∫ 1

0

(F (xk + pk)− F (xk))
TJ(xk + tpk)Fk dt

)
‖Fk‖2. (5.3)

Proof. Assume that pk = −γkβkFk. Then,

‖Fk+1‖2 = ‖Fk‖2 + 2
∫ 1

0
F (xk + tpk)TJ(xk + tpk)pk dt

= ‖Fk‖2 − 2γkβk
∫ 1

0
F (xk + tpk)TJ(xk + tpk)Fk dt

= ‖Fk‖2 − 2γkβk
∫ 1

0
F (xk + tpk)TJ(xk + tpk)Fk dt

±2γkβk
∫ 1

0
F (xk)TJ(xk + tpk)Fk dt

= ‖Fk‖2 − 2γkβkF
T
k GkFk − 2γkβk

∫ 1

0
(F (xk + pk)− F (xk))TJ(xk + tpk)Fk dt,

that gives (5.3) using (3.1) and (2.13). The case pk = +γkβkFk is analogous.
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Algorithm 5.1: The Srand algorithm

Given x0 ∈ Rn, 0 < βmin < βmax, β0 ∈ [βmin, βmax], ρ, σ ∈ (0, 1), a positive sequence {ηk}
satisfying (4.4).

If ‖F0‖ = 0 stop.
For k = 0, 1, 2, . . . do

1. Set γ = 1.
2. Repeat

2.1 Set p− = −γβkFk and p+ = γβkFk.
2.2 If p− satisfies (5.1), set pk = p− and go to Step 3.
2.3 If p+ satisfies (5.1), set pk = p+ and go to Step 3.
2.4 If p− satisfies (5.2), set pk = p− and go to Step 3.
2.5 If p+ satisfies (5.2), set pk = p+ and go to Step 3.
2.6 Otherwise set γ = σ γ.

3. Set γk = γ, xk+1 = xk + pk.
4. If ‖Fk+1‖ = 0 stop.
5. Choose βk+1 such that |βk+1| ∈ [βmin, βmax] .

Under specific assumptions on the Jacobian J , the following two theorems give conditions
that ensures F (x∗) = 0 where x∗ is the limit point of {xk}: Theorem 5.3 concerns the cases when
JS(x∗) is positive (negative) definite and when J is symmetric too, Theorem 5.4 regards the case
when JS(x∗) is indefinite.

Theorem 5.3. Suppose that F is continuously differentiable on IRn. Let the positive sequence
{ηk} satisfy (4.4) and let {xk} be the sequence generated by the Srand algorithm. Moreover
assume that JS(x∗) is positive definite at the limit point x∗ of {xk}. Letting σmax(J(x∗)) be the
largest singular value of J(x∗), if eventually

ν ≥ βk >
ρ

(1 + ε)σmax(J(x∗))
(5.4a) and

βkq((GS)k, Fk) >
3

2
ρ, (5.4b)

with ρ ∈ (0, 1) as in (5.1)-(5.2) and for some ε ∈ (0, 1) and ν > 0, then F (x∗) = 0. If βk is
either βk,1 or βk,2, only condition (5.4b) has to be satisfied to get F (x∗) = 0. Moreover, for some
ω1, ω2 ∈ (0, 1), sufficient conditions for (5.4b) to hold are

1. if βk = βk,1 for k large enough:

κ(JS(x∗)) <
2ω1

3ρ
; (5.5)

2. if βk = βk,2 for k large enough:

κ(JS(x∗)) < ω2

√
2

3ρ
; (5.6)

3. if J is symmetric and βk is either βk,1 or βk,2 for k large enough:

κ(J(x∗)) <
2ω1

3ρ
; (5.7)

where κ(·) is the 2-norm condition number.
Proof. Since JS(x∗) is assumed to be positive definite, continuity implies that there exists a

scalar ξ > 0 sufficiently small such that, for all y ∈ B(x∗, ξ) = {x ∈ IRn : ‖x− x∗‖ ≤ ξ}, JS(y) is
positive definite and

λmin(JS(y)) ≥ (1− ε)λmin(JS(x∗)), and λmax(JS(y)) ≤ (1 + ε)λmax(JS(x∗)), (5.8)
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with ε ∈ (0, 1). Moreover, the convergence of the sequence {xk} implies that xk−1 + tpk−1 and
xk + tpk both belong to B(x∗, ξ) for large enough k and all t ∈ [0, 1]. As a consequence, reducing
ξ if necessary, we deduce that, for k sufficiently large,

min [λmin((GS)k), λmin((GS)k−1)] ≥ (1− ε)λmin(JS(x∗)),

max [λmax((GS)k), λmax((GS)k−1)] ≤ (1 + ε)λmax(JS(x∗)),

and by (2.14),

q((GS)k, Fk) ∈ [λmin((GS)k), λmax((GS)k)] ⊆ [(1− ε)λmin(JS(x∗)), (1 + ε)λmax(JS(x∗))] . (5.9)

Finally, again by continuity, reducing ξ > 0 if necessary, for all y ∈ B(x∗, ξ) it holds

σmax(J(y)) ≤ (1 + ε)σmax(J(x∗)), σmax(Gk) ≤ (1 + ε)σmax(J(x∗)). (5.10)

Now, we consider (5.3) and pk = −γkβkFk. From the Mean Value Theorem [11, Lemma 4.1.9],
we have that∣∣∣∣∫ 1

0

(F (xk + tpk)− Fk)TJ(xk + tpk)Fk dt

∣∣∣∣ =

∣∣∣∣∫ 1

0

(∫ 1

0

J(xk + ζ tpk)tpk dζ

)
J(xk + tpk)Fk dt

∣∣∣∣ ,
ζ ∈ [0, 1]. Again, for k sufficiently large, xk+ζ tpk ∈ B(x∗, ξ) for t, ζ ∈ [0, 1]. Thus, pk = −γkβkFk
and (5.10) imply∣∣∣∣∫ 1

0

(F (xk + tpk)− Fk)TJ(xk + tpk)Fk dt

∣∣∣∣ ≤ ∫ 1

0

tγkβk max
z∈B(x∗,ξ)

‖J(z)‖2‖Fk‖2 dt

=
1

2
γkβk max

z∈B(x∗,ξ)
σmax(J(z))2‖Fk‖2

≤ 1

2
γkβk(1 + ε)2σmax(J(x∗))2‖Fk‖2.

