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PRECONDITIONED LEGENDRE SPECTRAL GALERKIN METHODS FOR THE

NON-SEPARABLE ELLIPTIC EQUATION

XUHAO DIAO, JUN HU, AND SUNA MA

ABSTRACT. The Legendre spectral Galerkin method of self-adjoint second order elliptic equations

usually results in a linear system with a dense and ill-conditioned coefficient matrix. In this paper,

the linear system is solved by a preconditioned conjugate gradient (PCG) method where the precon-

ditioner M is constructed by approximating the variable coefficients with a (T+1)-term Legendre

series in each direction to a desired accuracy. A feature of the proposed PCG method is that the

iteration step increases slightly with the size of the resulting matrix when reaching a certain ap-

proximation accuracy. The efficiency of the method lies in that the system with the preconditioner

M is approximately solved by a one-step iterative method based on the ILU(0) factorization. The

ILU(0) factorization of M ∈ R
(N−1)d×(N−1)d can be computed using O(T 2dNd) operations,

and the number of nonzeros in the factorization factors is of O(T dNd), d = 1, 2, 3. To further

speed up the PCG method, an algorithm is developed for fast matrix-vector multiplications by the

resulting matrix of Legendre-Galerkin spectral discretization, without the need to explicitly form

it. The complexity of the fast matrix-vector multiplications is of O(Nd(logN)2). As a result, the

PCG method has a O(Nd(logN)2) total complexity for a d dimensional domain with (N − 1)d

unknows, d = 1, 2, 3. Numerical examples are given to demonstrate the efficiency of proposed

preconditioners and the algorithm for fast matrix-vector multiplications.

1. INTRODUCTION

Spectral methods are an important tool in engineer and scientific computing for solving differ-

ential equations due to their high order of accuracy; see [3, 23, 10, 24] and the references therein.

However, for problems with general variable coefficients, spectral methods lead to a linear system

with a dense and ill-conditioned matrix. Moreover, the dense matrix is usually not explicitly avail-

able, since it is costly to form it. In practice, it becomes rather prohibitive to solve the linear system

by a direct solver or even an iterative method without preconditioning for the multi-dimensional

cases, when the size of the matrix is large.

Over the years there has been intensive research on the spectral collocation method for solving

problems with variable coefficients, since it is easy to implement, once the differentiation matri-

ces are precomputed. One significant attempt is to use a lower-order method (finite differences

or finite elements [2, 7, 15, 16, 9]) or integration operator [4, 11, 30] as a preconditioner and to

take advantage of the fact that the matrix-vector multiplication from a Fourier- or Chebyshev-

spectral discretization can be performed in a quasi-optimal complexity. Another approach is the

finite element multigrid preconditioning method proposed by Shen et al.[25] for the Chebyshev-

collocation approximation of second-order elliptic equations. Although many spectral collocation

methods have been applied to numerically solve variable-coefficient differential equations, few ef-

forts are found for spectral Galerkin methods, especially Legendre-Galerkin methods, in literature.
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An early work is the Chebyshev-Legendre Galerkin method for second-order elliptic problems in-

troduced in [21], which is based on the Legendre-Galerkin formulation, and only the coefficients

of Legendre expansions and the values at the Chebyshev-Gauss-Lobatto points are used in the

computation. A fast direct solver was presented for the Legendre-Galerkin approximation of the

two and three dimensional Helmholtz equations by Shen in [27], whose complexity is of O(Nd+1)
in a d dimensional domain. An improved two-dimensional algorithm was constructed by further

exploring the matrix structures of the Legendre-Galerkin discretization in [26], whose complexity

is of O(N2 log2N), which was extended to the Legendre-Galerkin spectral approximation of the

three dimensional Helmholtz equation in [1].

The Legendre-Galerkin method of self-adjoint second order elliptic equations leads to symmet-

ric linear systems, but its efficiency is limited by the lack of fast transforms between the physical

space (values at the Legendre Gauss points) and the spectral space (coefficients of the Legendre

polynomials). In traditional spectral methods, a fast algorithm for Legendre expansions is a proce-

dure to fast evaluate the Legendre expansion at Chebyshev points, and conversely, to fast evaluate

the coefficients of the Legendre expansion from the table of its values at the Chebyshev-Gauss-

Lobatto points. Recently, a series of work were done for fast discrete Legendre transforms be-

tween the values at the Legendre Gauss points and the coefficients of the Legendre polynomials

[29, 19, 17, 13]. In particular, an O(N(logN)2/ log logN) algorithm based on the FFT was pro-

posed in [13] in one dimension for computing the discrete Legendre transform with a degree N−1
Legendre expansion at N Legendre points.

