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Abstract. We present a framework for Nesterov’s accelerated gradient flows in proba-
bility space to design efficient mean-field Markov chain Monte Carlo (MCMC) algorithms
for Bayesian inverse problems. Here four examples of information metrics are considered,
including Fisher-Rao metric, Wasserstein-2 metric, Kalman-Wasserstein metric and Stein
metric. For both Fisher-Rao and Wasserstein-2 metrics, we prove convergence proper-
ties of accelerated gradient flows. In implementations, we propose a sampling-efficient
discrete-time algorithm for Wasserstein-2, Kalman-Wasserstein and Stein accelerated
gradient flows with a restart technique. We also formulate a kernel bandwidth selection
method, which learns the gradient of logarithm of density from Brownian-motion sam-
ples. Numerical experiments, including Bayesian logistic regression and Bayesian neural
network, show the strength of the proposed methods compared with state-of-the-art
algorithms.

Keywords. Nesterov’s accelerated gradient method; Bayesian inverse problem; Optimal
transport; Information geometry

1. Introduction

Optimization problems in probability space, arising from Bayesian inference Liu and
Wang (2016) and inverse problems Stuart (2010), attract increasing attentions in machine
learning communities Liu et al. (2018); Bernton (2018); Wibisono (2019). One typical
example here is to draw samples from an intractable target distribution. Such sampling
problem is important in providing exploration in distribution of interest and quantify-
ing uncertainty among data. From an optimization viewpoint, this problem suffices to
minimize an objective functional, such as Kullback-Leibler (KL) divergence, which is to
measure the closeness between current density and the target distribution.

Gradient descent methods play essential roles in solving these optimization problems.
Here the gradient direction relies on the information metric in probability space. In
literature, two important metrics, such as Fisher-Rao metric and Wasserstein-2 (in short,
Wasserstein) metric, are of great interests Lafferty (1988); Amari (1998); Otto (2001).
The information gradient direction in terms of density corresponds to the update rule
in a set of samples. This is known as sampling formulation or particle implementation
of gradient flow, which yields various sampling algorithms. For Fisher-Rao metric, its
gradient flow relates to birth-death dynamics, which is important in model selection and
modeling population games Amari (2016). The Fisher-Rao gradient, also known as natural
gradient, is also useful in designing fast and reliable algorithms in probability models
Amari (1998); Kingma and Ba (2014); Malago et al. (2013); Martens and Grosse (2015).
For Wasserstein metric, the gradient flow of KL divergence is the Fokker-Planck equation
of overdamped Langevin dynamic. In sampling algorithms, the time discretization of
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overdamped Langevin dynamics yields the classical Langevin Markov chain Monte Carlo
(MCMC) method and the proximal Langevin algorithm Bernton (2018); Wibisono (2019).
In recent years, various first-order sampling methods via generalized Wasserstein gradient
direction are proposed. For example, the Stein variational gradient descent Liu and Wang
(2016) formulates kernelized interacting Langevin dynamics. The Kalman-Wasserstein
gradient, also known as ensemble Kalman sampling Garbuno-Inigo et al. (2019), induces
covariance-preconditioned mean-field interacting Langevin dyanmics.

For classical optimization problems in Euclidean space, the Nesterov’s accelerated gra-
dient method Nesterov (1983) is a wide-applied optimization method and it accelerates
gradient descent methods. The continuous-time limit of this method is known as the ac-
celerated gradient flow Su et al. (2016). Natural questions arise: What is the accelerated
gradient flow in probability space under general information metrics? What is the corre-
sponding discrete-time sampling algorithm? For optimization problems on a Riemannian
manifold, accelerated gradient methods are studied in Liu et al. (2017); Zhang and Sra
(2018). The probability space embedded with information metric can be viewed as a Rie-
mannian manifold, known as density manifold Lafferty (1988). Several previous works
explore accelerated methods in this manifold under Wasserstein metric. An acceleration
framework of particle-based variational inference (ParVI) methods is proposed in Liu et al.
(2018, 2019) based on manifold optimization. Taghvaei and Mehta Taghvaei and Mehta
(2019) introduce accelerated flows from an optimal control perspective. Similar dynamics
has been studied from a fluid dynamics viewpoint Carrillo et al. (2019a). Underdamped
Langevin dynamics is another way to accelerate on MCMC Cheng et al. (2017); Ma et al.
(2019).

In this paper, we present a unified framework of accelerated gradient flows in probabil-
ity space embedded with information metrics, named Accelerated Information Gradient
(AIG) flows. From a transport-information-geometry perspective, we derive AIG flows by
damping Hamiltonian flows. Examples include Fisher-Rao metric, Wasserstein-2 metric,
Kalman-Wasserstein metric and Stein metric. In Gaussian families, we verify the exis-
tence of AIG flows. Here we show that the AIG flow corresponds to a well-posed ODE
system in the space of symmetric positive definite matrices. We rigorously prove the con-
vergence rate of AIG flows based on the geodesic convexity of the loss function under both
Fisher-Rao metric and Wasserstein metric. Besides, we handle two difficulties in numerical
implementations of AIG flows under Wasserstein metric for sampling. On the one hand,
as pointed out in Liu et al. (2019); Taghvaei and Mehta (2019), the logarithm of density
term (gradient of KL divergence) is difficult to approximate in particle formulations. We
propose a novel kernel selection method, whose bandwidth is learned by sampling from
Brownian motions. We call it the BM method. On the other hand, we notice that the AIG
flow can be a numerically stiff system, especially in high-dimensional sample spaces. This
is because the solution of AIG flows can be close to the boundary of the probability space.
To handle this issue, we propose an adaptive restart technique, which accelerates and
stabilizes the discrete-time algorithm. Numerical results in Bayesian Logistic regression
and Bayesian neural networks indicate the validity of the BM method and the acceleration
effects of proposed AIG flows.

This paper is organized as follows. Section 2 briefly reviews gradient flows and acceler-
ated gradient flows in Euclidean space. Then, the information metrics in probability space
and their corresponding gradient and Hamiltonian flows are introduced. In Section 3, we
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formulate AIG flows, under Fisher-Rao metric, Wasserstein metric, Kalman-Wasserstein
metric and Stein metric. We theoretically prove the convergence rate of AIG flows in
Section 4. Section 5 presents the discrete-time algorithm for W-AIG flows, including the
BM method and the adaptive restart technique. Section 6 provides numerical experi-
ments. In supplementary materials, we also provide discrete-time algorithms for both
Kalman-Wasserstein AIG and Stein AIG flows.

2. Reviews

In this section, we review gradient flows and accelerated gradient flows in Euclidean
space. Then, we introduce the optimization problems in probability spaces, and review
several definitions of information metrics therein. Based on these metrics, we demonstrate
gradient and Hamiltonian flows in probability space. These formulations serve necessary
preparations for us to derive accelerated gradient flows in probability space. See detailed
analysis on metrics in probability space in Amari et al. (1987); Saha (2019); Srivastava
and Klassen (2016).

2.1. Accelerated gradient flows in Euclidean space. Consider an optimization prob-
lem in Euclidean space:

min
x∈Rn

f(x),

where f(x) is a given convex function with L-Lipschitz continuous gradient. Here 〈·, ·〉
and ‖ · ‖ are the Euclidean inner product and norm in Rn. The gradient descent method
has the update rule

xk+1 = xk − τk∇f(xk),

where τk > 0 is a step size. With the limit τk → 0, the continuous-time limit of gradient
descent method is the gradient flow (GF)

ẋt = −∇f(xt).

To accelerate the gradient descent method, Nesterov introduced an accelerated method
Nesterov (1983): {

xk = yk−1 − τk∇f(yk−1),

yk = xk + αk(xk − xk−1).

Here αk depends on the convexity of f(x). If f(x) is β-strongly convex, then αk =
√
L−
√
β√

L+
√
β

;

otherwise, αk = k−1
k+2 . Su et al. (2016) show that the continuous-time limit of Nesterov’s

accelerated method satisfies an ODE, which is known as the accelerated gradient flow
(AGF):

ẍt + αtẋt +∇f(xt) = 0. (1)

Here αt = 2
√
β if f(x) is β-strongly convex; αt = 3/t for general convex f(x).

An important observation in Maddison et al. (2018) is that the accelerated gradient
flow (1) can be formulated as a damped Hamiltonian flow:[

ẋt
ṗt

]
+

[
0
αtpt

]
−
[

0 I
−I 0

] [
∇xHE(xt, pt)
∇pHE(xt, pt)

]
= 0.

where x is the state variable and p is the momentum variable. The Hamiltonian func-

tion satisfies HE(x, p) = ‖p‖2
2 + f(x), which consists of Euclidean kinetic function ‖p‖2

2
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and potential function f(x). In other words, one can formulate an accelerated gradient
flow by adding a linear momentum term into the Hamiltonian flow. Later on, we fol-
low this damped Hamiltonian perspective and derive related accelerated gradient flows in
probability space.

2.2. Metrics in probability space. In practice, machine learning problems, especially
Bayesian sampling problems, can be formulated as optimization problems in probability
space. In other words, consider

min
ρ∈P(Ω)

E(ρ),

where Ω ⊂ Rn is a region and the set of probability density is denoted by P(Ω) = {ρ ∈
F(Ω):

∫
Ω ρdx = 1, ρ ≥ 0}. Here F(Ω) represents the set of smooth functions on Ω. In

practice, E(ρ) is often chosen as a divergence or metric functional between ρ and a target
density ρ∗ ∈ P(Ω).

In literature, it has been shown that various sampling algorithms correspond to gradient
flows of E(ρ), depending on the metrics in probability space. We brief review the definition
of metrics in probability space as follows.

Definition 1 (Metric in probability space). Denote the tangent space at ρ ∈ P(Ω) by
TρP(Ω) =

{
σ ∈ F(Ω) :

∫
σdx = 0.

}
. The cotangent space at ρ, T ∗ρP(Ω), can be treated

as the quotient space F(Ω)/R.A metric tensor G(ρ) : TρP(Ω) → T ∗ρP(Ω) is an invertible
mapping from TρP(Ω) to T ∗ρP(Ω). This metric tensor defines the metric (inner product)
on tangent space TρP(Ω):

gρ(σ1, σ2) =

∫
σ1G(ρ)σ2dx =

∫
Φ1G(ρ)−1Φ2dx, σ1, σ2 ∈ TρP(Ω)

where Φi is the solution to σi = G(ρ)−1Φi, i = 1, 2.

Along with a given metric, the probability space P(Ω) can be viewed as an infinite-
dimensional Riemannian manifold, which is known as the density manifold Lafferty (1988).
We review four examples of metrics in P(Ω): the Fisher-Rao metric from information
geometry, the Wasserstein metric from optimal transport, the Kalman-Wasserstein metric
from ensemble Kalman sampling and the Stein metric from Stein variational gradient
method. For simplicity, we denote Eρ[Φ] =

∫
Φρdx.

Example 1 (Fisher-Rao metric). The inverse of Fisher-Rao metric tensor is defined by

GF (ρ)−1Φ = ρ (Φ− Eρ[Φ]) , Φ ∈ T ∗ρP(Ω).

Example 2 (Wasserstein metric). The inverse of Wasserstein metric tensor writes

GW (ρ)−1Φ = −∇ · (ρ∇Φ), Φ ∈ T ∗ρP(Ω).

Example 3 (Kalman-Wasserstein metric, Garbuno-Inigo et al. (2019)). The inverse of
metric tensor is defined by

GKW (ρ)−1Φ = −∇ · (ρCλ(ρ)∇Φ), Φ ∈ T ∗ρP(Ω).

Here λ ≥ 0 is a given regularization constant and Cλ(ρ) ∈ Rn×n follows

Cλ(ρ) =

∫
(x−m(ρ))(x−m(ρ))Tρdx+ λI, m(ρ) =

∫
xρdx.



5

Example 4 (Stein metric, Liu (2017); Duncan et al. (2019)). The inverse of Stein metric
tensor is defined by

GS(ρ)−1Φ(x) = −∇x ·
(
ρ(x)

∫
k(x, y)ρ(y)∇yΦ(y)dy

)
.

Here k(x, y) is a given positive kernel function.

2.3. Gradient flows and Hamiltonian flows in probability space. The gradient
flow for E(ρ) in (P(Ω), gρ) takes the form

∂tρt = −G(ρt)
−1 δE

δρt
.

Here δE
δρt

is the L2 first variation w.r.t. ρt. For example, the Wasserstein gradient flow
writes

∂tρt =−GW (ρt)
−1 δE

δρt
= ∇ ·

(
ρt∇

δE

δρt

)
.

We then briefly review Hamiltonian flows in probability space. Given a metric G(ρ),
denote the density function ρt as a state variable while function Φt as a momentum
variable. The Hamiltonian flow in probability space follows

∂t

[
ρt
Φt

]
−
[

0 1
−1 0

][ δ
δρt
H(ρt,Φt)

δ
δΦt
H(ρt,Φt)

]
= 0, (2)

with respect to the Hamiltonian in density space by

H(ρt,Φt) =
1

2

∫
ΦtG(ρt)

−1Φtdx+ E(ρt).

Similar to the Euclidean Hamiltonian function, the Hamiltonian functional in density
space consists of a kinetic energy 1

2

∫
ΦG(ρ)−1Φdx and a potential energy E(ρ).

3. Accelerated information gradient flow

We introduce the accelerated gradient flow in probability density space as follows. Let
αt ≥ 0 be a scalar function of t. We add a damping term αtΦt to the Hamiltonian flow
(2):

∂t

[
ρt
Φt

]
+

[
0

αtΦt

]
−
[

0 1
−1 0

][ δ
δρt
H(ρt,Φt)

δ
δΦt
H(ρt,Φt)

]
= 0. (3)

We call dynamics (3) Accelerated Information Gradient (AIG) flow.

Proposition 1. The accelerated information gradient flow satisfies
∂tρt −G(ρt)

−1Φt = 0,

∂tΦt + αtΦt +
1

2

δ

δρt

(∫
ΦtG(ρt)

−1Φtdx

)
+
δE

δρt
= 0,

(AIG)

with initial values ρt|t=0 = ρ0 and Φt|t=0 = 0.