Combining this expression with (5.3), we have that for k sufficiently large

‖Fk+1‖2 ≤
(

1− 2γkβkq((GS)k, Fk) + 2
γkβk
‖Fk‖2

∣∣∣∣∫ 1

0

(F (xk + pk)− F (xk))TJ(xk + tpk)Fk dt

∣∣∣∣) ‖Fk‖2
≤
(
1− 2γkβkq((GS)k, Fk) + γ2kβ

2
k(1 + ε)2σmax(J(x∗))2

)
‖Fk‖2. (5.11)

Thus, for k sufficiently large, the linesearch condition (5.2) is satisfied if

1− 2γβkq((GS)k, Fk) + γ2β2
k(1 + ε)2σmax(J(x∗))2 ≤ (1− ργ)2,

which is equivalent to

δ2γ
2 + 2δ1γ

def
=
(
(1 + ε)2σmax(J(x∗))2β2

k − ρ2
)
γ2 + 2 (ρ− βkq((GS)k, Fk)) γ ≤ 0. (5.12)

Clearly (5.4a) implies that (1 + ε)2σmax(J(x∗))2ν2 ≥ δ2 > 0. Moreover, if eventually (5.4b) holds
then δ1 < 0 and (5.12) is satisfied whenever γ ≤ γ∗ = −2δ1/δ2. Now, γ∗ is uniformly bounded

below since −δ1 ≥ 1
2ρ, i.e., γ∗ ≥ ρ

δ2
≥ γ̄

def
= ρ/((1 + ε)2σmax(J(x∗))2ν2). Then, the mechanism

of Step 3.6 of the Srand algorithm guarantees that, for k sufficiently large, the loop in Step 2
terminates with γk ≥ min{1, σγ̄}, and γ̄ independent of k. As a consequence, liminfk→∞ γk > 0
and by Item 2. in Theorem 5.1 we have that F (x∗) = 0.

We now show that when βk is either βk,1 or βk,2 for k sufficiently large, then only condition
(5.4b) has to be satisfied to get F (x∗) = 0.

Let βk = βk,1. Using Item (ii) in Lemma 3.4 and (3.6), we have that βk is positive and satisfies

1

(1 + ε)λmax(JS(x∗))
≤ βk ≤

1

(1− ε)λmin(JS(x∗))
. (5.13)
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By definition of JS , ‖JS(x∗)‖ ≤ ‖J(x∗)‖, hence λmax(JS(x∗)) ≤ σmax(J(x∗)). Therefore (5.4a) is
satisfied being ρ ∈ (0, 1) and setting ν = 1/((1− ε)λmin(JS(x∗))).

Let βk = βk,2. Since βk,2 ≤ βk,1, the upper bound in (5.4a) is guaranteed from the discussion
above. Moreover from (5.11) and again from βk,2 ≤ βk,1, the linesearch condition (5.2) is satisfied
if

δ2γ
2 + 2δ1γ

def
=
(
(1 + ε)2σmax(J(x∗))2β2

1,k − ρ2
)
γ2 + 2 (ρ− β2,kq((GS)k, Fk)) γ ≤ 0. (5.14)

Following the previous considerations on βk,1, δ2 is positive. Further, using (5.4b) and repeating
the arguments above on the scalar γ satisfying (5.14), the loop in Step 2 terminates with γk ≥
min{1, σγ̄}, and γ̄ independent of k.

To conclude, as for Item 1., if βk,1 is used eventually then (3.6) and (5.9) give βkq((GS)k, Fk) ≥
ω1

κ(JS(x∗)) and trivially (5.5) implies (5.4b) for all k sufficiently large.

As for Item 2., if βk,2 is used eventually then (3.7), (5.10) and (5.9) give βkq((GS)k, Fk) ≥
ω2

2

κ(JS(x∗))2 with ω2 = (1−ε)‖JS(x∗)‖
(1+ε)‖J(x∗)‖ , and (5.6) implies (5.4b) for all k sufficiently large.

Concerning Item 3., (5.4b) reads βkq(Gk, Fk) > 3
2ρ, and by Lemma 3.4 βk,1 and βk,2 are

positive and

βk,1 ≥ βk,2 ≥
1

σmax(Gk−1)
≥ 1

(1 + ε)σmax(J(x∗))
.

Thus, by (5.9) it follows βkq(Gk, Fk) ≥ ω1

κ(J(x∗)) and trivially (5.7) implies (5.4b) for all k sufficiently

large.

We remark that analogous conditions to (5.4) can be derived for the case when JS(x∗) is
negative definite.