The goal of this article is to fast solve the linear system resulting from the Legendre-Galerkin

spectral discretization of second order elliptic equations with variable coefficients by the precon-

ditioned conjugate gradient (PCG) method. The novelties of the paper lie in the following three

folds:

• Firstly, the preconditioner is constructed by using a truncated Legendre series to approx-

imate the variable coefficients. It is in the case that the iterative step of the PCG method

only increase slightly with the size of the resulting matrix. A closely related preconditioner

of [21, 20] is to use a constant-coefficient problem to precondition variable-coefficient

problems. However, for coefficients with large variations, iterative methods with that pre-

conditioner usually converge very slowly [25].

• Secondly, by means of fast discrete Legendre transforms, an algorithm is developed for

fast matrix-vector multiplications by the resulting matrix without the need to explicitly

form it. As a result, they can be done in O(Nd(logN)2) operations.

• Last but not least, the system with the preconditioner as the coefficient matrix is approx-

imately solved by a one-step iterative method based on the ILU(0) factorization. Thanks

to the sparse structure of the preconditioner M , the ILU(0) factorization gives an unit

lower triangular matrix L and an upper triangular matrix U , where together the L and U
matrices have the same number of nonzero elements as the matrix M . The complexity

essentially depends on the number of nonzeros in M , which is of O(T 2dNd) with T the

cutoff number of the Legendre series in each direction used to approximate the coefficient

functions.

The remainder of this article is organized as follows. Some preliminaries are given in Sec-

tion 2. Section 3 introduces the Legendre-Galerkin method of second-order elliptic equations

with non-separable coefficients. In Section 4, the preconditioned conjugate gradient method with
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implementation issues is described. In section 5, some numerical experiments are presented to il-

lustrate the efficiency of both the algorithm for fast matrix-vector multiplications and the proposed

preconditioner. The conclusion is in the last section.

2. PRELIMINARIES

In this section, some properties of Legendre polynomials and a useful transform are presented.

2.1. Legendre polynomials. Denote by Ln(x) the Legendre polynomial of degree n which sat-

isfies the following three-term recurrence relation:

L0(x) = 1, L1(x) = x,

(n + 1)Ln+1(x) = (2n + 1)xLn(x)− nLn−1(x), n ≥ 1.

The Legendre polynomials are orthogonal to each other with respect to the uniform weight func-

tion,
∫ 1

−1
Lm(x)Ln(x)dx =

2

2m+ 1
δmn, m, n ≥ 0,

where δmn is the Kronecker delta symbol. Moreover, they satisfy the derivative recurrence relation

(2n+ 1)Ln(x) = L′
n+1(x)− L′

n−1(x), n ≥ 1, (2.1)

and symmetric property

Ln(−x) = (−1)nLn(x), Ln(±1) = (±1)n. (2.2)

Lemma 2.1 ([5]). For m,n ≥ 0, it holds that

Lm(x)Ln(x) =

min(m,n)∑

s=0

m+ n+ 1
2 − 2s

m+ n+ 1
2 − s

CsCm−sCn−s

Cm+n−s

Lm+n−2s(x), (2.3)

where

Cr =
1 · 3 . . . (2r − 3)(2r − 1)

r!2r
.

2.2. Discrete Legendre transforms. Given N + 1 values c0, c1, · · · , cN , the backward discrete

Legendre transform (BDLT) calculates the discrete sums:

fk =

N∑

n=0

cnLn(xk), 0 ≤ k ≤ N, (2.4)

where the Legendre-Gauss quadrature nodes x0, x1, · · · , xN are the roots of LN+1(x). Given

f0, f1, · · · , fN , the forward discrete Legendre transform (FDLT) computes c0, c1, · · · , cN , which

reads

cn =
2n+ 1

2

N∑

k=0

wkfkLn(xk), 0 ≤ n ≤ N, (2.5)

wherew0, w1, · · · , wN are the Legendre-Gauss quadrature weights. Assuming that (Ln(xj))j,n=0,··· ,N
have been precomputed, the discrete Legendre transforms (2.4) and (2.5) can be carried out by a

standard matrix-vector multiplication routine in about N2 flops. In this paper, the algorithm in

[13] is used for the fast computation of the discrete Legendre transforms (2.4) and (2.5) which

is of O(N(logN)2/ log logN) complexity, because it has no precomputational cost and only in-

volves the FFT and Taylor approximations.
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3. THE LEGENDRE-GALERKIN METHOD OF NON-SEPARABLE SECOND ORDER ELLIPTIC

EQUATIONS

Consider non-separable second order elliptic equations of the form
{
−div(β(x)∇u) + α(x)u = f, x ∈ Ω = (−1, 1)d,

u|∂Ω = 0,
(3.1)

where d = 1, 2, 3, the coefficient functions β(x), α(x) and f(x) are continuous, and 0 < b1 ≤
β(x) ≤ b2, 0 ≤ α(x) < a in Ω for some positive constants b1, b2, a.