We give examples of AIG flows under several metrics, such as Fisher-Rao metric, Wasser-
stein metric, Kalman-Wasserstein metric and Stein metric. See detailed derivations in the
supplementary material.
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Example 5 (Fisher-Rao AIG flow).
∂tρt − (Φt − Eρt [Φt]) ρt = 0,

∂tΦt + αtΦt +
1

2
Φ2
t − Eρt [Φt]Φt +

δE

δρt
= 0.

(F-AIG)

Example 6 (Wasserstein AIG flow, Carrillo et al. (2019a); Taghvaei and Mehta (2019)).
∂tρt +∇ · (ρt∇Φt) = 0,

∂tΦt + αtΦt +
1

2
‖∇Φt‖2 +

δE

δρt
= 0.

(W-AIG)

Example 7 (Kalman-Wasserstein AIG flow).
∂tρt +∇ · (ρtCλ(ρt)∇Φt) = 0,

∂tΦt + αtΦt +
1

2

(
(x−m(ρt))

TBρt(Φt)(x−m(ρt))

+∇Φt(x)TCλ(ρt)∇Φt(x)
)

+
δE

δρt
= 0.

(KW-AIG)

Here we denote Bρ(Φ) =
∫
∇Φ∇ΦTρdx.

Example 8 (Stein AIG flow).
∂tρt(x) +∇x ·

(
ρt(x)

∫
k(x, y)ρt(y)∇yΦt(y)dy

)
= 0,

∂tΦt(x) + αtΦt(x) +

∫
∇Φt(x)T∇Φt(y)k(x, y)ρt(y)dy +

δE

δρt
(x) = 0.

(S-AIG)

To design fast sampling algorithms, we need to reformulate the evolution of probability
in term of samples. In other words, PDEs in term of (ρ,Φ) is the Eulerian formulation
in fluid dynamics, while the particle formulation is the flow map equation, known as the
Lagrangian formulation. We present examples for W-AIG flow, KW-AIG flow and S-AIG
flow, which have particle formulations. We suppose that Xt ∼ ρt and Vt = ∇Φt(Xt) are
the position and the velocity of a particle at time t.

Example 9 (Particle W-AIG flow). The particle dynamical system for the flow (W-AIG)
writes 

d

dt
Xt = Vt,

d

dt
Vt = −αtVt −∇

(
δE

δρt

)
(Xt).

(4)

Example 10 (Particle KW-AIG flow). The particle dynamical system for the flow (KW-AIG)
writes 

dXt

dt
= Cλ(ρt)Vt,

dVt
dt

= −αtVt − E[VtV
T
t ](Xt − E[Xt])−∇

(
δE

δρt

)
(Xt).

(5)

Here the expectation is taken over the particle system.
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Example 11 (Particle S-AIG flow). The particle dynamical system for the flow (S-AIG)
writes 

dXt

dt
=

∫
k(Xt, y)∇Φt(y)ρt(y)dy,

dVt
dt

= −αtVt −
∫
V T
t ∇Φt(y)∇xk(Xt, y)ρt(y)dy −∇

(
δE

δρt

)
(Xt).

(6)

We notice that dynamics in examples 9 to 11 are mean-field dynamics. Here the mean-
field represents that the dynamics evolves its own probability density function in its path.
In addition, they are also mean field Markov process. Here the Markov property holds
in the sense that the update of dynamics only depends on the current time probability
density. Shortly, we will design a finite dimensional particle dynamical system to simulate
these proposed dynamics.

In later on algorithm and convergence analysis, the choice of αt is important. Similar
as the ones in Euclidean space, αt depends on the convexity of E(ρ) w.r.t. given metrics.

Definition 2 (Convexity in probability space). For a functional E(ρ) defined on the
probability space, we say that E(ρ) is β-strongly convex w.r.t. metric gρ if there exists a
constant β ≥ 0 such that for any ρ ∈ P(Ω) and any σ ∈ TρP(Ω), we have

gρ(HessE(ρ)σ, σ) ≥ βgρ(σ, σ).

Here Hess is the Hessian operator w.r.t. gρ. If β = 0, we say that E(ρ) is convex w.r.t.
metric gρ.

Again, if E(ρ) is β-strongly convex for β > 0, then αt = 2
√
β; if E(ρ) is convex, then

αt = 3/t.

We can also formulate W-AIG flows in probability models. For instance, the W-AIG flow
in Gaussian families becomes an ODE system, which corresponds to updates of covariance
matrices.

Proposition 2 (W-AIG flows in Gaussian families). Suppose that ρ0, ρ
∗ are Gaussian

distributions with zero means and their covariance matrices are Σ0 and Σ∗. E(Σ) evaluates
the KL divergence from ρ to ρ∗:

E(Σ) =
1

2

[
tr(Σ(Σ∗)−1)− log det(Σ(Σ∗)−1)− n

]
, (7)

Let (Σt, St) be the solution to{
Σ̇t − 2(StΣt + ΣtSt) = 0,

Ṡt + αtSt + 2S2
t +∇ΣtE(Σt) = 0,

(W-AIG-G)

with initial values Σt|t=0 = Σ0 and St|t=0 = 0. Here Σt and St are symmetric matrices.
Then, for any t ≥ 0, Σt is well-defined and stays positive definite. Furthermore, we denote

ρt(x) =
(2π)−n/2√

det(Σt)
exp

(
−1

2
xTΣ−1

t x

)
, Φt(x) = xTStx+ C(t),

where C(t) = −t + 1
2

∫ t
0 log det(Σs(Σ

∗)−1)ds. Then, (ρt,Φt) is the solution to (W-AIG)
with initial values ρt|t=0 = ρ0 and Φt|t=0 = 0.
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Remark 1. If the means of ρ0, ρ
∗ are µ0 and µ∗ instead of 0, the objective function turns

to be

E(Σ, µ) =
1

2
[tr(Σ(Σ∗)−1)− log det(Σ(Σ∗)−1)− n]

+
1

2
(µ− µ∗)T (Σ∗)−1(µ− µ∗)].

It is separable in terms of µ and σ. For simplicity and clarity, we focus on the case with
zero means.

Remark 2. AIG flows can be formulated into general probability models, such as Gaussian
mixture models and generative models. We leave the systematic study of AIG flows in
models in future works.

4. Convergence rate analysis on AIG flows

In this section, we prove the convergence rates of AIG flows under either the Wasserstein
metric or the Fisher-Rao metric. This validates the acceleration effect. The proof is
motivated by Lyapunov functions of Euclidean accelerated gradient flows in subsection
2.1.

Theorem 1. Suppose that E(ρ) is β-strongly convex for β > 0. The solution ρt to
(F-AIG) or (W-AIG) with αt = 2

√
β satisfies

E(ρt) ≤ C0e
−
√
βt = O

(
e−
√
βt
)
.

If E(ρ) is convex, then the solution ρt to (F-AIG) or (W-AIG) with αt = 3/t satisfies

E(ρt) ≤ C ′0t−2 = O(t−2).

Here the constants C0, C
′
0 only depend on ρ0.

Remark 3. For β-strongly convex E(ρ) under the Wasserstein metric, Carrillo et al.
(2019a) study a compressed Euler equation. They prove similar results with a constant
damping coefficient αt. For convex E(ρ) under the Wasserstein metric, Taghvaei and
Mehta (2019) prove similar results with a technical assumption.

Remark 4. Compared to underdamped Langevin dynamics, W-AIG has the accelerated
convergence rate guarantee compared to W-GF and it has a closer relation with the Eu-
clidean accelerated gradient flow.

Remark 5. The Fisher metric and the Wasserstein metric are two popular metrics to
consider in the probability space. Therefore, we focus on deriving the convergence analysis
for these two metrics. The convergence results for other general information metrics are
interesting problems for future studies.

In Euclidean case, the convergence rate of accelerated gradient flow is based on the con-
struction of Lyapunov functions. Namely, for β-strongly convex f(x), consider a Lyapunov
function:

E(t) =
e
√
βt

2
‖
√
β(xt − x∗) + ẋt‖2 + e

√
βt(f(xt)− f(x∗)).

For general convex f(x), consider a Lyapunov function

E(t) =
1

2

∥∥∥∥(xt − x∗) +
t

2
ẋt

∥∥∥∥2

+
t2

4
(f(xt)− f(x∗)).
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Based on different assumptions on the convexity of f(x), we can prove that these Lyapunov
function are not increasing w.r.t. t. Hence, the convergence rates are obtained.

Remark 6. Our choices of the damping parameter αt are analogous to these in the Eu-
clidean case. In the Euclidean case, the damped Hamiltonian system and the related Lya-
punov functions are derived from the Bregman Lagrangian introduced in Wibisono et al.
(2016); Wilson et al. (2016). For simplicity, we only focus on two specific choices of the
damping parameters αt, based on the convexity of the energy functional.

Following Lyapunov functions in Euclidean space, we provide a sketch of the proof for
Theorem 1. We first consider the case where E(ρ) is β-strongly convex for β > 0. Let Tt
denote the optimal transport plan from ρt to ρ∗. Consider a Lyapunov function

E(t) =
e
√
βt

2

∫ ∥∥∥−√β(Tt(x)− x) +∇Φt(x)
∥∥∥2
ρt(x)dx

+ e
√
βt(E(ρt)− E(ρ∗)).

(8)

Here the −(Tt(x) − x) term can be viewed as xt − x∗ and ∇Φt can be viewed as ẋt.
Different from the Euclidean case, we introduce an important lemma in proving that E(t)
is non-increasing.

Lemma 1. Denote ut = ∂t(Tt)
−1 ◦ Tt. Then,ut satisfies

∇ · (ρt(ut −∇Φt)) = 0.

We also have
∂tTt(x) = −∇Tt(x)ut(x).

More importantly, we have∫
〈∇Φt − ut,∇Tt∇Φt〉 ρtdx ≥ 0,∫
〈∇Φt − ut,∇Tt(x)(Tt(x)− x)〉 ρt = 0.

We then demonstrate that E(t) is not increasing w.r.t. t.

Proposition 3. Suppose that E(ρ) satisfies Hess(β) for β > 0. ρt is the solution to

(W-AIG) with αt = 2
√
β. Then, E(t) defined in (8) satisfies Ė(t) ≤ 0. As a result,

E(ρt) ≤ e−
√
βtE(t) ≤ e−

√
βtE(0) = O(e−

√
βt).

Note that E(0) only depends on ρ0. This proves the first part of Theorem 1.

We now focus on the case where E(ρ) is convex. Similarly, we construct the following
Lyapunov function.

E(t) =
1

2

∫ ∥∥∥∥−(Tt(x)− x) +
t

2
∇Φt(x)

∥∥∥∥2

ρt(x)dx

+
t2

4
(E(ρt)− E(ρ∗)).

(9)

Proposition 4. Suppose that E(ρ) satisfies Hess(0). ρt is the solution to (W-AIG) with

αt = 3/t. Then, E(t) defined in (9) satisfies Ė(t) ≤ 0. As a result,

E(ρt) ≤
4

t2
E(t) ≤ 4

t2
E(0) = O(t−2).
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Because E(0) only depends on ρ0, we complete the proof.

5. Discrete-time algorithms for AIG flows

In this section, we present the discrete-time particle implementation of the flow (W-AIG)
based on the particle W-AIG flow (4). Similar discrete-time algorithms of (KW-AIG) and
(S-AIG) are provided in the supplementary material. Here we mainly introduce a kernel
bandwidth selection method and an adaptive restart technique to deal with difficulties in
numerical implementations.

A typical choice of E(ρ) for sampling is the KL divergence

DKL(ρ‖ρ∗) =

∫
ρ log

ρ

e−f
dx− logZ,

where the target density ρ∗(x) ∝ exp(−f(x)) and Z =
∫

exp(−f(x))dx. Then, (4) is
equivalent to {

dXt = Vtdt,

dVt = −αtVtdt−∇f(Xt)dt−∇ log ρt(Xt)dt.
(10)

Consider a particle system {Xi
0}Ni=1 and let V i

0 = 0. In k-th iteration, the update rule
follows {

Xi
k+1 = Xi

k +
√
τkV

i
k+1,

V i
k+1 = αkV

i
k −
√
τk(∇f(Xi

k) + ξk(X
i
k)),

(11)

for i = 1, 2 . . . N . If E(ρ) is β-strongly convex, then αk = 1−
√
βτk

1+
√
βτk

; if E(ρ) is convex or

β is unknown, then αk = k−1
k+2 . Here ξk(x) is an approximation of ∇ log ρk(x). For a

general distribution, we use the kernel density estimation (KDE) Singh (1977), ρ̃k(x) =
1
N

∑N
i=1K(x,Xi

k) to approximate ρk(x). Here K(x, y) is a positive kernel function. Then,
ξk writes

ξk(x) = ∇ log ρ̃k(x) =

∑N
i=1∇xK(x,Xi

k)∑N
i=1K(x,Xi

k)
. (12)

A common choice of K(x, y) is a Gaussian kernel with the bandwidth h, K(x, y) =

(2πh)−n/2 exp
(
−‖x− y‖2/(2h)

)
. Such approximation can also be found in information-

theoretic learning Principe et al. (2000) and independent component analysis (ICA) Deco
and Obradovic (2012).

There are two difficulties in the time discretization. For one thing, the bandwidth h
strongly affects the estimation of ∇ log ρt, so we propose the BM method to learn the
bandwidth from Brownian-motion samples. For another, the second equation in (W-AIG)
is the Hamilton-Jacobi equation, which usually has strong stiffness. In numerical trials, we
observe that the densities from the particles may collapse in certain dimensions following
W-AIG flows, even for Gaussian target density. Therefore, we propose an adaptive restart
technique to deal with this problem.

Remark 7. Using symplectic integrators for the particle implementation of W-AIG could
help improve the performance. It is important to study the time-discretization of the
(damped) Hamiltonian flow in the future.
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5.1. Learn the bandwidth via Brownian motion. SVGD uses a median (MED)
method to choose the bandwidth, i.e.,

hk =
1

2 log(N + 1)
median

(
{‖Xi

k −X
j
k‖

2}Ni,j=1

)
. (13)

Liu et al. Liu et al. (2018) propose a Heat Equation (HE) method to adaptively adjust
bandwidth. Motivated by the HE method, we introduce the Brownian motion (BM)
method to adaptively learn the kernel bandwidth based on Brownian-motion samples
generated in each iteration.