Theorem 5.4. Suppose that F is continuously differentiable on IRn. Let the positive sequence
{ηk} satisfy (4.4) and let {xk} be the sequence generated by the Srand algorithm. Moreover as-
sume that JS(x∗) is indefinite and J(x∗) is nonsingular at the limit point x∗ of {xk}. If eventually

ν ≥ |βk| >
ρ

(1 + ε)σmax(J(x∗))
(5.15a) and |βkq((GS)k, Fk)| > 3

2
ρ, (5.15b)

with ρ ∈ (0, 1) as in (5.1)-(5.2) and for some ε ∈ (0, 1) and ν > 0, then F (x∗) = 0.
Proof. We observe that for k sufficiently large, the inequalities (5.8)-(5.9) hold for some

ε ∈ (0, 1) . Moreover, considering pk = ±γkβkFk and proceeding as in the proof of Theorem 5.3,
we get that for k sufficiently large the following inequality holds

‖Fk+1‖2 ≤
(
1± 2γkβkq((GS)k, Fk) + γ2kβ

2
k(1 + ε)2σmax(J(x∗))2

)
‖Fk‖2.

Therefore the linesearch condition (5.2) is satisfied if

δ2γ
2 + 2δ1γ

def
=
(
(1 + ε)2σmax(J(x∗))2β2

k − ρ2
)
γ2 + 2 (ρ± βkq((GS)k, Fk)) γ ≤ 0. (5.16)

Clearly (5.15a) implies that (1 + ε)2σmax(J(x∗))2ν2 ≥ δ2 > 0.
We now show that (5.15b) implies that δ1 > 0 so that we conclude that F (x∗) = 0 as in the

proof of Theorem 5.3.
Let us analyse the case βkq((GS)k, Fk) < 0 and consider the step pk = γkβkFk. Then condition

(5.15b) means that −βkq((GS)k, Fk) ≥ 3
2ρ, that is δ1 = ρ + βkq((GS)k, Fk) < − 1

2ρ < 0. The
case βkq((GS)k, Fk) > 0 is analogous considering the step pk = −γkβkFk. Now, repeating the
arguments in Theorem 5.3 we conclude that liminfk→∞ γk > 0.

6. Numerical experiments. In view of our theoretical analysis and guidelines on steplength
selection given in Section 4, we attempt to tailor Barzilai and Borwein rules for unconstrained
optimization to spectral residual methods. In this section we discuss several steplength rules for
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spectral residual methods and perform their experimental analysis using the Srand algorithm
described in Algorithm 5.1. Our test set consists of sequences of nonlinear systems arising in the
solution of rail-wheel contact models and is described in details in Section 6.2.

Srand was implemented in Matlab (MATLAB R2019b) and the experiments were carried out
on a Intel Core i7-9700K CPU @ 3.60GHz x 8, 16 GB RAM, 64-bit.

6.1. Steplength rules. We now present six rules for the choice of the steplength in spectral
residual methods that were used in our experiments. Besides the straightforward choice of one of
the two steplengths βk,1, βk,2, along all iterations, we consider adaptive strategies that suitably
combine them and parallel those used for quadratic and nonlinear optimization problems. Below,

given a scalar β, T (β) is the thresholding rule which projects |β| onto Iβ
def
= [βmin, βmax]

T (β) = min
{
βmax,max

{
βmin,

∣∣β∣∣}}. (6.1)

BB1 rule. By [21,25,27,34], at each iteration let

βk =

{
βk,1 if |βk,1| ∈ Iβ
T (βk,1) otherwise

(6.2)

BB2 rule. At each iteration let

βk =

{
βk,2 if |βk,2| ∈ Iβ
T (βk,2) otherwise

(6.3)

ALT rule. Following [8, 21], at each iteration let us alternate between βk,1 and βk,2:

βALT
k =

{
βk,1 for k odd

βk,2 otherwise
(6.4)

βk =


βALT
k if |βALT

k | ∈ Iβ
βk,1 if k even, |βk,1| ∈ Iβ , |βk,2| /∈ Iβ
βk,2 if k odd, |βk,2| ∈ Iβ , |βk,1| /∈ Iβ
T (βALT

k ) otherwise

(6.5)

ABB rule. Following [45] and ABB rule in [16], we define the Adaptive Barzilai-Borwein (ABB)
rule as follows. Given τ ∈ (0, 1), let

βABB
k (ξ1, ξ2) =

 ξ2 if
ξ2
ξ1
< τ

ξ1 otherwise
(6.6)

for some given ξ1, ξ2. Then

βk =


βABB
k (βk,1, βk,2) if |βk,1|, |βk,2| ∈ Iβ
βk,1 if |βk,1| ∈ Iβ , |βk,2| /∈ Iβ
βk,2 if |βk,2| ∈ Iβ , |βk,1| /∈ Iβ
βABB
k (T (βk,1), T (βk,2)) otherwise

(6.7)

Observe that a large value of τ promotes the use of βk,2 with respect to βk,1. The
rule allows to switch between the steplengths βk,1 and βk,2 and was originally motivated
by the behaviour of the Barziali and Borwein method applied to convex and quadratic
minimization problem (see [16,45] and our discussion below Lemma 4.1).
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ABBm rule. This rule elaborates the ABBminmin rule given in [16], taking into account that
βk,2 may be negative along iterations. Let m be a nonnegative integer, and

β̃k,2 =

{
βk,2 if |βk,2| ∈ Iβ
T (βk,2) otherwise

j∗ = argmin{|β̃j,2| : j = max{1, k −m}, . . . , k}.

(6.8)

Given τ ∈ (0, 1), we fix βk as follows

βABBm
k (ξ1, ξ2) =

 β̃j∗,2 if
ξ2
ξ1
< τ

ξ1 otherwise
(6.9)

βk =


βABBm
k (βk,1, βk,2) if |βk,1|, |βk,2| ∈ Iβ
βk,1 if |βk,1| ∈ Iβ , |βk,2| /∈ Iβ
βk,2 if |βk,2| ∈ Iβ , |βk,1| /∈ Iβ
βABBm
k (T (βk,1), T (βk,2)) otherwise

(6.10)

Again, a large value of τ promotes the use of a step from BB2 rule instead of βk,1. In

case |βk,1|, |βk,2| ∈ Iβ and
βk,2
βk,1

< τ , the smallest absolute value β̃j∗,2 over the last m+ 1

iterations is selected; taking into account that β̃j,2 for j = max{1, k −m}, . . . , k can be

negative, the rationale for selecting β̃j∗,2 in (6.9) is to mitigate the nonmonotone behavior
of the objective function [16]. Consequently, smaller steplengths are expected using the
ABBm rule than using the ABB rule.

DABBm rule. Following [4, 6], a dynamic threshold τk ∈ (0, 1) can be used in place of the

prefixed threshold τ in (6.9). Given β̃k,2 and j∗ in (6.8), we propose the rule defined as

βDABBm
k (ξ1, ξ2) =

 β̃j∗,2 if
ξ2
ξ1
< τk

ξ1 otherwise
(6.11)

βk =


βDABBm
k (βk,1, βk,2) if |βk,1|, |βk,2| ∈ Iβ
βk,1 if |βk,1| ∈ Iβ , |βk,2| /∈ Iβ
βk,2 if |βk,2| ∈ Iβ , |βk,1| /∈ Iβ
βDABBm
k (T (βk,1), T (βk,2)) otherwise

(6.12)

with the dynamic threshold set as

τk = min
{
τ, ‖Fk‖1/(2+bt

2)
}
, (6.13)

bt = max{bj : j = max{1, k − w}, . . . , k}. (6.14)

Here τ ∈ (0, 1) is an upper bound on the value of τk, w is a nonnegative integer and
bj denotes the number of backtracks performed at iteration j (see Step 2 of Algorithm
5.1). If ‖Fk‖ is getting small and the number of performed backtracks in the last w + 1
iterations is small, then (6.13) promotes the use of steplength from BB1 rule, i.e., larger
steplengths which can speed convergence to a zero of F . On the other hand, when the
number of backtracks performed along previous iterations is large and τ is large, the use
of the smaller steplength from BB2 rule is encouraged.

We conclude the discussion on steplenght selection, noting that conditions (5.4) and (5.15) for the
convergence of {xk} to a zero of F apply to all our rules.

The rules and parameters used in our experiments are summarized in Table 6.1.
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Rule βk

BB1 βk in (6.2)
BB2 βk in (6.3)
ALT βk in (6.4), (6.5)
ABB01 βk in (6.6), (6.7) with τ = 0.1
ABB08 βk in (6.6), (6.7) with τ = 0.8
ABBm01 βk in (6.8)-(6.10) with τ = 0.1, m = 5
ABBm08 βk in (6.8)-(6.10) with τ = 0.8, m = 5
DABBm βk in (6.8), (6.11)-(6.14) with τ = 0.8, m = 5, w = 20

Table 6.1
Steplength’s rules in Srand implementation.

6.2. Problem set: nonlinear systems arising from rolling contact models. Rolling
contact is a fundamental issue in mechanical engineering and plays a central role in many impor-
tant applications such as rolling bearings and wheel-rail interaction [23, 24]. In order to perform
simulations of complex mechanical systems with a good tradeoff between accuracy and efficiency,
three working hypotheses are usually made in modelling rolling contact: non-conformal contact,
i.e., the typical dimensions of the contact area are negligible if compared to the curvature radii of
the contact body surfaces; planar contact, i.e., the contact area is contained in a plane; half-space
contact, i.e., locally, the contact bodies are viewed as three-dimensional half-spaces [23, 24]. In
this framework, we focus on the Kalker’s rolling contact model which represents a relevant and
general model in contact mechanics.

The solution of Kalker’s rolling contact model can be performed using different approaches.
The approach in [42, 43] calls for the solution of constrained optimization problems while the
so-called CONTACT algorithm [24] gives rise to sequences of nonlinear systems. Our problem
set derives from the application of CONTACT algorithm; here we describe in which phase of the
Kalker’s model solution they arise and give some of their features. We refer to Appendix A for a
sketch of Kalker’s model, its discretization, and the Kalker’s CONTACT algorithm.

Kalker’s CONTACT algorithm determines the normal pressure, the tangential pressure, the
contact area, the adhesion area and the sliding area in the contact between two elastic bodies and
relies on the elastic decoupling between the normal contact problem and the tangential contact
problem. Such problems are solved separately; first the normal problem is solved via the the so-
called NORM algorithm, second the tangential problem is solved via the so-called TANG algorithm.
Algorithms NORM and TANG are expected to identify the elements in the contact area and in
the adhesion-sliding areas, respectively. These algorithms are applied sequentially and repeatedly
until the values of the computed pressures undergo a sufficiently small change that suggests their
reliable approximation; in general, a few repetitions of NORM and TANG algorithms are required.
Each repetition of NORM algorithm calls for the solution of a sequence of linear systems while
each repetition of TANG algorithm calls for the solution of a sequence of linear and nonlinear
systems. Computationally, the major bottleneck is the numerical solution of the sequence of
nonlinear systems generated in the TANG phase. Importantly, each CONTACT iteration requires
few repetitions of TANG algorithm but the CONTACT algorithm is performed for several time
instances∗.