Given the bandwidth h, {Xi
k}Ni=1 and a step size s, we can compute two particle systems:

Y i
k (h) = Xi

k − sξk(x;h), Zik = Xi
k +
√

2sBi, i = 1, . . . N

where Bi is the standard Brownian motion. Denote the empirical distributions of {Xi
k}Ni=1,

{Y i
k}Ni=1 and {Zik}Ni=1 by ρ̂X , ρ̂Y and ρ̂Z . With n → ∞, we shall have ρ̂Y = ρ̂Z = ρt|t=s,

where ρ̂t satisfies ∂tρ̂t = ∆ρ̂t = ∇ · (ρ̂t∇ log ρ̂t) with initial value ρ̂t|t=0 = ρ̂X . With an
appropriate bandwidth h, we shall also have ρ̂Y = ρt|t=s. Hence, we consider the following
optimization problem

min
h

MMD(ρ̂Y , ρ̂Z) =

∫ ∫
(ρ̂Y (y)− ρ̂Z(y))k(y, z)(ρ̂Y (z)− ρ̂Z(z))dydz. (14)

where MMD (maximum mean discrepancy) evaluates the similarity between {Y i
k}Ni=1 and

{Zik}Ni=1. Here, the kernel k(y, z) in MMD is chosen as a Gaussian kernel with bandwidth 1.
So we optimize (14) using the bandwidth hk−1 from the last iteration as the initialization.
For simplicity we denote

BM(hk−1, {Xi
k}Ni=1, s)

as the minimizer of problem (14). It is the output of the BM method.

Remark 8. Besides KDE, there are other methods that approximate the term ∇ log ρt(x)
(compute ξk) via a kernel function, such as the blob method Carrillo et al. (2019b) and
the diffusion map Taghvaei and Mehta (2019). The BM method can also select the kernel
bandwidth for these methods.

5.2. Adaptive restart. To enhance the practical performance, we introduce an adaptive
restart technique, which shares the same idea of gradient restart in O’donoghue and Candes
(2015); Wang et al. (2019b) under the Euclidean case. Consider

ϕk = −
N∑
i=1

〈
V i
k+1,∇f(Xi

k) + ξk(X
i
k)
〉
, (15)

which can be viewed as discrete-time approximation of

−gWρt (∂tρt, G
W (ρt)

−1 δE

δρt
) = −∂tE(ρt).

If ϕk < 0, then we restart the algorithm with initial values Xi
0 = Xi

k and V i
0 = 0.

This essentially keeps ∂tE(ρt) negative along the trajectory. The overall algorithm is
summarized below.
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Algorithm 1 Discrete-time particle implementation of W-AIG flow

Require: initial positions {Xi
0}Ni=1, step size τ , number of iteration L.

1: Set k = 0, V i
0 = 0, i = 1, . . . N . Set the bandwidth h0 by MED (13).

2: for l = 1, 2, . . . L do
3: Compute hl based on BM method: hl = BM(hl−1, {Xi

k}Ni=1,
√
τ).

4: Calculate ξk(X
i
k) by (12) with bandwidth hl.

5: For i = 1, 2, . . . N , update V i
k+1 and Xi

k+1 by (11).
6: Compute ϕk by (15).
7: If ϕk < 0, set Xi

0 = Xi
k and V i

0 = 0 and k = 0; otherwise set k = k + 1.
8: end for

6. Numerical experiments

In this section, we present several numerical experiments to demonstrate the effective-
ness of BM method, the acceleration effect of AIG flows, and the strength of adaptive
restart technique. Implementation details are provided in the supplementary material.

6.1. Toy examples. We first generate samples from a toy bi-modal distribution in (Rezende
and Mohamed, 2015). We compare sampling algorithms based on gradient flows and ac-
celerated gradient flows under Wasserstein metric, Kalman-Wasserstein metric and Stein
metric. The number of particles follow N = 200. The initial distribution of the particle
system follows N ([0, 10]′, I).

For the approximation of ∇ log ρk, we use a Gaussian kernel and the kernel bandwidth is
selected by the BM method. We apply the restart technique for discrete-time algorithms
of AIG flows. For W-GF, W-AIG, SVGD and S-AIG, we take the step size τk = 0.1.
For KW-GF and KW-AIG, we set the regularization parameter λ = 1 and the step size
τk = 0.02. We choose a smaller step size for the Kalman-Wasserstein metric because
the particle system may blow up for a larger step size. For SVGD and S-AIG, we use a
Gaussian kernel with fixed bandwidth 1. The step size of SVGD is adjusted by Adagrad.

From Figure 1, the convergence rate of the particle system depends on the metric. For a
fixed metric, samples generated by accelerated gradient flows always converge faster than
the ones generated by gradient flows.

6.2. Effect of BM method. We first investigate the validity of the BM method in
selecting the bandwidth. The target density ρ∗ is a toy bi-modal distribution (Rezende and
Mohamed, 2015). We compare two types of particle implementations of the Wasserstein
gradient flow over KL divergence:

Xi
k+1 = Xi

k − τ∇f(Xi
k) +

√
2τBi

k,

Xi
k+1 = Xi

k − τ(∇f(Xi
k) + ξk(X

i
k)).

Here Bi
k ∼ N (0, 1) is the standard Brownian motion and ξk is estimated via KDE. The

first method is known as the Langevin MCMC method and the second method is called
the ParVI method. For ParVI methods, the bandwidth h is selected by MED/HE/BM
respectively. The initial distribution of the particle system follows the standard Gaussian
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Figure 1. Comparison of different AIG flows on a toy example.
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N (0, I). The objective density function follows

ρ∗(x) ∝ exp(−2(‖x‖ − 3)2)

× (exp(−2(x1 − 3)2) + exp(−2(x1 + 3)2)).

All methods run for 200 iterations using the same fixed step size τ = 0.1.

Figure 1 shows the distribution of 200 samples based on different methods. Samples from
MCMC match the target distribution in a stochastic way; samples from MED collapse;
samples from HE align tidily around contour lines; samples from BM arrange neatly and
are closer to samples from MCMC. This indicates that the BM method makes the particle
system behave similar to MCMC, though in a deterministic way.

Figure 2. The effect of the BM method. Samples are plotted as blue
dots. Left to right: MCMC, MED, HE and BM. All methods are run for
200 iterations with the same initialization.

6.3. Bayesian logistic regression. We perform the standard Bayesian logistic regression
experiment on the Covertype dataset, following the same settings as Liu and Wang (2016).
Our methods are compared with MCMC, SVGD Liu and Wang (2016), WNAG Liu et al.
(2018) and WNes Liu et al. (2019). SVGD is a gradient descent method based on the
Stein metric, which approximates W-GF, see (Liu et al., 2019, Theorem 2). WNAG and
WNes are two accelerated methods based on W-GF.

We select the kernel bandwidth using either the MED method or the proposed BM
method. Figure 3 indicates that the BM method accelerates and stabilizes the performance
of GFs and AIGs. The performance of MCMC and WGF are similar and they achieve
the best log-likelihood. For a given metric, AIG flows have better test accuracy and test
log-likelihood in first 2000 iterations. W-AIG and KW-AIG achieve 75% test accuracy in
less than 500 iterations.

6.4. Bayesian neural network. We apply our proposed method on Bayesian neural
network over the UCI datasets3, with the same setting as Wang et al. (2019a). We compare
W-AIG, W-GF and SVGD. For all methods, we use N = 10 particles. The averaged
results over 20 independent trials are collected in Table 1 and 2. We observe that on
most datasets, W-AIG has better test root-mean-square-error and test log-likelihood than
W-GF and SVGD. This indicates that W-AIG may have better generalization than W-GF
and SVGD.

3https://archive.ics.uci.edu/ml/datasets.php
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Figure 3. Results on Bayesian logistic regression, averaged over 10 inde-
pendent trials. The shaded areas show the variance. Top: BM; Bottom:
MED. Left: Test accuracy; Right: Test log-likelihood.

Dataset AIG WGF SVGD
Boston 2.871±3.41e−3 3.077±5.52e−3 2.775±3.78e−3

Combined4.067±9.27e−1 4.077±3.85e−4 4.070±2.02e−4
Concrete 4.440±1.34e−1 4.883±1.93e−1 4.888±1.39e−1
Kin8nm 0.094±5.56e−6 0.096±3.36e−5 0.095±1.32e−5

Wine 0.606±1.40e−5 0.614±3.48e−4 0.604±9.89e−5
Year 8.876±3.71e−4 8.872±2.81e−4 8.873±7.19e−4

Table 1. Test root-mean-square-error (RMSE).

Dataset AIG WGF SVGD
Boston −2.609±1.34e−4−2.694±2.83e−4 −2.611±1.36e−4

Combined−2.822±5.72e−3−2.825±2.36e−5 −2.823±1.24e−5
Concrete −2.884±8.84e−3−2.971±8.93e−3 −2.978±6.05e−3
Kin8nm 0.951±6.43e−4 0.923±3.37e−3 0.932±1.43e−3

Wine −0.961±1.28e−4 −0.961±3.17e−4−0.952±9.89e−5
Year −3.654±1.00e−5 −3.655±7.82e−6−3.652±1.28e−5

Table 2. Test log-likelihood.

7. Conclusion

In summary, we propose the framework of AIG flows by damping Hamiltonian flows
with respect to certain information metrics in probability space.In theory, we establish the
convergence rate of F-AIG and W-AIG flows. In algorithm, we propose particle formula-
tions for W-AIG flow, KW-AIG and S-AIG flows. Numerically, we propose discrete-time
algorithms and an adaptive restart technique to overcome numerical stiffness of AIG flows.
To efficiently approximate ∇ log ρk(x), we introduce a novel kernel selection method by
learning from Brownian-motion samples. Numerical experiments verify the acceleration
effect of AIG flows and the strength of adaptive restart.
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In future works, we intend to systematically explain the stiffness of AIG flows and effects
of adaptive restart. We shall apply our results to general information metrics, especially
for generalized Wasserstein metrics. We expect to study the related sampling efficient
optimization methods and discrete-time algorithms. We also plan to incorporate Hessian
operators in probability space Wang and Li (2020) in designing higher-order accelerated
algorithms. We shall compare these information metrics induced methods in terms of
both computational complexity and sampling efficiency. We expect that the proposed
accelerated algorithms will be useful in scientific computing of Bayesian inverse problems.
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In this appendix, we formulate detailed derivations of examples and proofs of proposi-
tions. We also design particle implementations of KW-AIG flows, S-AIG flows and provide
detailed implementations of experiments.

Appendix A. Euler-Lagrange equation, Hamiltonian flows and AIG flows

In this section, we review and derive Euler-Lagrange equation, Hamiltonian flows and
Euler-Lagrange formulation of AIG flows in probability space.

A.1. Derivation of the Euler-Lagrange equation. In this subsection, we derive the
Euler-Lagrange equation in probability space. For a given metric gρ in probability space,
we can define a Lagrangian by

L(ρt, ∂tρt) =
1

2
gρt(∂tρt, ∂tρt)− E(ρt).

Proposition 5. The Euler-Lagrange equation for this Lagrangian follows

∂t

(
δL

δ(∂tρt)

)
=
δL
δρt

+ C(t),

where C(t) is a spatially-constant function.

Proof. For a fixed T > 0 and two given densities ρ0, ρT , consider the variational problem

I(ρt) = inf
ρt

{∫ T

0

L(ρt, ∂tρt)dt

∣∣∣∣∣ ρt|t=0 = ρ0, ρt|t=T = ρT

}
.

Let ht ∈ F(Ω) be the smooth perturbation function that satisfies
∫
htdx = 0, t ∈ [0, T ]

and ht|t=0 = ht|t=T ≡ 0. Denote ρεt = ρt + εht. Note that we have the Taylor expansion

I(ρεt) =

∫ T

0
L(ρt, ∂tρt)dt

+ ε

∫ T

0

∫ (
δL
δρt

ht +
δL

δ(∂tρt)
∂tht

)
dxdt+ o(ε).
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From
dI(ρεt)
dε

∣∣∣
ε=0

= 0, it follows that∫ T

0

∫ (
δL
δρt

ht +
δL

δ(∂tρt)
∂tht

)
dxdt = 0.

Note that ht|t=0 = ht|t=T ≡ 0. Perform integration by parts w.r.t. t yields∫ T

0

∫ (
δL
δρt
− ∂t

δL
δ(∂tρt)

)
htdxdt = 0.

Because
∫
htdx = 0, the Euler-Lagrange equation holds with a spatially constant function

C(t). �

A.2. Derivation of Hamiltonian flow. In this subsection, we derive the Hamiltonian
flow in the probability space. Denote Φt = δL/δ(∂tρt) = G(ρt)∂tρt. Then, the Euler-
Lagrange equation can be formulated as a system of (ρt,Φt), i.e.,

∂tρt −G(ρt)
−1Φt = 0,

∂tΦt +
1

2

δ

δρt

(∫
ΦtG(ρt)

−1Φtdx

)
+
δE

δρt
= 0.

First, we give a useful identity. Given a metric tensor G(ρ) : TρP(Ω) → T ∗ρP(Ω), we
have ∫

σ1G(ρ)σ2dx =

∫
G(ρ)σ1σ2dx

=

∫
Φ1G(ρ)−1Φ2dx =

∫
G(ρ)−1Φ1Φ2dx.

(16)

Here Φ1 = G(ρ)−1σ1 and Φ2 = G(ρ)−1σ2. We then check that

δ

δρt

(∫
∂tρtG(ρt)∂tρtdx

)
= − δ

δρt

(∫
ΦtG(ρt)

−1Φtdx

)
. (17)

Let ρ̃t = ρt + εh, where h ∈ TρtP(Ω). For all σ ∈ TρtP, it follows

G(ρt + εh)−1G(ρt + εh)σ = σ.

The first-order derivative w.r.t. ε of the left hand side shall be 0, i.e.,(
∂G(ρt)

−1

∂ρt
· h
)
G(ρt)σ +G(ρt)

−1

(
∂G(ρt)

∂ρt
· h
)
σ = 0.

Because ∂tρt = G(ρ)−1Φt, applying (16) yields∫
∂tρt

(
∂G(ρt)

∂ρt
· h
)
∂tρtdx =

∫
ΦtG(ρt)

−1

(
∂G(ρt)

∂ρt
· h
)
∂tρtdx

=−
∫

Φt

(
∂G(ρt)

−1

∂ρt
· h
)
G(ρt)∂tρtdx = −

∫
Φt

(
∂G(ρt)

−1

∂ρt
· h
)

Φtdx.

(18)

Based on basic calculations, we can compute that∫
∂tρtG(ρ̃t)∂tρtdx−

∫
∂tρtG(ρt)∂tρtdx = ε

∫
∂tρt

(
∂G(ρt)

∂ρt
· h
)
∂tρtdx+ o(ε), (19)

−
∫

ΦtG(ρ̃t)
−1Φtdx+

∫
ΦtG(ρt)

−1Φtdx = −ε
∫

Φt

(
∂G(ρt)

−1

∂ρt
· h
)

Φtdx+ o(ε).

(20)
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Combining (18), (19) and (20) yields (17). Hence, the Euler-Lagrange equation is equiva-
lent to

∂tΦt =
1

2

δ

δρt

(∫
∂tρtG(ρt)∂tρtdx

)
− δE

δρt
= −1

2

δ

δρt

(∫
ΦtG(ρt)

−1Φtdx

)
− δE

δρt
.

This equation combining with ∂tρt = G(ρ)−1Φt recovers the Hamiltonian flow. In short,
the Euler-Lagrange equation is from the primal coordinates (ρt, ∂tρt) and the Hamiltonian
flow is from the dual coordinates (ρt,Φt). Similar interpretations can be found in (Chow
et al., 2019).

A.3. The Euler-Lagrangian formulation of AIG flows. We can formulate the AIG
flow as a second-order equation of ρt,

D2

Dt2
ρt + αt∂tρt +G(ρt)

−1 δE

δρt
= 0.

Here D2/Dt2 is the covariant derivative w.r.t. metric G(ρ). We can also explicitly write
D2

Dt2
ρt as

D2

Dt2
ρt =∂ttρt − (∂tG(ρt)

−1)∂tρt +
1

2
G(ρt)

−1 δ

δρt

(∫
∂tρtG(ρt)∂tρtdx

)
.

Appendix B. Derivation of examples in Section 3

In this section, we present examples of gradient flows, Hamiltonian flows and derive
particle dynamics examples in Section 3.

B.1. Examples of gradient flows. We first present several examples of gradient flows
w.r.t. different metrics.

Example 12 (Fisher-Rao gradient flow).

∂tρt =−GF (ρt)
−1 δE

δρt
= −ρt

(
δE

δρt
−
∫
δE

δρt
ρtdy

)
.

Example 13 (Wasserstein gradient flow).

∂tρt =−GW (ρt)
−1 δE

δρt
= ∇ ·

(
ρt∇

δE

δρt

)
.

Example 14 (Kalman-Wasserstein gradient flow).

∂tρt =−GKW (ρt)
−1 δE

δρt
= ∇ ·

(
ρtC

λ(ρt)∇
(
δE

δρt

))
.

Example 15 (Stein gradient flow).

∂tρt =−GS(ρt)
−1 δE

δρt
= ∇x ·

(
ρt(x)

∫
k(x, y)ρt(y)∇y

(
δE

δρt

)
dy

)
.
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B.2. Examples of Hamiltonian flows. We next present several examples of Hamilton-
ian flows w.r.t. different metrics. The derivations simply follow from the definition of the
given information metric and the formulations given in Appendix A.2.

Example 16 (Fisher-Rao Hamiltonian flow). The Fisher-Rao Hamiltonian flow follows
∂tρt − ρt (Φt − Eρt [Φt]) = 0,

∂tΦt +
1

2
Φ2
t − Eρt [Φt]Φt +

δE

δρt
= 0,

where the corresponding Hamiltonian is

HF (ρt,Φt) =
1

2

(
Eρt [Φ2

t ]− (Eρt [Φt])
2
)

+ E(ρt).

The derivation comes from that

δ

δρt

∫
ΦtG

F (ρt)Φtdx

=
δ

δρt

(
Eρt [Φ2

t ]− (Eρt [Φt])
2
)

=Φ2
t − 2Eρt [Φt]Φt.

Example 17 (Wasserstein Hamiltonian flow). The Wasserstein Hamiltonian flow writes
∂tρt +∇ · (ρt∇Φt) = 0,

∂tΦt +
1

2
‖∇Φt‖2 +

δE

δρt
= 0,

where the corresponding Hamiltonian is

HW (ρt,Φt) =
1

2

∫
‖∇Φt‖2ρtdx+ E(ρt).

It is identical to the Wasserstein Hamiltonian flow introduced by Chow et al. (2019). The
derivation simply comes from that

δ

δρt

∫
ΦtG

W (ρt)Φtdx =
δ

δρt

(∫
‖∇Φt‖22ρtdx

)
= ‖∇Φt‖2.

Example 18 (Kalman-Wasserstein Hamiltonian flow). The Kalman-Wasserstein Hamil-
tonian flow writes

∂tρt +∇ · (ρtCλ(ρt)∇Φt) = 0,

∂tΦt +
1

2

(
(x−m(ρt))

TBρt(Φt)(x−m(ρt)) +∇Φt(x)TCλ(ρt)∇Φt(x)
)

+
δE

δρt
= 0,

where the corresponding Hamiltonian is

HKW (ρt,Φt) =
1

2

∫
∇ΦT

t C
λ(ρt)∇Φtρtdx+ E(ρt).

The derivation comes from that

δ

δρt

∫
ΦtG

KW (ρt)Φtdx

=
δ

δρt

(∫
∇ΦT

t C
λ(ρt)∇Φtρtdx

)
=x−m(ρt))

TBρt(Φt)(x−m(ρt)) +∇Φt(x)TCλ(ρt)∇Φt(x).
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Here we recall that Bρt(Φt) =
∫
∇Φt∇ΦT

t ρtdx.

Example 19 (Stein Hamiltonian flow). The Stein Hamiltonian flow writes
∂tρt(x) = −∇x ·

(
ρt(x)

∫
k(x, y)ρt(y)∇yΦt(y)dy

)
,

∂tΦt(x) =

∫
∇Φt(x)T∇Φt(y)k(x, y)ρt(y)dy − δE

δρt
(x),

where the corresponding Hamiltonian is

H(ρt,Φt) =
1

2

∫ ∫
∇Φt(x)T∇Φt(y)k(x, y)ρt(x)ρt(y)dxdy + E(ρt).

The derivation comes from that

δ

δρt

∫
ΦtG

S(ρt)Φtdx

=
δ

δρt

(∫ ∫
∇Φt(x)T∇Φt(y)k(x, y)ρt(x)ρt(y)dxdy

)
=2

∫
∇Φt(x)T∇Φt(y)k(x, y)ρt(y)dy.

B.3. The derivation of Example 9 (Wasserstein metric) in Section 3. We start
with an identity. For a twice differentiable Φ(x), we have

1

2
∇‖∇Φ‖2 = ∇2Φ∇Φ = (∇Φ · ∇)∇Φ. (21)

From (W-AIG), it follows that

∂tρt +∇ · (ρt∇Φt) = 0. (22)

This is the continuity equation of ρt. Hence, on the particle level, Xt shall follows

dXt = ∇Φt(Xt)dt.

Let Vt = ∇Φt(Xt). Then, by the material derivative in fluid dynamics and (W-AIG), we
have

dVt
dt

=
d

dt
∇Φt(Xt) = (∂t +∇Φt(Xt) · ∇)∇Φt(Xt)dt

=

(
−αt∇Φt(Xt)−

1

2
∇‖∇Φ‖2 −∇ δE

δρt

)
dt+ (∇Φ · ∇)∇Φdt

=− αt∇Φt(Xt)dt−∇
δE

δρt
(Xt)dt = −αtVtdt−∇

δE

δρt
(Xt)dt.

B.4. The derivations of Example 7 and 10 (Kalman-Wasserstein metric) in
Section 3. We first derive the Hamiltonian flow under the Kalman-Wasserstein metric.
We fist show that

δ

δρ

{∫
ΦGKW (ρ)−1Φdx

}
= (x−m(ρ))TBρ(Φ)(x−m(ρ)) +∇Φ(x)TCλ(ρ)∇Φ(x). (23)



23

From the definition of Kalman-Wasserstein metric, we have∫
ΦGKW (ρ)−1Φdx =

∫
∇ΦTCλ(ρ)∇Φρdx

=

〈
Cλ(ρ),

∫
∇ΦT∇Φρdx

〉
=
〈
Cλ(ρ), Bρ(Φ)

〉
.

Let ρ̂ = ρ+ εh, where h ∈ TρP(Ω). Then, we can compute that〈
Cλ(ρ+ εh), Bρ+εh(Φ)

〉
−
〈
Cλ(ρ), Bρ(Φ)

〉
=
〈
Cλ(ρ+ εh)− Cλ(ρ), Bρ(Φ)

〉
+
〈
Cλ(ρ), Bρ+εh(Φ)−Bρ(Φ)

〉
.

We note that

Cλ(ρ+ εh)− Cλ(ρ)

=ε

∫
m(h)(x−m(ρ))Tρdx+ ε

∫
(x−m(ρ))m(h)Tρdx

+ ε

∫
(x−m(ρ))(x−m(ρ))Thdx+O(ε2)

=ε

∫
(x−m(ρ))(x−m(ρ))Thdx+O(ε2).

Bρ+εh(Φ)−Bρ(Φ) = ε

∫
h∇Φ∇ΦTdx.

Hence, we can derive〈
Cλ(ρ+ εh), Bρ+εh(Φ)

〉
−
〈
Cλ(ρ), Bρ(Φ)

〉
=ε

∫
h
〈
∇Φ∇ΦT , C(ρ)

〉
dx+ ε

∫
h
〈
(x−m(ρ))(x−m(ρ))T , Bρ(Φ)

〉
dx+O(ε2).

This proves (23). Hence, the Hamiltonian flow under the Kalman-Wasserstein metric
follows

∂tρt +∇ · (ρtCλ(ρt)∇Φt) = 0,

∂tΦt +
1

2

(
(x−m(ρt))

TBρt(Φt)(x−m(ρt)) +∇Φt(x)TCλ(ρt)∇Φt(x)
)

+
δE

δρt
= 0.

(24)
Adding a linear damping term αtΦt to the second equation in (24) yields Example 7.

For Example 10, suppose that Xt follows ρt and Vt = ∇Φt(Xt). Then, we shall have

d

dt
Xt = Cλ(ρt)Vt,

Note that Vt = ∇Φt(Xt), we can establish that

d

dt
Vt = (∂t + (Cλ(ρt)∇Φt · ∇)∇Φt(Xt)

=∇∂tΦt(Xt) +∇2Φt(Xt)C
λ(ρt)∇Φt(Xt).
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The last inequality can be established as follows. For i = 1, . . . , d, we have

(Cλ(ρt)∇Φt · ∇)∇iΦt(Xt) =
d∑
j=1

(Cλ(ρt)∇Φt)j∇j∇iΦt(Xt)

=
d∑
j=1

∇ijΦt(Xt)(C
λ(ρt)∇Φt)j = (∇2ΦtC

λ(ρt)∇Φt)i.

According to the chain rule, we also have

∇(∇Φt(x)TCλ(ρt)∇Φt(x)) = 2∇2Φt(x)Cλ(ρt)∇Φt(x)

As a result, we can establish that

d

dt
Vt =− αtVt −Bρt(Φt)(Xt −M(ρt))−∇δρtE

=− αtVt − E[VtV
T
t ](Xt − E[Xt])−∇δρtE.

(25)

In summary, the KW-AIG flow in the particle formulation takes the form (5)

B.5. The derivations of Example 8 and 11 (Stein metric) in Section 3. For an
objective function E(ρ), the Hamiltonian follows

H(ρ,Φ) =
1

2

∫ ∫
∇Φ(x)T∇Φ(y)k(x, y)ρ(x)ρ(y)dxdy + E(ρ).

We note that
δ

δρ

[
1

2

∫ ∫
∇Φ(x)T∇Φ(y)k(x, y)ρ(x)ρ(y)dxdy

]
(x)

=

∫
∇Φ(x)T∇Φ(y)k(x, y)ρ(y)dy.

Hence, the Hamiltonian flow writes
∂tρt(x) = −∇x ·

(
ρt(x)

∫
k(x, y)ρt(y)∇yΦt(y)dy

)
,

∂tΦt(x) = −
∫
∇Φt(x)T∇Φt(y)k(x, y)ρt(y)dy − δE

δρt
(x).

(26)

Adding a linear damping term αtΦt to the second equation in (26) yields Example 8.

For Example 11, similarly, suppose that Xt follows ρt and Vt = ∇Φt(Xt). Then, we
shall have

d

dt
Xt =

∫
k(Xt, y)∇Φt(y)ρt(y)dy.

We note that

∇
(∫
∇Φ(x)T∇Φ(y)k(x, y)ρ(y)dy

)
=∇2Φ(x)

∫
∇Φ(y)k(x, y)ρ(y)dy +

∫
∇Φ(x)T∇Φ(y)∇xk(x, y)ρ(y)dy.
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Hence, we have

d

dt
Vt = ∂t∇Φt(Xt) +∇2Φt(Xt)

(∫
k(x, y)ρt(y)∇yΦt(y)dy

)
=− αt ∇Φt(Xt)−

∫
∇Φt(Xt)

T∇Φt(y)∇xk(Xt, y)ρ(y)dy −∇
(
δE

δρt

)
(Xt)

=− αtVt −
∫
V T
t ∇Φt(y)∇xk(Xt, y)ρ(y)dy −∇

(
δE

δρt

)
(Xt).

This derives Example 11.

Appendix C. Wasserstein metric in Gaussian families

In this section, we first introduce the Wasserstein metric, gradient flows and Hamiltonian
flows in Gaussian families. Then, we validate the existence of (W-AIG) in Gaussian
families. Denote N 0

n to the multivariate Gaussian densities with zero means. Namely, if
ρ0, ρ

∗ ∈ N 0
n , then we show that (W-AIG) has a solution (ρt,Φt) and ρt ∈ N 0

n .