Our tests were made on wheel-rail contact in railway systems. The benchmark vehicle is a
driverless subway vehicle, designed by Hitachi Rail on MLA platform (Light Automatic Metro).
The vehicle is a fixed-length train composed of four carbodies and five bogies (four motorized and
one, the third, trailer), see Figure 6.1. The multibody model has been realized in the Simpack
Rail environment [39]. We considered a train route of length 400m including a typical railway
curved track characterized by three significant parts: two straight lines (from 0m to 70m and from
233m to 400m), the curve (from 116m to 186m) and two cycloids (from 70m to 116m and from

∗In Appendix A see: (A.1) for the form of normal contact problem and tangential contact problem, (A.5) for
the form of the nonlinear systems to be solved, Figure A.2 for the flow of Kalker’s CONTACT algorithm.
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186m to 233m) which smoothly connect the straight lines and the curve in terms of curvature
radius. The radius of the curve is 500m. In this analysis, we focused on the contact between
the first vehicle wheel and the rail; since the vehicle length is equal to 45.7m, at the beginning
of the dynamic simulation the considered wheel starts in the position 45.7m along the track.We
performed a simulation in an interval of 10 seconds using 500 time steps, which amounts to 500
calls to CONTACT algorithm, for train speeds with magnitude v taking the values: v = 10 m/s
and v = 16m/s. Accordingly, during the whole simulation the considered wheel travels along the
track a distance equal to 100m and 160m, respectively. The traveling velocities considered give
a realistic lateral acceleration along the curve according to the current regulation in force in the
railway field.

Fig. 6.1. Multibody model of the benchmark vehicle.

Two sets of experiments were performed†. First, we solved a large number of sequences of
nonlinear systems arising from wheel-rail contact in railway systems by the eight Srand variants
based on the rules in Table 6.1. Second, we compared experimentally the best performing Srand
variant and a standard Newton trust-region when embedded in the CONTACT algorithm.

The set of test problems used in the first part of the experiments was generated implementing
the CONTACT algorithm in Matlab and using a standard trust-region Newton method‡ for solving
the arising nonlinear systems. Afterwards, a representative subset of the nonlinear systems was
selected to form our problem set. Specifically, six sequences of nonlinear systems generated by the
CONTACT algorithm and corresponding to six consecutive time instances for each track section
(straight line, cycloid and curve) and for each velocity were selected. Such sequences are represen-
tative of the systems arising throughout the whole simulation and allow a fair analysis of Srand
on nonlinear systems from a real application. Table 6.2 summarizes the features of the sequences:
magnitude of the train velocity v, section of the route, time instances, number of nonlinear systems
in the sequence, dimension n of the systems (proportional to the number of mesh nodes in the
potential contact area). A typical feature of the contact model is that n increases as the velocity
increases and when the train curves along the route (i.e., the track curvature increases). The total
number of systems associated to v = 10m/s and v = 16m/s is 121 and 153 respectively.

v(m/s) Track Section Time Instances Number of Systems n

Straight line 100-105 10 156
10 Cycloid 300-305 56 897

Curve 450-455 55 1394

Straight line 50-55 8 156
16 Cycloid 150-155 63 1120

Curve 350-355 82 1394

Table 6.2
Sequences of nonlinear systems forming the first problem set.

6.3. Numerical results. In this section we present the performance of Srand algorithm.
The results presented concern the solution of the sequences of nonlinear systems summarized in

†The data that support the findings of this study are available from the corresponding author upon reasonable
request.

‡The code in [33] was applied using the default setting and dropping bound constraints on the unknown.
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Table 6.2 and a comparison between the best performing Srand variant and a standard Newton
trust-region method when embedded in the CONTACT algorithm.

Srand algorithm was implemented as described in Section 6.1 and with parameters

βmin = 10−10, βmax = 1010, ρ = 10−4, σ = 0.5, ηk = 0.99k(100 + ‖F0‖2) ∀k ≥ 0,

see [34]. The null vector x0 = 0 was chosen as initial guess. A maximum number of iterations and
F -evaluations equal to 105 was imposed and a maximum number of backtracks equal to 40 was
allowed at each iteration. The procedure was declared successful when

‖Fk‖ ≤ 10−6. (6.15)

A failure was declared either because the assigned maximum number of iterations or F -evaluations
or backtracks is reached, or because ‖F‖ was not reduced for 50 consecutive iterations.

We now compare the performance of all the variants of Srand method in the solution of
the sequences of nonlinear systems in Table 6.2. Further, in light of the theoretical investigation
presented in this work, we analyze in details the results obtained with BB1 and BB2 rule and
support the use of rules that switch between the two steplengths.

Figure 6.2 shows the performance profiles [13] in terms of F -evaluations employed by the
Srand variants for solving the sequence of systems generated both with v = 10m/s (121 systems)
(upper) and with v = 16m/s (153 systems) (lower) and highlights that the choice of the steplength
is crucial for both efficiency and robustness. The complete results are reported in Appendix B. We
start observing that BB2 rule outperformed BB1 rule; in fact the latter shows the worst behaviour
both in terms of efficiency and in terms of number of systems solved. Alternating βk,1 and βk,2
in ALT rule without taking into account the magnitude of the two scalars improves performance
over BB1 rule but is not competitive with BB2 rule. On the other hand, the variants of Srand
using adaptive strategies are the most robust, i.e., they solve the largest number of problems, and
efficient. Specifically, comparing ABB, ABBm and DABBm rules, the most effective steplength
selections are ABBm and DABBm. Using ABBm01 rule, 98.3% (2 failures) and 96.1% (6 failures)
out of the total number of systems were solved successfully for v = 10 m/s and v = 16 m/s
respectively; using ABBm08 rule, 98.3% (2 failures) and 96.7% (5 failures) of the total number of
systems were solved successfully with v = 10m/s and v = 16m/s respectively; using the dynamic
selection DABBm, the largest number of systems was solved successfully, i.e., 99.2% (1 failure) and
98% (3 failures) out the total number of systems with v = 10 m/s and v = 16 m/s respectively.
Overall, ABBm08 rule gives rise to the most efficient algorithm for both velocity values and the
profile related to BB2 rule is within a factor 2 of it in roughly the 80% and the 70% of the runs
for v = 10m/s and v = 16m/s, respectively.

Let us now focus on the performance Srand coupled with BB1 and BB2 rules. As a rep-
resentative run of our numerical experience reported in Appendix B, we consider the nonlinear
system arising with v = 16 m/s, at time t = 150, iteration 2 of the CONTACT algorithm and
iteration 2 of the TANG algorithm (system 150 2 2 in Table B.5). In the upper part of Figure
6.3 we display ‖F‖ along iterations and the number of F -evaluations performed. We note that
using the stepsize βk,1 causes a highly nonmonotone behavior of ‖F‖ and such behaviour is not
productive for convergence; using BB1 rule 276 iterations and 476 F -evaluations are performed
while using BB2 rule 163 iterations and 228 F -evaluations are required. The distinguishing feature
of these runs is the high number of backtracks performed using βk,1 at some iterations, as reported
at the bottom part of the figure where the number of backtracks versus iterations is reported for
both Srand variants. This behaviour is in accordance with the analysis in Section 4.1: since βk,1
can be arbitrarily larger than βk,2 in the indefinite case, the need to perform a large number of
backtracks to enforce approximate norm decrease is likely to occur in case βk,1 is taken as the
initial steplength. Such observation supports the use of βk,2; the benefit from using shorter steps
is further shown by the performance of ABBm over ABB, the former tends to take shorter steps
than the latter by exploiting the iteration history and results to be more effective.

We conclude our experimental analysis using a spectral residual method in the CONTACT

algorithm. To this purpose, we compare two implementations of CONTACT algorithm which differ
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Fig. 6.2. F -evaluation performance profiles of Srand method. Upper: v = 10m/s, Lower: v = 16m/s.

only in the nonlinear solver for the nonlinear systems arising in the TANG algorithm. The first
implementation (CONTACT-NTR) uses a standard Newton trust-region method and the second
one (CONTACT-DABBm) uses DABBm which turned out to be the more robust Srand version
in the analysis above (see Figure 6.2). As a standard Newton trust-region method, we used the
Matlab code proposed in [33]; default parameters were used and bound constraints on the unknown
were dropped using the setting indicated in the code. The Jacobian matrix of F was approximated
by finite differences.

As a preliminary issue, we observe that the Jacobian matrices of F are dense through the
iterations; thus they cannot be formed as a low computational cost by finite difference procedures
for sparse matrices [7]. We also observed in the experiments that the Jacobian matrices are
nonsymmetric, do not have dominant diagonals and they are not close to diagonal matrices. For
example, let us consider the Jacobian matrix of the system corresponding to speed v = 16 m/s,
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Fig. 6.3. Srand with BB1 rule vs Srand with BB2 rule on a single nonlinear system.

curve track section, instant t = 355, iteration 2 of the CONTACT and iteration 4 of the TANG

algorithm (355 2 4 in Table B.6). It has dimension 292 × 292 and, evaluated at the final iterate
computed using ABBm08 rule, 96.18% of its elements are nonzero. The structure of the Jacobian
can be observed in Figure 6.4 where the absolute values of its elements are plotted in a logarithmic
scale (the surface of the full matrix on the left and a plot of the row 146 on the right). This structure
is observed along all the iterations of the nonlinear system solvers and is common to all sequences
generated by the CONTACT algorithm.

Fig. 6.4. Jacobian matrix: surface of the full matrix and plot of the central row (base 10 logarithm of the
absolute values).
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In our implementation, CONTACT algorithm terminated when the relative error between two
successive values of the computed pressures dropped below 10−4 or a maximum of 20 alternating
cycles between NORM and TANG was reached. Both nonlinear solvers were run until the stopping
rule (6.15) is met. We ran CONTACT-NTR and CONTACT-DABBm over the whole track for both
velocities, that is we considered the whole sequence of 500 time steps. CONTACT-NTR generated
3759 and 5353 nonlinear systems for v = 10 m/s and v = 16 m/s, respectively and CONTACT-

DABBm generated 4496 and 5494 nonlinear systems for the two velocities.
As a first remark, both procedures successfully solved the contact model described above and

were reliable and accurate in the numerical simulation of wheel-rail interaction. Secondly, the
use of the spectral residual method yields a gain in terms of time with respect to the use of a
standard Newton method where finite difference approximation of Jacobian matrices is employed;
this feature derives from the fact that spectral residual method is derivative-free and does not ask
for the solution of linear systems. Figures 6.5 and 6.6 show the comparison of the two CONTACT

implementations in terms of number of F -evaluations (excluding those needed to approximate
the Jacobian matrices) and execution elapsed time. From the plots we observe that CONTACT-

DABBm takes a larger number of F -evaluations than CONTACT-NTR but it is faster. Over the
whole time interval, CONTACT-DABBm employs 1 hour, 19 mins and 2 hours, 28 mins to solve
the generated nonlinear systems with v = 10m/s and v = 16m/s, while CONTACT-NTR takes 7
hours and 49 mins and 12 hours and 41 mins, respectively.
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Fig. 6.5. Comparison between CONTACT-DABBm and CONTACT-NTR, v = 10 m/s: number of
Fevaluations and elapsed time in seconds (logarithmic scale).