Let Pn and Sn represent symmetric positive definite matrix and symmetric matrix with
size n × n respectively. Each ρ ∈ N 0

n is uniquely determined by its covariance matrix
Σ ∈ Pn.The Wasserstein metric GW (ρ) on P(Rn) induces the Wasserstein metric GW (Σ)
on Pn, which is also known as the Bures metric, see (Takatsu, 2008; Modin, 2016; Malagò
et al., 2018). For Σ ∈ Pn, the tangent and cotangent space follow TΣPn ' T ∗ΣPn ' Sn.

Definition 3 (Wasserstein metric in Gaussian families). For Σ ∈ Pn, the metric tensor
GW (Σ) : Sn → Sn is defined by

GW (Σ)−1S = 2(ΣS + SΣ).

The Wasserstein metric on Sn follows

gWΣ (A1, A2) = tr(A1G(Σ)A2) = 4 tr(S1ΣS2),

where Si ∈ Sn is the solution to

Ai = 2(ΣSi + SiΣ), i = 1, 2.

C.1. Gradient flows and Hamiltonian flows in Gaussian families. We derive the
Wasserstein gradient flow and the Wasserstein Hamiltonian flow in Gaussian families as
follows.

Proposition 6. The Wasserstein gradient flow in Gaussian families writes

Σ̇t = −2(Σt∇ΣtE(Σt) +∇ΣtE(Σt)Σt).

Here ∇Σt is the standard matrix derivative.

The Wasserstein Hamiltonian flow satisfies{
Σ̇t − 2(StΣt + ΣtSt) = 0,

Ṡt + 2S2
t +∇ΣtE(Σt) = 0,

(27)

where St ∈ Sn. The corresponding Hamiltonian satisfies

HW (Σt, St) = 2 tr(StΣtSt) + E(Σt).
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The derivation of the gradient flow simply follows the definition of Wasserstein metric
in Gaussian families.

We then derive the Hamiltonian flow as follows. For A ∈ Sn, we define the linear
operator MA : Sn → Sn by

MAB = AB +BA, B ∈ Sn.

It is easy to verify that if A ∈ Pn, then M−1
A is well-defined. For a flow Σt ∈ Pn, t ≥ 0,

we define the Lagrangian L(Σt, Σ̇t) = 1
2gΣt(Σ̇t, Σ̇t) − E(Σt). The corresponding Euler-

Lagrange equation writes
d

dt

dL

dΣ̇t

=
dL

dΣ
. (28)

Let St = 1
2M

−1
Σt

Σ̇t, i.e., Σ̇t = 2(StΣt + ΣtSt). Then, it follows

gΣt(Σ̇t, Σ̇t) = 4 tr(StΣtSt) = 2 tr((StΣt + ΣtSt)St)

= tr(Σ̇tSt) =
1

2
tr(Σ̇tM

−1
Σt

Σ̇t).

This leads to dL
dΣ̇t

= 1
2M

−1
Σt

Σ̇t = St. For simplicity, we denote g = gΣt(Σ̇t, Σ̇t). First, we

show that
dg

dΣt
= −4S2

t .

Because St = 1
2M

−1
Σt

Σ̇t. Given Σ̇t, St can be viewed as a continuous function of Σt. For
any A ∈ Sn, define lA = tr((ΣtSt + StΣt)A).

0 =
dlA
dΣt

=
∂St
∂Σt

∂lA
∂St

+
∂lA
∂Σt

=
∂St
∂Σt

(AΣt + ΣtA) + (ASt + StA).

Here we view ∂ST /∂Σt as a linear operator on Sn. Let B = AΣt + ΣtA, then A = M−1
Σt
B.

∂St
∂Σt

B+MStM
−1
Σt
B = 0 holds for all B ∈ Sn. Therefore, we have ∂St

∂Σt
= −MStM

−1
Σt

. Hence,

dg

dΣt
=
∂St
∂Σt

∂g

∂St
+

∂g

∂Σt

=− 4MStM
−1
Σt

(StΣt + ΣtSt) + 4S2
t

=− 4MStSt + 4S2
t = −4S2

t .

As a result, the Euler-Lagrange equation (28) is equivalent to

Ṡt =
d

dt

dL

dΣ̇t

=
dL

dΣt
= −2S2

t −∇E(Σt). (29)

Combining (29) with Σ̇t = StΣt+ ΣtSt renders the Hamiltonian flow in Gaussian families.

C.2. Proof of Proposition 2. By adding a damping term αtSt, we derive (W-AIG-G),
i.e., the Wasserstein AIG flow in Gaussian families. We present the proof of Proposition 2
as follows. We first show that Σt stays in Pn. Suppose that Σt ∈ Pn for 0 ≤ t ≤ T . Define
Ht = H(Σt, St) = 2 tr(StΣtSt) + E(Σt). We observe that (W-AIG-G) is equivalent to

Σ̇t =
∂Ht

∂St
, Ṡt = −αtSt −

∂Ht

∂Σt
. (30)
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We show that Ht is decreasing with respect to t.

dHt

dt
= tr

(
∂Ht

∂St
Ṡt +

∂Ht

∂Σt
Σ̇t

)
= tr

(
∂Ht

∂St

(
−αtSt −

∂Ht

∂Σt

)
+
∂Ht

∂Σt

∂Ht

∂St

)
=− αt tr

(
St
∂Ht

∂St

)
= −2αt tr(St(ΣtSt + StΣt))

=− 4αt tr(StΣtSt) ≤ 0.

For simplicity, we denote W ∗ = (Σ∗)−1. Let λt be the smallest eigenvalue of Σt. Then,
log det(ΣtW

∗) = log detW ∗ + log det(Σt) ≥ log detW ∗ + n log λt. Therefore,

− n

2
(log λt + 1)− 1

2
log detW ∗

≤− 1

2
[log det(ΣtW

∗) + n]

≤E(Σt) ≤ H(t) ≤ H(0),

which yields that

λt ≥ exp

(
− 2

n
H(0)− 1− 1

n
log detW ∗

)
. (31)

This means that as long as Σt ∈ Pn, the smallest eigenvalue of Σt has a positive lower
bound. If there exists T > 0 such that ΣT /∈ Pn. Because Σt is continuous with respect
to t, there exists T1 < T , such that Σt ∈ Pn, 0 ≤ t ≤ T1 and λT1 < exp (−2H(0)/n− 1),
which violates (31).

We then reveal the relationship between (W-AIG) in P(Rn) and Pn. We observe that

∂

∂t
det(Σt) = det(Σt) tr(Σ−1

t Σ̇t),

∂

∂t
Σ−1
t = −Σ−1

t Σ̇tΣ
−1
t .

Combining with Σ̇t = 2(ΣtSt + StΣt), we obtain

tr(Σ−1
t Σ̇t) =2 tr(St + Σ−1

t StΣt) = 4 tr(St),

tr(xΣ−1
t Σ̇tΣ

−1
t x) =2 tr(xTΣ−1

t Stx+ xTStΣ
−1
t x) = 4 tr(StΣ

−1
t xxT ).

Therefore, it follows

∂tρt(x) =
∂

∂t

(
1√

det(Σt)

)√
det(Σt)ρt(x) +

1

2
tr(xTΣ−1

t Σ̇tΣ
−1
t x)ρt(x)

=− 1

2
tr(Σ−1

t Σ̇t)ρt(x) + 2 tr(StΣ
−1
t xxT )ρt(x)

=− 2 tr(St(I − Σ−1
t xxT ))ρt(x).
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Note that ∇Φt(x) = 2Stx. Hence, we have

−∇ · (ρt∇Φt) = −2
n∑
i=1

∂i(ρt(x)Stx)i

=− 2
n∑
i=1

[ρt(x)∂i(Stx)i + (Stx)i∂iρt(x)]

=− 2ρt(x)
[
tr(St) + (Stx)T (−Σ−1

t x)
]

=− 2ρt(x) tr(St(I − Σ−1
t xxT )) = ∂tρt(x).

The first equation of (W-AIG) holds. Because ∂tΦt(x) = xT Ṡtx+ Ċ(t),

∂tΦt(x) + αtΦt(x) +
1

2
‖∇Φt(x)‖2

=xT Ṡtx+ αtx
TStx+ 2xTS2

t x+ Ċ(t)

=− xT∇ΣtE(Σt)x+ Ċ(t)

=
1

2
xT (Σ−1

t −W ∗)x+ Ċ(t).

Note that ρ∗ is the Gaussian density with the covariance matrix Σ∗. Because Ċ(t) =
1
2 log det(ΣtW

∗)− 1, we can compute

δE

δρt
= log ρt(x)− log ρ∗(x) + 1

=− 1

2
xT (Σ−1

t −W ∗)x−
1

2
log det(ΣtW

∗) + 1

=− 1

2
xT (Σ−1

t −W ∗)x− Ċ(t)

=− (∂tΦt(x) + αtΦt(x) +
1

2
‖∇Φt(x)‖2).

Therefore, the second equation of (W-AIG) holds. Because Σt|t=0 = Σ0, St|t=0 = 0 and
C(0) = 0, we have ρt|t=0 = ρ0 and Φt|t=0 = 0. This completes the proof.

Appendix D. Proof of convergence rate under Wasserstein metric

In this section, we briefly review the Riemannian structure of probability space and
present proofs of propositions in Section 4 under Wasserstein metric.

D.1. A brief review on the geometric properties of the probability space. Sup-
pose that we have a metric gρ in probability space P(Ω). Given two probability densities
ρ0, ρ1 ∈ P(Ω), we define the distance as follows

D(ρ0, ρ1)2 = inf
ρ̂s

{∫ 1

0

gρ̂s(∂sρ̂s, ∂sρ̂s)ds : ρ̂s|s=0 = ρ0, ρ̂s|s=1 = ρ1

}
.

The minimizer ρ̂s of the above problem is defined as the geodesic curve connecting ρ0

and ρ1. An exponential map at ρ0 ∈ P(Ω) is a mapping from the tangent space Tρ0P(Ω)
to P(Ω). Namely, σ ∈ Tρ0P(Ω) is mapped to a point ρ1 ∈ P(Ω) such that there exists a
geodesic curve ρ̂s satisfying ρ̂s|s=0 = ρ0, ∂sρ̂s|s=0 = σ, and ρ̂s|s=1 = ρ1.
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D.2. The inverse of exponential map. In this subsection, we characterize the inverse
of exponential map in the probability space with the Wasserstein metric.

Proposition 7. Denote the geodesic curve γ(s) that connects ρt and ρ∗ by γ(s) = (sTt +
(1 − s) Id)#ρt, s ∈ [0, 1]. Here Id is the identity mapping from Rn to itself. Then,
∂sγ(s)|s=0 corresponds to a tangent vector −∇ · (ρt(x)(Tt(x)− x)) ∈ TρtP(Ω).

For simplicity, we denote T st = (sTt + (1 − s) Id)−1, s ∈ [0, 1]. Based on the theory of
optimal transport (Villani, 2003), we can write the explicit formula of the geodesic curve
γ(s) by

γ(s) = T st #ρt = det(∇T st )ρt ◦ T st .
Through basic calculations, we can compute that

d

ds
T st

∣∣∣∣
s=0

= − d

ds
(sTt + (1− s) Id)

∣∣∣∣
s=0

= Id−Tt.

d

ds
det(∇T st )

∣∣∣∣
s=0

=
d

ds
det(I + s(I −DTt) + o(s))

∣∣∣∣
s=0

= tr(I −DTt).
Therefore, we have

∂sγ(s)|s=0 (x)

= tr(I −∇Tt)ρt(x) + 〈∇ρt(x), x− ϕt(x)〉
=∇ · (x− Tt(x))ρt(x) + 〈∇ρt(x), x− Tt(x)〉
=−∇ · (ρt(x)(Tt(x)− x)),

which completes the proof.

D.3. The proof of Proposition 4 and 5. The main goal of this subsection is to prove
the Lyapunov function E(t) is non-increasing.

Preparations. We first give a better characterization of the optimal transport plan
Tt. We can write Tt = ∇Ψt, where Ψt is a strictly convex function, see (Villani, 2003).
This indicates that ∇Tt is symmetric. We then introduce the following proposition.

Proposition 8. Suppose that E(ρ) satisfies Hess(β) for β ≥ 0. Let Tt(x) be the optimal
transport plan from ρt to ρ∗, then

E(ρ∗) ≥E(ρt) +

∫ 〈
Tt(x)− x,∇δE

δρt

〉
ρdx+

β

2

∫
‖Tt(x)− x‖2ρtdx.

This is a direct result of β-displacement convexity of E(ρ) based on Proposition 7.

Lemma 2. Denote ut = ∂t(Tt)
−1 ◦ Tt. Then,ut satisfies

∇ · (ρt(ut −∇Φt)) = 0. (32)

We also have
∂tTt(x) = −∇Tt(x)ut(x). (33)

Proof. Because (Tt)
−1#ρ∗ = ρt, let ut = ∂t(Tt)

−1 ◦Tt and Xt = (Tt)
−1X0, where X0 ∼ ρ∗.

This yields d
dtXt = ut(Xt). The distribution of Xt follows ρt. By the Euler’s equation, ρt

shall follows
∂tρt +∇ · (ρtut) = 0.
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Combining this with the continuity equation (22) yields (32).

Then, we formulate ∂tTt(x) with ut. By the Taylor expansion,

Tt+s(x) = Tt(x) + s∂tTt(x) + o(s).

Let y = (Tt)
−1x. it follows

(Tt+s)
−1(x) =(Tt)

−1(x) + sut((Tt)
−1(x)) + o(s) = y + sut(y) + o(s).

Therefore, we have

0 = Tt+s((Tt+s)
−1(x))− x

=Tt+s(y + sut(y) + o(s))− x
=Tt(y + sut(y)) + s∂tTt(y + sut(y))− x+ o(s)

=Tt(y) + s∇Tt(y)ut(y) + s∂tTt(y)− x+ o(s)

=s [∇Tt(y)ut(y) + ∂tTt(y)] + o(s).

We shall have ∇Tt(y)ut(y) + ∂tTt(y) = 0. Replacing y by x yields (33). �

The following lemma illustrates two important properties of ut and ∂tTt.

Lemma 3. For ut satisfying (32), we have∫
〈∇Φt − ut,∇Tt∇Φt〉 ρtdx ≥ 0,∫
〈∇Φt − ut,∇Tt(x)(Tt(x)− x)〉 ρt = 0.