7. Conclusions. The numerical behaviour of spectral residual methods for nonlinear sys-
tems strictly depends on the choice of the spectral steplength. Although most of the works on
this subject make use of the stepsize βk,1, known results on the spectral gradient methods for
unconstrained optimization suggest that a suitable combination of the stepsizes βk,1 and βk,2
could be of benefit for spectral residual methods as well. This work aims to contribute to this
study by providing a first systematic analysis of the stepsizes βk,1 and βk,2. Moreover, practical
guidelines for dynamic choices of the steplength are derived from new theoretical results in order
to increase both the robustness and the efficiency of spectral residual methods. Such findings have
been extensively tested and validated on sequences of nonlinear systems arising in the solution of
a contact wheel-rail model.
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Appendix A. Kalker’s contact model and CONTACT algorithm.
We give an overview of the model and algorithm used to generate our set of nonlinear sys-

tems. Let bold letters represent vectors, the subscript T denote a vector with components in the
tangential x-y contact place, the subscript N denote the component of a vector in the normal z
contact direction. The contact problem between two elastic bodies [23,24] determines the contact
region C inside the potential contact area Ac (usually the interpenetration area between the wheel
and rail contact surfaces), its subdivision into adhesion area H and slip area S, and the tangential
pT and normal pN pressures such that the following contact conditions are satisfied:

normal problem in contact C : e = 0, pN ≥ 0
in exterior E : pN = 0, e > 0
C ∪ E = Ac, C ∩ E = ∅

tangential problem in adhesion H : ‖sT‖ = 0, ‖pT‖ ≤ g
in slip S : ‖sT‖ 6= 0, pT = −g sT/‖sT ‖
S ∪H = C, S ∩H = ∅

(A.1)

Above, e is the deformed distance between the two bodies and, by definition, it holds e = 0 and
pN ≥ 0 in C. Referring to Figure A.1, the region E where e > 0 is called the exterior area and
pN = 0 therein. The potential contact area is such that Ac = C ∪ E. The contact area C is
divided into the area of adhesion H where the tangential component sT of the slip vanishes, and
the area S of slip where sT is nonzero. The slip sT is the difference between the velocities of two
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homologous points belonging to deformed wheel and rail surfaces inside the contact area and is a
function of the pressures pT and pN , g is the traction bound (Coulomb friction model [23, 24]).
Overall, the first three equations in (A.1) model the normal contact problem (computation of pN
and of the shapes of the regions C and E), whereas the last three equations describe the tangential
contact problem (computation of pT , of local slidings sT and of the shapes of the regions H and
S).

Let us consider the discretization of (A.1). Assuming that the contact patch is entirely con-
tained in a plane, the region within which the potential contact area Ac can be located is easily
discretized through a planar quadrilateral mesh, see Figure A.1. The coordinates of the center of
each quadrilateral element are denoted xI = (xI1, xI2, 0) where the capital index I identifies the
specific element, say I = 1, . . . , NE . Also, the standard indices i = 1, 2, 3, will indicate the vector
components. For any element I and any generic vector wI = (wI1, wI2, wI3) associated to such
mesh element, wI1, wI2 are the components in the x-y contact plane and wI3 is the component in
the normal contact direction z. Namely, wI,T = (wI1, wI2) and wI3 are the discrete counterparts
of wT and wN , respectively.

Fig. A.1. Local representation of the discretized contact area.

The discrete values of the elastic deformation u on the mesh nodes (i.e. the deformation of
the elastic bodies in the contact area [23,24]) are defined both at the current time instance t and
at the previous time instance t′:

uI = (uIi) at (xI , t) , u′I = (u′Ii) at (xI + v (t− t′) , t′) , (A.2)

where v is the rolling velocity (i.e. the longitudinal velocity of the wheel) and I is an arbitrary
mesh element). Analogously, for the contact pressures p it holds

pJ = (pJj) at (xJ , t) , p′J =
(
p′Jj
)

at (xJ + v (t− t′) , t′) , (A.3)

where J is an arbitrary mesh element. According to the Boundary Element Method Theory [23,24],
the discretized displacements uI can now be written as a function of the discretized contact
pressures pJ through the discretized version of the problem shape functions, that is

uIi =

NE∑
J=1

3∑
j=1

AIiJjpJj , with AIiJj := BiJj (xI) ,

and BiJj(xI) are the discrete shape functions of the problem describing the effect of a contact
pressure pJ applied to the element J on displacement uI of the node I (see [23, 24]). The shape
function BiJj usually depends on the problem geometry and the characteristics of the materials.
An analogous expression can be derived for u′Ii. The elastic penetration e can be calculated at
each node xI as

eI = hI +
∑
J

AI3J3pJ3,
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where hI is the discretization of the (known) undeformed distance between the two bodies, see
[23,24]. Similarly, the slip sT can be discretized by setting

sI,T = cI,T + (uI,T − u′I,T )/(t− t′), (A.4)

where cI,T is the discretization of the (given) rigid creep, that is the difference between the
velocities of two homologous points belonging to the undeformed wheel and rail surfaces inside
the contact area and thought of as rigidly connected to the bodies.

We observe that both u and sT depend linearly on the pressures p and p′. Therefore, the
discretization of equation e = 0 in the norm problem (A.1) yields a linear system in the discretized
normal pressures (pI3) while the discretization of the nonlinear equation

pT = −g sT /‖sT ‖,

in the tangential problem yields the nonlinear system

sI,T = −‖sI,T ‖pI,T /gI , (A.5)

with pI,T = (pI1, pI2) being the unknown§. When using the Coulomb-like friction model [23, 24],
the friction limit function takes the form gI = fIpI3, where fI is a given constant friction value.

The flow of Kalker’s CONTACT algorithm is displayed in Figure A.2 [23, 24]. At each time

Fig. A.2. The architecture of the Kalker’s CONTACT algorithm.

step of time integration, the inputs of the CONTACT algorithm are the potential contact area Ac
(usually the interpenetration area between wheel and rail surfaces), the rigid penetration h and
the rigid local sliding cT (inputs calculated, on turn, from the kinematic variables of the body:
position and velocities of the gravity centers G1, G2, VG1, VG2, rotation matrices R1, R2 and
angular velocities ω1, ω2) [23, 24]. All these kinematic quantities are calculated at each time step
by the ODE solver of the Simpack Rail multibody environment [39]. NORM algorithm solves
the normal contact problem and returns the contact area C, the non-contact area E, the normal
contact pressures pN . Then, TANG algorithm returns the sliding area S, adhesion area H, the
tangential contact pressures pT and local sliding sT . Repetitions of NORM and TANG algorithms

§In the unlikely event sI,T = 0, the system in nonsmooth. We regularize (A.5) replacing the term
√
s2I1 + s2I2

with
√
s2I1 + s2I2 + ε, for some small positive ε.
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v = 10 m/s - straight line
System BB1 BB2 ALT ABB ABBm DABBm

τ = 0.1 τ = 0.8 τ = 0.1 τ = 0.8

101 1 2 69 59 74 75 59 71 57 69
101 2 2 382 148 248 295 205 174 198 220
103 1 2 37 31 35 37 30 37 31 34
103 2 2 37 31 35 37 30 37 31 34
104 1 2 36 36 37 36 38 36 39 38
104 2 2 36 36 37 36 38 36 39 38
105 1 2 39 38 39 39 38 39 39 39
105 1 3 77 69 82 79 70 82 67 74
105 2 2 40 37 39 40 38 40 39 39
105 2 3 74 73 86 75 70 75 67 76

Table B.1
Number of function evaluations performed by Srand variants in the solution of nonlinear systems arising from

time 100 to time 105 and corresponding to a straight line with velocity 10 m/s. In the first column we indicate
the time step, the CONTACT and the TANG iteration.

are then performed to approximate accurately normal and tangential pressures pT , pN . At the
end of CONTACT algorithm, forces and torques exchanged by the contact bodies (F1, F2 and M1,
M2) are computed by numerical integration and returned to the time integrator for proceeding in
the dynamic simulation of the multibody system.

Appendix B. Complete results. In this section we collect the complete runs which gave
rise to the performance profiles in Figure 6.2. Results concern two velocities (v = 10m/s in Tables
B.1-B.3 and v = 16m/s in Tables B.4-B.6) and the three different track sections (straight line
in Tables B.1 and B.4, cycloid in Tables B.2 and B.5 and curve in Tables B.3 and B.6). Given
a sequence of nonlinear systems, we label a single system from the sequence as Time Citer Titer
specifying the instant time (Time), the CONTACT iteration (Citer) and the TANG iteration (Titer).
For each Srand variant applied to a system, we report the number of F -evaluations performed in
case of convergence, or, in case of failure, the corresponding flag. We recall from Section 6.3 that
a run is successful when ‖Fk‖ ≤ 10−6. A failure is declared either because the assigned maximum
number of iterations or F -evaluations or backtracks is reached, or because ‖F‖ was not reduced
for 50 consecutive iterations. Such occurrences are denoted as Fit Ffe, Fbt, Fin, respectively.
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velocity 16 m/s - straight line
System BB1 BB2 ALT ABB ABBm DABBm

τ = 0.1 τ = 0.8 τ = 0.1 τ = 0.8

50 1 2 60 45 53 52 47 52 46 49
50 2 2 53 44 51 54 48 54 48 53
50 3 2 53 44 51 48 48 48 48 53
52 2 2 75 78 53 76 75 101 61 91
52 3 2 89 78 53 76 88 112 61 91
55 1 2 65 66 66 83 66 80 62 72
55 2 2 69 79 60 76 61 73 67 71
55 3 2 69 79 60 80 61 73 67 71

Table B.4
Number of function evaluations performed by Srand variants in the solution of nonlinear systems arising

from time 50 to time 55 and corresponding to a straight line with velocity 16 m/s. In the first column we indicate
the time step, the CONTACT and the TANG iteration.
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[13] Dolan E. D., Moré J. J.: Benchmarking optimization software with performance profiles. Math. Programming
91, 201-213 (2002).

[14] Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, Vol-
ume I. Springer Series in Operations Research, Springer, New York (2003).

[15] Fletcher, R.: On the Barzilai-Borwein method. Optimization and control with applications, Appl. Optimizat.
96, 235-256, Springer, New York (2005).

[16] Frassoldati, G., Zanni, L., Zanghirati, G.: New adaptive stepsize selections in gradient methods. J. Ind.
Manag. Optim. 4(2), 299-312 (2008).

[17] Glunt, W., Hayden, T., L., Raydan, M.: Molecular conformations from distance matrices. J. Comput. Chem.
14(1), 114-120 (1993).

[18] Golub, G. H., Van Loan, C. F.: Matrix computations. Johns Hopkins Series in the Mathematical Sciences 3,
Johns Hopkins University Press, Baltimore, MD (1983).
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