Proof. We first notice that ut − ∇Φt is divergence-free in term of ρt. From −∇Ttut =
∂tTt = ∇∂tΨt, we observe that −∇Ttut is the gradient of ∂tΨt. Therefore,∫

〈∇Φt − ut,∇Ttut〉 ρt = −
∫
〈∂tΨt,∇ · (ρt(∇Φt − ut))〉 = 0.

Based on our previous characterization on the optimal transport plan Tt, ∇Tt = ∇2Ψt is
symmetric positive definite. This yields that∫

〈∇Φt − ut,∇Tt∇Φt〉 ρtdx

=

∫
〈∇Φt − ut,∇Tt∇Φt〉 ρtdx−

∫
〈∇Φt − ut,∇Ttut〉 ρt

=

∫
〈∇Φt − ut,∇Tt(∇Φt − ut)〉 ρtdx ≥ 0.

The last inequality utilizes that ∇Tt is positie definite and ρt is non-negative. Then, we
prove the equality in Lemma 3. Because ∇Tt(x)(Tt(x)− x) = 1

2∇(‖Tt(x)− x‖2 + Tt(x)−
‖x‖2) is a gradient. Similarly, it follows∫

〈∇Φt − ut,∇Tt(x)(Tt(x)− x)〉 ρt = 0.

�
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Lemma 3 and the relationship (33) gives

−
∫
〈∂tTt,∇Φt〉 ρtdx =

∫
〈ut,∇Tt∇Φt〉 ρtdx ≤

∫
〈∇Φt,∇Tt∇Φt〉 ρtdx, (34)

∫
〈∂tTt, Tt(x)− x〉 ρtdx = −

∫
〈∇Φt,∇Tt(x)(Tt(x)− x)〉 ρtdx. (35)

Proof of Proposition 4. Based on the definition of the Wasserstein metric, we have

∂tE(ρt) = −
∫
δE

δρt
∇ · (ρt∇Φt)dx.

Differentiating E(t) w.r.t. t renders

Ė(t)e−
√
βt

=β

∫
〈∂tTt, Tt(x)− x〉 ρtdx−

β

2

∫
‖Tt(x)− x‖2∇ · (ρt∇Φt)dx

−
√
β

∫
〈∂tTt,∇Φt〉 ρtdx−

√
β

∫
〈Tt(x)− x, ∂t∇Φt〉 ρtdx

+
√
β

∫
〈Tt(x)− x,∇Φt〉∇ · (ρt∇Φt)dx+

∫
〈∇Φt, ∂t∇Φt〉 ρtdx

− 1

2

∫
‖∇Φt‖2∇ · (ρt∇Φt)−

∫
δE

δρt
∇ · (ρt∇Φt)dx

+

√
β

2

∫
‖∇Φt‖2ρtdx− β

∫
〈Tt(x)− x,∇Φt(x)〉 ρtdx

+

√
β3

2

∫
‖Tt(x)− x‖2ρtdx+

√
β(E(ρt)− E(ρ∗)). (36)

For the part (36), Proposition 8 renders√
β3

2

∫
‖Tt(x)− x‖2ρtdx+

√
βE(ρt)

≤−
√
β

∫ 〈
Tt(x)− x,∇δE

δρt

〉
ρtdx.

(37)

We first compute the terms with the coefficient β0 in Ė(t)e−
√
βt. We observe that∫

〈∇Φt, ∂tΦt〉 ρtdx−
1

2

∫
‖∇Φt‖2∇ · (ρt∇Φt)dx

−
∫
δE

δρt
∇ · (ρt∇Φt)ρtdx

=

∫ 〈
∂t∇Φt +

1

2
∇‖∇Φt‖2 +∇δE

δρ
,∇Φt

〉
ρtdx

=− 2
√
β

∫
‖∇Φt‖2ρtdx,

(38)
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where the last equality uses (W-AIG) with αt = 2
√
β. Substituting (37) and (38) into the

expression of Ė(t)e−
√
βt yields

Ė(t)e−
√
βt ≤β

∫
〈∂tTt, Tt(x)− x〉 ρtdx−

β

2

∫
‖Tt(x)− x‖2∇ · (ρt∇Φt)dx

− β
∫
〈Tt(x)− x,∇Φt〉 ρtdx−

√
β

∫
〈∂tTt,∇Φt〉 ρtdx

−
√
β

∫
〈Tt(x)− x, ∂t∇Φt〉 ρtdx−

√
β

∫ 〈
Tt(x)− x,∇ δE

δρt

〉
ρtdx

+
√
β

∫
〈Tt(x)− x,∇Φt〉∇ · (ρt∇Φt)dx−

3
√
β

2

∫
‖∇Φt‖2ρtdx.

(39)

Then, we deal with the terms with ∇ · (ρt∇Φt). We have the following two identities

∫
〈Tt(x)− x,∇Φt〉∇ · (ρt∇Φt)dx

=−
∫
〈∇ 〈Tt(x)− x,∇Φt〉 ,∇Φt〉 ρtdx

=−
∫ 〈
∇Φt,∇2Φt(x)(Tt(x)− x) + (∇Tt − I)∇Φt

〉
ρtdx

=− 1

2

∫ 〈
Tt(x)− x,∇‖∇Φt‖2

〉
ρtdx−

∫
〈∇Φt,∇Tt∇Φt〉 ρtdx+

∫
‖∇Φt‖2ρtdx.

(40)

− 1

2

∫
‖Tt(x)− x‖2∇ · (ρt∇Φt)dx

=

∫
〈(∇Tt(x)− I)(Tt(x)− x),∇Φt〉 ρtdx

=

∫
〈Tt(x)− x,∇Tt∇Φt〉 ρtdx−

∫
〈Tt(x)− x,∇Φt〉 ρtdx.

(41)

Hence, we can proceed to compute the terms with the coefficient
√
β. (34) and (40)

yields

−
√
β

∫
〈∂tTt,∇Φt〉 ρtdx−

√
β

∫ 〈
Tt(x)− x, ∂t∇Φt +∇ δE

δρt

〉
ρtdx

− 3
√
β

2

∫
‖∇Φt‖2ρtdx+

√
β

∫
〈Tt(x)− x,∇Φt〉∇ · (ρt∇Φt)dx

=−
√
β

∫
〈∂tTt +∇Tt∇Φt,∇Φt〉 ρtdx−

√
β

2

∫
‖∇Φt‖2ρtdx

−
√
β

∫ 〈
Tt(x)− x, ∂t∇Φt +∇δE

δρ
+

1

2
∇‖∇Φt‖2

〉
ρtdx

≤−
√
β

2

∫
‖∇Φt‖2ρtdx+ 2β

∫
〈Tt(x)− x,∇Φt〉 ρtdx.

(42)
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Substituting (41) and (42) into (39) gives

Ė(t)e−
√
βt +

√
β

2

∫
‖∇Φt‖2ρtdx

≤β
∫
〈∂tTt, Tt(x)− x〉 ρtdx−

β

2

∫
‖Tt(x)− x‖2∇ · (ρt∇Φt)dx

− β
∫
〈Tt(x)− x,∇Φt〉 ρtdx+ 2β

∫
〈Tt(x)− x,∇Φt〉 ρtdx

=β

∫
〈∂tTt +∇Tt∇Φt, Tt(x)− x〉 ρtdx = 0,

where the last equality uses (35). In summary, we have

Ė(t)e−
√
βt ≤ −

√
β

2

∫
‖∇Φt‖2ρtdx ≤ 0.

Proof of Proposition 5. Differentiating E(t) w.r.t. t, we compute that

Ė(t)

=

∫
〈∂tTt, Tt(x)− x〉 ρtdx−

1

2

∫
‖Tt(x)− x‖2∇ · (ρt∇Φt)dx

−
∫ 〈

∂tTt,
t

2
∇Φt

〉
ρtdx−

∫ 〈
Tt(x)− x, 1

2
∇Φt +

t

2
∂t∇Φt

〉
ρtdx

+

∫ 〈
Tt(x)− x, t

2
∇Φt

〉
∇ · (ρt∇Φt)dx+

∫ 〈
t

2
∇Φt,

1

2
∇Φt +

t

2
∂t∇Φt

〉
ρtdx

− 1

2

∫ ∥∥∥∥ t2∇Φt

∥∥∥∥2

∇ · (ρt∇Φt)dx−
t2

4

∫
δE

δρt
∇ · (ρt∇Φt)dx+

t

2
(E(ρt)− E(ρ∗)).

(43)

Because E(ρ) is Hess(0), Proposition 8 yields

E(ρt) = E(ρt)− E(ρ∗) ≤ −
∫ 〈

Tt(x)− x,∇δE
δρt

〉
ρtdx. (44)
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Utilizing the inequality (44) and substituting the expressions of terms involving ∂tTt
and ∇ · (ρt∇Φt) in (43) with the expressions in (34) (35) and (40) (41), we obtain

Ė(t) ≤−
∫
〈∇Φt,∇Tt(x)(Tt(x)− x)〉 ρtdx+

∫
〈Tt(x)− x,∇Tt∇Φt〉 ρtdx

−
∫
〈Tt(x)− x,∇Φt〉 ρtdx+

t

2

∫
〈∇Φt,∇Tt∇Φt〉 ρtdx

− 1

2

∫
〈Tt(x)− x,∇Φt〉 ρtdx−

t

2

∫
〈∂t∇Φt, Tt(x)− x〉 ρtdx

− t

4

∫ 〈
Tt(x)− x,∇‖∇Φt‖2

〉
ρtdx−

t

2

∫
〈∇Φt,∇Tt∇Φt〉 ρtdx

+
t

2

∫
‖∇Φt‖2ρtdx+

t

4

∫
‖∇Φt‖2ρtdx+

t2

4

∫
〈∇Φt, ∂t∇Φt〉 ρtdx

+
t2

8

∫ 〈
∇Φt,∇‖∇Φt‖2

〉
ρtdx+

t2

4

∫ 〈
∇Φt,∇

δE

δρt

〉
ρtdx

− t

2

∫ 〈
Tt(x)− x,∇δE

δρt

〉
ρtdx.

(45)

The expression of (45) can be reformulated into

Ė(t) ≤− 3

2

∫
〈Tt(x)− x,∇Φt〉 ρtdx+

3t

4

∫
‖∇Φt‖2ρtdx

− t

2

∫ 〈
Tt(x)− x, ∂t∇Φt +

1

2
∇‖∇Φt‖2 +∇ δE

δρt

〉
ρtdx

+
t2

4

∫ 〈
∇Φt, ∂t∇Φt +

1

2
∇‖∇Φt‖2 +∇ δE

δρt

〉
ρtdx.

From (W-AIG) with αt = 3/t, we have the following equalities.

t2

4

∫ 〈
∇Φt, ∂t∇Φt +

1

2
∇‖∇Φt‖2 +∇ δE

δρt

〉
ρtdx = −3t

4

∫
‖∇Φt‖2ρtdx,

− t

2

∫ 〈
Tt(x)− x, ∂t∇Φt +

1

2
∇‖∇Φt‖2 +∇ δE

δρt

〉
ρtdx =

3

2

∫
〈Tt(x)− x,∇Φt〉 ρtdx.

As a result, Ė(t) ≤ 0. This completes the proof.

D.4. Comparison with the proof in Taghvaei and Mehta (2019). The accelerated
flow in (Taghvaei and Mehta, 2019) is given by

dXt

dt
= eαt−γtYt,

dYt
dt

= −eαt+βt+γt∇
(
δE

δρt

)
(Xt). (46)

Here the target distribution satisies ρ∞(x) = ρ∗(x) ∝ exp(−f(x)). Suppose that we take
αt = log p− log t, βt = p log t+ logC and γt = p log t. Here we specify p = 2 and C = 1/4.
Then the accelerated flow (46) recovers the particle formulation of W-AIG flows if we
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replace Yt by 2t−3Vt. The Lyapunov function in (Taghvaei and Mehta, 2019) follows

V (t) =
1

2
E
[
‖Xt + e−γtYt − T ρ

∗
ρt (Xt)‖2

]
+ eβt(E(ρ)− E(ρ∗))

=
1

2
E
[
‖Xt +

t

2
Vt − T ρ

∗
ρt (Xt)‖2

]
+
t2

4
(E(ρt)− E(ρ∗))

=
1

2

∫ ∥∥∥∥−(Tt(x)− x) +
t

2
∇Φt(x)

∥∥∥∥2

ρt(x)dx+
t2

4
(E(ρt)− E(ρ∗)).

The last equality is based on the fact that Vt = ∇Φt(Xt) and Tt = T ρ
∗

ρt is the optimal
transport plan from ρt to ρ∗. This indicates that the Lyapunov function in (Taghvaei
and Mehta, 2019) is identical to ours. The technical assumption in (Taghvaei and Mehta,
2019) follows

0 =E
[(
Xt + e−γtYt − T ρ

∗
ρt (Xt)

)
· d
dt
T ρ
∗

ρt (Xt)

]
=E

[(
Xt +

t

2
Vt − Tt(Xt)

)
· d
dt
Tt(Xt)

]
=E

[(
Xt +

t

2
Vt − Tt(Xt)

)
· ((∂tTt)(Xt) +∇TtVt)

]
=

∫ 〈
x− Tt(x) +

t

2
∇Φt(x), ∂tTt +∇Tt∇Φt

〉
ρtdx.

Based on ∂tTt = −∇Ttut and Lemma 3, we have∫
〈x− Tt(x), ∂tTt +∇Tt∇Φt〉 ρtdx

=

∫
〈x− Tt(x),∇Tt(∇Φt − ut)〉 ρtdx = 0.

∫
〈∇Φt, ∂tTt +∇Tt∇Φt〉 ρtdx

=

∫
〈∇Φt,∇Tt(∇Φt − ut)〉 ρtdx

=

∫
〈∇Φt − ut,∇Tt(∇Φt − ut)〉 ρtdx ≥ 0.

As a result, we have

E
[(
Xt + e−γtYt − T ρ∞ρt (Xt)

)
· d
dt
T ρ∞ρt (Xt)

]
=
t

2

∫
〈∇Φt − ut,∇Tt(∇Φt − ut)〉 ρtdx ≥ 0.

In 1-dimensional case, because ∇ · (ρt(ut −∇Φt)) = 0 indicates that ρt(ut − ∇Φt) = 0.
For ρt(x) > 0, we have ut(x)−∇Φt(x) = 0. So the technical assumption holds. In general
cases, although ut = ∂t(Tt)

−1 ◦ Tt satisfies ∇ · (ρt(ut −∇Φt)) = 0, but this does not
necessary indicate that ut = ∇Φt. Hence, E

[
(Xt + e−γtYt − T ρ∞ρt (Xt)) · ddtT

ρ∞
ρt (Xt)

]
= 0

does not necessary hold except for 1-dimensional case.
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Appendix E. Proof of convergence rate under Fisher-Rao metric

In this section, we present proofs of propositions in Section 4 under Fisher-Rao metric.

E.1. Geodesic curve under the Fisher-Rao metric. We first investigate on the ex-
plicit solution of geodesic curve under the Fisher-Rao metric in probability space. The
geodesic curve shall satisfy 

∂tρt − (Φt − Eρt [Φt])ρt = 0,

∂tΦt +
1

2
Φ2
t − Eρt [Φt]Φt = 0.

(47)

with initial values ρt|t=0 = ρ0 and Φt|t=0 = Φ0. The Hamiltonian follows

H(ρ,Φ) =
1

2
(Eρt [Φ2

t ]− (Eρt [Φt])
2).

We reparametrize ρt by ρt = R2
t with Rt > 0 and

∫
R2
t dx = 1. Then,

∂tRt −
1

2
(Φt − ER2

t
[Φt])Rt = 0,

∂tΦt +
1

2
Φ2
t − ER2

t
[Φt]Φt = 0.

Proposition 9. The solution to (47) with initial values ρt|t=0 = ρ0 and Φt|t=0 = Φ0

follows

R(x, t) = A(x) sin(Ht) +B(x) cos(Ht), (48)

where

A(x) =
1

2H
R0(x)(Φ0(x)− ER2

0
[Φ0]), B(x) = R0(x), (49)

and

H =
1

2

√
ER2

0
[Φ2

0]−
(
ER2

0
[Φ0]

)2
.

We also have
∫
R2
t dx = 1 for t ≥ 0.

Proof. We can compute that

2∂ttRt =

(
∂tΦt − 2

∫
RtΦt∂tRtdx− ER2

t
[∂tΦt]

)
Rt + ∂tRt(Φt − ER2

t
[Φt])

=

(
−1

2
Φ2
t +

1

2
ER2

t
[Φ2
t ] + ER2

t
[Φt]Φt − ER2

t
[Φt]

2

)
Rt

− ER2
t
[Φt(Φt − ER2

t
[Φt])]Rt +

1

2
Rt(Φt − ER2

t
[Φt])

2

=

(
−1

2
ER2

t
[Φ2
t ] +

1

2

(
ER2

t
[Φt]

)2
)
Rt.

In other words,

∂ttRt =

(
−1

4
ER2

t
[Φ2
t ] +

1

4
ER2

t
[Φt]

2

)
Rt.
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We observe that 1
2ER2

t
[Φ2
t ]− 1

2ER2
t
[Φt]

2 = H(ρt,Φt) is the Hamiltonian, which is invariant

along the geodesic curve. Denote

H =

√
1

2
H(ρt,Φt) =

1

2

√
ER2

0
[Φ2

0]−
(
ER2

0
[Φ0]

)2
.

Then, we have
∂ttRt = −H2Rt,

which is a wave equation. We also notice that

Rt(x)|t=0 = R0(x), ∂tRt(x)|t=0 = R0(x)(Φ0(x)− ER2
0
[Φ0]).

Hence, Rt is uniquely determined by

Rt(x) = A(x) sin(Ht) +B(x) cos(Ht),

where A(x) and B(x) are given in (49). Finally, we verify that
∫
R2
t dx = 1. Actually, we

can compute that ∫
A2(x)dx =

1

4H2
ER2

0
[(Φ0(x)− ER2

0
[Φ0])2] = 1,∫

B2(x)dx =

∫
R2

0(x)dx = 1,∫
A(x)B(x)dx =

1

2H
ER2

0
[Φ0(x)− ER2

0
[Φ0]] = 0.

Hence,∫
Rt(x)2dx

= sin2(Ht)

∫
A2(x)dx+ cos2(Ht)

∫
B2(x)dx+ 2 sin(Ht) cos(Ht)

∫
A(x)B(x)dx

=1.

�

Proposition 10. Suppose that ρ0, ρ1 > 0, ρ0 6= ρ1. Then, there exists a geodesic curve
ρ(t) with ρt|t=0 = ρ0 and ρt|t=1 = ρ1.

Proof. We denote R0(x) =
√
ρ0(x) and R1(x) =

√
ρ1(x). We only need to solve A(x) and

H > 0 such that
R1(x) = A(x) sin(H) +R0(x) cos(H),

We shall have ∫
R1(x)R0(x)dx = cos(H),

which indicates H = cos−1
(∫
R1(x)R0(x)dx

)
∈ (0, π/2]. Hence, we have

A(x) =
R1(x)−R0(x) cos(H)

sin(H)
.

We can examine that ∫
A2(x)dx =

1− 2 cos2(H) + cos2(H)

sin2(H)
= 1.

On the other hand, we shall examine that

Rt(x) > 0, t ∈ [0, 1].
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Indeed,

Rt(x) =A(x) sin(Ht) +R0(x) cos(Ht)

=
sin(Ht)(R1(x)−R0(x) cos(H)) +R0(x) cos(Ht) sin(H)

sin(H)

=
1

sinH
(sin(Ht)R1(x) + (cos(Ht) sin(H)− sin(Ht) cos(H))R0(x))

=
1

sinH
(sin(Ht)R1(x) + sin(H(1− t))R0(x)) > 0.

Hence, ρt(x) = R2
t (x) is the geodesic curve. �

A direct derivation is the Fisher-Rao distance between ρ0 and ρ1. Namely, we can
recover Φ0 by

Φ0(x) =
2HA(x)

R0(x)
.

We note that H(ρt,Φ0) = 4H2. Hence, we have

(
DFR(ρ0, ρ1)

)2
=

∫ 1

0
4H2dt = 4H2.

Remark 9. We note that the manifold (P+(Ω),GFR(ρ)) is homeomorphic to the manifold
(S+(Ω),GE(R)), where S+(Ω) = {R ∈ F(Ω) : R > 0,

∫
R2dx = 1}. Here (S+(Ω),GE(R))

is the submanifold to L2(Ω) equiped with the standard Euclidean metric.

E.2. Convergence analysis. We consider accelerated Fisher-Rao gradient flows
∂tρt − (Φt − Eρt [Φt])ρt = 0,

∂tΦt + αtΦt +
1

2
Φ2
t − Eρt [Φt]Φt +

δE

δρt
= 0.

(50)

In the sense of Rt, we have
∂tRt −

1

2
(Φt − ER2

t
[Φt])Rt = 0,

∂tΦt + αtΦt +
1

2
Φ2
t − ER2

t
[Φt]Φt +

δE

δρt
= 0.

(51)

Then, we prove the convergence results for β-strongly convex E(ρ). Here we take αt =
2
√
β. Consider the Lyapunov function

E(t) =
e
√
βt

2

∫
|Φt − ER2

t
[Φt]−

√
βTt|2ρtdx

+ e
√
βt(E(ρt)− E(ρ∗)).

Here we define

Tt(x) =
2Ht

sin(Ht)

R∗(x)−Rt(x) cos(Ht)

Rt(x)
, Ht = cos−1

(∫
Rt(x)R∗(x)dx

)
.



39

We can rewrite the Lyapunov function as

E(t) =
e
√
βt

2

∫
(Φt − ER2

t
[Φt])

2ρtdx−
√
βe
√
βt

∫
(Φt − ER2

t
[Φt])Ttρtdx

+
βe
√
βt

2

∫
T 2
t ρtdx+ e

√
βt(E(ρt)− E(ρ∗)).

Remark 10. Here it may be problematic if Rt(x) = 0 for some x. But in total,∫
T 2
t ρtdx =

∫
(RtTt)

2dx.

is well-defined.

From the definition of convexity in probability space, we derive the following proposition.

Proposition 11. The β-convexity of E(ρ) indicates that

E(ρ∗) ≥ E(ρt) +

∫ (
δE

δρt
− Eρt

[
δE

δρt

])
Ttρtdx+

β

2

∫
T 2
t ρtdx.

For simplicity, we define

Ft[Ψ] = Ψ− ER2
t
[Ψ].

We have

∂t(Ft[Ψ]) =∂tΨ− ER2
t
[∂tΨ]−

∫
R2
tFt[Φt]Ψdx = Ft[∂tΨ]−

∫
R2
tFt[Φt]Ψdx.

Before we perform computations, we establish several identities.∫
Ft[Ψ]R2

t dx = 0.∫
Ft[Ψ1]Ft[Ψ2]R2

t dx =

∫
Ft[Ψ1]Ψ2R

2
t dx =

∫
Ft[Ψ2]Ψ1R

2
t dx.

Lemma 4. We have the following observations:∫
(∂tTt)Ft[Φt]R

2
t dx+

1

2

∫
Tt(Ft[Φt])

2R2
t dx ≥ −

∫
(Ft[Φt])

2R2
t dx, (52)∫

(∂tTt)TtR
2
t dx = −

∫
TtΦtR

2
t dx−

1

2

∫
T 2
t Ft[Φt]R

2
t dx. (53)

Proof. We note that ∫
T 2
t R

2
t dx = 4H2

t ,

and ∫
(Ft[R∗R−1

t ])2R2
t dx =

sin2(Ht)

4H2
t

∫
T 2
t R

2
t dx = sin(H2

t ).

We compute the derivatives as follows:

∂tHt =− 1

sinHt
∂t

∫
RtR

∗dx = − 1

2 sinHt

∫
RtR

∗Ft[Φt]dx.
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∂tTt =− 1

sinHt

(∫
RtR

∗Ft[Φt]dx

)
sin(Ht)−Ht cos(Ht)

sin2(Ht)
(R∗R−1

t − cos(Ht))

+
2Ht

sin(Ht)

(
−1

2
R∗R−1

t Ft[Φt]−
1

2

∫
RtR

∗Ft[Φt]dx

)
=− 1

sinHt

(∫
R∗RtFt[Φt]dx

)
sin(Ht)−Ht cos(Ht)

sin2(Ht)
Ft[R∗R−1

t ]

− Ht

sin(Ht)

(
R∗R−1

t Ft[Φt] +

∫
RtR

∗Ft[Φt]dx

)
.

For the first inequality, we have

∫
(∂tTt)Ft[Φt]R

2
t dx

=− 1

sin(Ht)

(∫
R∗RtFt[Φt]dx

)
sin(Ht)−Ht cos(Ht)

sin2(Ht)

∫
Ft[R∗R−1

t ]Ft[Φt]R
2
t dx

− Ht

sin(Ht)

∫
(R∗R−1

t Ft[Φt])Ft[Φt]R
2
t dx

=− sin(Ht)−Ht cos(Ht)

sin3(Ht)

(∫
Ft[R∗R−1

t ]Ft[Φt]R
2
t dx

)2

− 1

2

2Ht

sin(Ht)

∫
R∗R−1

t Ft[Φt]Ft[Φt]R
2
t dx

≥− sin(Ht)−Ht cos(Ht)

sin3(Ht)

(∫
(Ft[Φt])

2R2
t dx

)(∫
(Ft[R∗R−1

t ])2R2
t dx

)
− 1

2

2Ht

sin(Ht)

∫
(R∗R−1

t − cos(Ht))(Ft[Φt])
2R2

t dx

− 1

2

2Ht

sin(Ht)

∫
cos(Ht)(Ft[Φt])

2R2
t dx

=− sin(Ht)−Ht cos(Ht)

sin(Ht)

(∫
(Ft[Φt])

2R2
t dx

)
− 1

2

∫
Tt(Ft[Φt])

2R2
t dx

− Ht cos(Ht)

sin(Ht)

∫
R2
t (Ft[Φt])

2dx

=− 1

2

∫
Tt(Ft[Φt])

2R2
t dx−

∫
(Ft[Φt])

2R2
t dx.
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The inequality is based on Cauchy inequality. For the second inequality, we have∫
(∂tTt)TtR

2
t dx

=− 1

sinHt

(∫
R∗RtFt[Φt]dx

)
sin(Ht)−Ht cos(Ht)

sin2(Ht)

∫
TtFt[R∗R−1

t ]R2
t dx

− Ht

sin(Ht)

∫
TtR

∗R−1
t Ft[Φt]R

2
t dx

=− 1

sinHt

(∫
R∗RtFt[Φt]dx

)
sin(Ht)−Ht cos(Ht)

2 sin(Ht)Ht

∫
T 2
t R

2
t dx

− 1

2

2Ht

sin(Ht)

∫
(R∗Rt − cos(Ht))TtFt[Φt]R

2
t dx−

1

2

2Ht cos(Ht)

sin(Ht)

∫
TtFt[Φt]R

2
t dx

=− 1

2Ht

(∫
TtΦtR

2
t dx

)
sin(Ht)−Ht cos(Ht)

2 sin(Ht)Ht

∫
T 2
t R

2
t dx

− 1

2

∫
T 2
t Ft[Φt]R

2
t dx−

Ht cos(Ht)

sin(Ht)

∫
TtΦtR

2
t dx

=−
(

sin(Ht)−Ht cos(Ht)

sin(Ht)
+
Ht cos(Ht)

sin(Ht)

)∫
TtΦtR

2
t dx−

1

2

∫
T 2
t Ft[Φt]R

2
t dx

=−
∫
TtΦtR

2
t dx−

1

2

∫
T 2
t Ft[Φt]R

2
t dx.

This completes the proof. �

Hence, we can compute that

e−
√
βt∂tE(t) =

√
β

2

∫
(Ft[Φt])

2R2
t dx+

∫
Ft[Φt]

(
Ft[∂tΦt]−

∫
R2
tFt[Φt]Φtdx

)
R2
t dx

+
1

2

∫
(Ft[Φt])

2Ft[Φt]R
2
t dx− β

∫
(Φt − ER2

t
[Φt])Ttρtdx

−
√
β

∫ (
Ft[∂tΦt]−

∫
R2
tFt[Φt]Φtdx

)
TtR

2
t dx

−
√
β

∫
∂tTtFt[Φt]R

2
t dx−

√
β

∫
(F [Φt])

2TtR
2
t dx

+
β
√
β

2

∫
T 2
t R

2
t dx+ β

∫
∂tTtTtR

2
t dx+

β

2

∫
T 2
t Ft[Φt]R

2
t dx

+
√
β(E(ρt)− E(ρ∗)) +

∫
Ft[Φt]Ft

[
δE

δρt

]
R2
t dx.

From Proposition 11, we have

√
β(E(ρt)− E(ρ∗)) +

β
√
β

2

∫
T 2
t R

2
t dx ≤ −

√
β

∫
Ft
[
δE

δρt

]
Ttρtdx.
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We first compute terms with coefficient β0. We have∫
Ft[Φt]

(
Ft[∂tΦt]−

∫
R2
tFt[Φt]Φtdx

)
R2
t dx

+
1

2

∫
(Ft[Φt])

2Ft[Φt]R
2
t dx+

∫
Ft[Φt]Ft

[
δE

δρt

]
R2
t dx

=

∫
Ft[Φt]∂tΦtR

2
t dx+

1

2

∫
(Ft[Φt])

2Ft[Φt]R
2
t dx+

∫
Ft[Φt]

δE

δρt
R2
t dx

=

∫
Ft[Φt]

(
−
√
βΦt −

1

2
Φ2
t + ER2

t
[Φt]Φt +

1

2
Ft[Φt]

2

)
R2
t dx

=

∫
Ft[Φt]

(
−
√
βΦt +

1

2
(ER2

t
[Φt])

2

)
R2
t dx

=− 2
√
β

∫
Ft[Φt]ΦtR

2
t dx.

We then proceed to compute terms with coefficient β1/2.
√
β

2

∫
(Ft[Φt])

2R2
t dx−

√
β

∫ (
Ft[∂tΦt]−

∫
R2
tFt[Φt]Φtdx

)
TtR

2
t dx

− 2
√
β

∫
Ft[Φt]ΦtR

2
t dx−

√
β

∫
∂tTtFt[Φt]R

2
t dx−

√
β

∫
(F [Φt])

2TtR
2
t dx

−
√
β

∫
Ft
[
δE

δρt

]
Ttρtdx

=− 3
√
β

2

∫
(Ft[Φt])

2R2
t dx−

√
β

∫
∂tΦtTtR

2
t dx−

√
β

∫
∂tTtFt[Φt]R

2
t dx

−
√
β

∫
(F [Φt])

2TtR
2
t dx−

√
β

∫
δE

δρt
TtR

2
t dx

=−
√
β

∫
TtR

2
t

(
∂tΦt +

δE

δρt
+

1

2
(F [Φt])

2

)
− 3
√
β

2

∫
(Ft[Φt])

2R2
t dx

−
√
β

∫
∂tTtFt[Φt]R

2
t dx−

√
β

2

∫
(F [Φt])

2TtR
2
t dx

≤2β

∫
TtΦtR

2
t −
√
β

2

∫
(Ft[Φt])

2R2
t dx.

The last inequality is based on Lemma 4. Finally, we compute terms with coefficient β:

2β

∫
TtΦtR

2
t dx− β

∫
ΦtTtR

2
t dx+ β

∫
∂tTtTtR

2
t dx+

β

2

∫
T 2
t Ft[Φt]R

2
t dx = 0.

In summary, we have

e−
√
βt∂tE(t) ≤ −

√
β

2

∫
(Ft[Φt])

2R2
t dx ≤ 0.

For convex E(ρ), we let αt = 3/t. Consider

E(t) =
1

2

∫ (
−Tt +

t

2
Φt

)2

R2
t dx+

t2

4
(E(R2

t )− E(ρ∗)).
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We can compute that

Ė(t) =

∫
(∂tTt)TtR

2
t dx+

1

2

∫
T 2
t F [Φt]R

2
t dx−

1

2

∫
TtΦtR

2
t dx

− t

2

∫
Tt (∂tΦt)R

2
t dx−

t

2

∫
(∂tTt)ΦtR

2
t dx

− t

2

∫
Tt(Ft[Φt])

2R2
t dx+

t

4

∫
(Ft[Φt])

2R2
t dx

+
t2

4

∫
(∂tFt[Φt])Ft[Φt]R

2
t dx+

t2

8

∫
(Ft[Φt])

3R2
t dx

− t2

4

∫
Ft
[
δE

δρt

]
Ft[Φt]R

2
t dx+

t

2
(E(R2

t )− E(ρ∗)).

Because E(ρ) is convex, we have

E(R2
t )− E(ρ∗) ≤ −

∫
Ft
[
δE

δρt

]
TtR

2
t dx.

From Lemma 4, we have

Ė(t) ≤− 3

2

∫
TtΦtR

2
t dx−

t

2

∫
Tt (∂tΦt)R

2
t dx

− t

4

∫
Tt(Ft[Φt])

2R2
t dx+

3t

4

∫
(Ft[Φt])

2R2
t dx

+
t2

4

∫
(∂tΦt)Ft[Φt]R

2
t dx+

t2

8

∫
(Ft[Φt])

3R2
t dx

− t2

4

∫
δE

δρt
Ft[Φt]R

2
t dx−

t

2

∫
Ft
[
δE

δρt

]
TtR

2
t dx

=− 3

2

∫
TtΦtR

2
t dx−

t

2

∫
TtR

2
t

(
∂tΦt +

1

2
(Ft[Φt])

2 +
δE

δρt

)
+

3t

4

∫
(Ft[Φt])

2R2
t dx+

t2

4

∫
Ft[Φt]R

2
t

(
∂tΦt +

1

2
(Ft[Φt])

2 +
δE

δρt

)
dx

=0.

The last equality utilize the fact that ∂tΦt + 1
2(Ft[Φt])

2 + δE
δρt

= −3
tΦt.

Appendix F. Discrete-time algorithm of AIG flows

In this section, we introduce the discrete-time algorithm for Kalman-Wasserstein AIG
flows and Stein AIG flows. Here E(ρ) is the KL divergence from ρ to ρ∗ ∝ exp(−f).

F.1. Discrete-time algorithm of KW-AIG flows. For KL divergence, the particle
formulation (5) of KW-AIG flows writes{

dXt = Cλ(ρt)Vtdt,

dVt = −αtVtdt− E[VtV
T
t ](Xt − E[Xt])dt− (f(Xt) +∇ log ρt(Xt))dt.

(54)
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Consider a particle system {Xi
0}Ni=1.In k-th iteration, the update rule follows: for i =

1, 2, . . . N ,
Xi
k+1 = Xi

k +
√
τkC

λ
kVk,

Vk+1 = αkVk −
√
τk

[
N∑
i=1

(V i
k )(V i

k )T

]
(Xi

k −mk)−
√
τk(f(Xi

k) + ξk(X
i
k)).

(55)

Here ξk is an approximation of ∇ log ρk and we denote

mk =
1

N

N∑
i=1

Xi
k, Cλk =

1

N − 1

N∑
i=1

(Xi
k −mk)(X

i
k −mk)

T + λI.

The choice of αk is similar to the discrete-time algorithm of W-AIG flows. If E(ρ) is

β-strongly convex, then αk = 1−
√
βτk

1+
√
βτk

; if E(ρ) is convex or β is unknown, then αk = k−1
k+2 .

About the adaptive restart technique, the restarting criterion follows

ϕk = −
N∑
i=1

〈
CλkV

i
k+1,∇f(Xi

k) + ξk(X
i
k)
〉
. (56)

The overall algorithm is summarized as follows.

Algorithm 2 Discrete-time particle implementation of KW-AIG flow

Require: initial positions {Xi
0}Ni=1, step size τk, number of iteration L.

1: Set k = 0, V i
0 = 0, i = 1, . . . N . Set the bandwidth h0 by MED.

2: for l = 1, 2, . . . L do
3: Compute hl based on BM method: hl = BM(hl−1, {Xi

k}Ni=1,
√
τ).

4: Calculate ξk(X
i
k) as an approximation of ∇ log ρk(X

i
k).

5: For i = 1, 2, . . . N , update V i
k+1 and Xi

k+1 by (55).
6: Compute ϕk by (56).
7: If ϕk < 0, set Xi

0 = Xi
k and V i

0 = 0 and k = 0; otherwise set k = k + 1.
8: end for

F.2. Discrete-time algorithm for S-AIG flows. For KL divergence, the particle for-
mulation of S-AIG flows writes

d

dt
Xt =

∫
k(Xt, y)∇Φt(y)ρt(y)dy,

d

dt
Vt = −αtVt −

∫
V T
t ∇Φt(y)∇xk(Xt, y)ρt(y)dy −∇f(Xt)−∇ log ρt.

(57)

Consider a particle system {Xi
0}Ni=1. In k-th iteration, the update rule follows: for i =

1, 2, . . . N ,
Xi
k+1 = Xi

k +

√
τk
N

N∑
j=1

k(Xi
k, X

j
k)V j

k+1,

V i
k+1 = αkV

i
k −
√
τk
N

N∑
j=1

(V i
k )TV j

k∇xk(Xi
k, X

j
k)−

√
τk(∇f(Xi

k) + ξk(X
i
k)).

(58)
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Here ξk is an approximation of ∇ log ρk. The choice of αk is similar, depending on the
convexity of E(ρ) w.r.t. Stein metric.

About the adaptive restart technique, the restarting criterion follows

ϕk = −
N∑
i=1

N∑
j=1

k(Xj
k, X

i
k)
〈
V j
k+1,∇f(Xi

k) + ξk(X
i
k)
〉
. (59)

The overall algorithm is summarized as follows.

Algorithm 3 Discrete-time particle implementation of S-AIG flow

Require: initial positions {Xi
0}Ni=1, step size τk, number of iteration L.

1: Set k = 0, V i
0 = 0, i = 1, . . . N . Set the bandwidth h0 by MED.

2: for l = 1, 2, . . . L do
3: Compute hl based on BM method: hl = BM(hl−1, {Xi

k}Ni=1,
√
τ).

4: Calculate ξk(X
i
k) as an approximation of ∇ log ρk(X

i
k).

5: For i = 1, 2, . . . N , update V i
k+1 and Xi

k+1 by (58).
6: Compute ϕk by (59).
7: If ϕk < 0, set Xi

0 = Xi
k and V i

0 = 0 and k = 0; otherwise set k = k + 1.
8: end for

Appendix G. Implementation details in the numerical experiments

In this section, we provide extra numerical experiments and elaborate on the implemen-
tation details in the numerical experiments.

G.1. Details in Subsection 6.1. We follow the same setting as Liu and Wang (2016),
which is also adopted by Liu et al. (2018, 2019). The dataset is split into 80% for training
and 20% for testing. We use the stochastic gradient and the mini-batch size is taken as
100. For MCMC, the number of particles is N = 1000; for other methods, the number of
particles is N = 100. The BM method is not applied to SVGD in selecting the bandwidth.

The initial step sizes for the compared methods are given in Table 3, which are selected
by grid search over 1 × 10i with i = −3,−4, . . . ,−9. (For SVGD, we use the initial step
size in (Liu and Wang, 2016).) The step size of SVGD is adjusted by Adagrad, which is
same as (Liu and Wang, 2016). For WNAG and WRes, the step size is give by τl = τ0/l

0.9

for l ≥ 1. The parameters for WNAG and Wnes are identical to (Liu et al., 2018) and (Liu
et al., 2019). For other methods, the step size is multiplied by 0.9 every 100 iterations. For
methods under Kalman-Wasserstein metric, we require a smaller step size (around 1e-8)
to make the algorithm converge. For all discrete-time algorithms of AIGs, we apply the
restart technique. We record the cpu-time for each method in Table 4. The computational
cost of the BM method is much higher than the MED method because we need to evaluate
the MMD of two particle systems several times in optimizing the subproblem. We may
update the bandwidth using the BM method every 10 iterations to deal with the high
computation cost of the BM method. On the other hand, using the MED method for
bandwidth, the computational cost of S-AIG is much higher than other methods. This
results from the multiple times of computation of particle interacting in updating Xi

k and
V i
k .
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Method MCMC WNAG WNes W-GF W-AIG
Step size τ0 1e-5 1e-6 1e-5 1e-5 1e-6

Method KW-GF KW-AIG SVGD S-AIG
Step size τ0 1e-7 1e-8 0.05 1e-5

Table 3. Initial step sizes for compared algorithms in Bayesian logistic
regression.

Method MCMC WNAG WNes W-GF W-AIG
BM 26.181 164.980 165.407 167.308 170.116

MED 27.200 7.585 7.688 7.501 7.719
Method KW-GF KW-AIG SVGD S-AIG

BM 168.711 173.670 7.193 200.016
MED 8.847 10.065 7.755 21.303

Table 4. Averaged cpu time(s) cost for algorithms in Bayesian logistic
regression.

G.2. Details in Subsection 6.2. We follow the setting of Bayesian neural network as
(Wang et al., 2019a). The kernel bandwidth is adjusted by the MED method. We list the
number of epochs and the batch size for each datasets in Table 5. For each dataset, we
use 90% of samples as the training set and 10% of samples as the test set. The step size of
SVGD is adjusted by Adagrad. For W-GF and W-AIG , the step size is multiplied by 0.64
every 1/10 of total epochs. We select the initial step size by grid search over {1, 2, 5}×10i

with i = −3,−4, . . . ,−7 to ensure the best performance of compared methods. We list the
initial step sizes for each dataset in Table 6. For W-AIG, we apply the adaptive restart.

Dataset Boston Combined Concrete
Epochs 50 500 500

Batch size 100 100 100
Dataset Kin8nm Wine Year
Epochs 200 20 10

Batch size 100 100 1000

Table 5. Number of epochs and batch size in Bayesian neural network.

Dataset Boston Combined Concrete
AIG 2e-5 2e-4 2e-5
WGF 1e-4 1e-3 2e-5
SVGD 5e-4 5e-3 5e-4
Dataset Kin8nm Wine Year

AIG 2e-5 5e-6 2e-7
WGF 1e-4 1e-4 2e-6
SVGD 5e-3 2e-3 5e-3

Table 6. Initial step sizes for compared methods in Bayesian neural net-
work.
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