Let PN be the space of polynomials of degree less than or equal to N , and

XN = {v ∈ PN : v(±1) = 0}.
Denote Xd

N = (XN )d. Then the Legendre-Galerkin approximation to (3.1) is: Find uN ∈ Xd
N

such that

(β(x)∇uN ,∇vN ) + (α(x)uN , vN ) = (f, vN ), ∀vN ∈ Xd
N . (3.2)

where (u, v) =
∫
Ω uvdx is the scalar product in L2(Ω).

Denote

φk(x) := Lk(x)− Lk+2(x).

Due to (2.2), it is easy to know that the function φk(x) satisfies the boundary condition of problem

(3.1). Hence, the basis functions of the space XN can be chosen as

φ0(x), φ1(x), ..., φN−2(x).

• One dimensional case. Assume uN =
∑N−2

n=0 ûnφn(x), and denote

A =
[(
β(x)φ′k, φ

′
j

)]
0≤k,j≤N−2

,

B =
[(
α(x)φk, φj

)]
0≤k,j≤N−2

,

û =
(
û0, û1, · · · , ûN−2

)T
,

F =
(
f0, f1, · · · , fN−2

)T

, fk = (f, φk).

• Two dimensional case. The multi-dimensional basis functions are constructed by using

the tensor product of one-dimensional basis functions. In two dimensions, they read

ϕk,j(x) := φk(x)φj(y), k, j = 0, 1, · · · , N − 2.

Assume uN =
∑N−2

k,j=0 ûk,jϕk,j(x), and denote

A =
[(
β(x)∇ϕk,j ,∇ϕm,n

)]
0≤k,j,m,n≤N−2

,

B =
[(
α(x)ϕk,j , ϕm,n

)]
0≤k,j,m,n≤N−2

,

û =
(
û0,0, û1,0, . . . , ûN−2,0; . . . ; û0,N−2, û1,N−2, . . . , ûN−2,N−2

)T

,

F =
(
f0,0, f1,0, · · · , fN−2,0; . . . ; f0,N−2, f1,N−2, . . . , fN−2,N−2

)T

,

fk,j = (f, ϕk,j).
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• Three dimensional case. Similarly, the three-dimensional basis functions are as follows

ψi,j,k(x) := φi(x)φj(y)φk(z), i, k, j = 0, 1, · · · , N − 2.

Assume uN =
∑N−2

i,j,k=0 ûi,j,kψi,j,k(x), and denote

A =
[(
β(x)∇ψi,j,k,∇ψm,n,l

)]
0≤i,k,j,m,n,l≤N−2

,

B =
[(
α(x)ψi,j,k, ψm,n,l

)]
0≤i,k,j,m,n,l≤N−2

,

û =
(
û0, û1, . . . , ûN−2

)T
,

ûk =
(
û0,0,k, û1,0,k, . . . , ûN−2,0,k; . . . ; û0,N−2,k, û1,N−2,k, . . . , ûN−2,N−2,k

)
,

F =
(
f0, f1, . . . , fN−2

)T
,

fk =
(
f0,0,k, f1,0,k, . . . , fN−2,0,k; . . . ; f0,N−2,k, f1,N−2,k, . . . , fN−2,N−2,k

)
,

fi,j,k = (f, ψi,j,k).

Then the equation (3.2) is equivalent to the following algebraic system:

(A+B)û = F. (3.3)

For variable coefficients α(x) and β(x), the matrices A and B in equation (3.3) are usually dense

and ill-conditioned. Hence, it is prohibitive to use a direct inversion method or an iterative method

without preconditioning. Moreover, it is imperative to use an iterative method with a good pre-

conditioner.

4. PRECONDITIONED CONJUGATE GRADIENT METHOD

In this article, the symmetric definite linear system (3.3) is solved by the preconditioned conju-

gate gradient (PCG) method presented in Algorithm 1.

Algorithm 1: PCG

1 Initialize: A,B,F and initialization vector x, preconditioner M , the maximum loop size

kmax, stop criteria ε
2 k = 0,

3 r = F − (A+B)x

4 While
√
rT r > ε‖F‖2 and k < kmax do

5 Solve Mz = r,

6 k = k + 1

7 if k = 1

8 p = z; ρ = rT z

9 else

10 ρ̃ = ρ; ρ = rT z; β = ρ/ρ̃; p = z + βp

11 end if

12 w = (A+B)p; α = ρ/pTw

13 x = x+ αp; r = r − αw

14 end while



6 XUHAO DIAO, JUN HU, AND SUNA MA

In each iteration of the PCG method, it needs to solve a system withM as the coefficient matrix

and involves a matrix-vector multiplication. The complexity of these two steps dominates that of

the algorithm. In order to accelerate the convergence rate of conjugate gradient type methods, an

efficient preconditioner M is needed. Moreover, an accurate numerical solver is needed to solve

the preconditioning equation Mz = r. At last, fast matrix vector multiplications have to be used

to further reduce the complexity of the algorithm.

4.1. Proposed preconditioner. A preconditioner is prescribed for the coefficient matrix A + B
of the linear system (3.3) in the following way.

Since β(x) and α(x) are continuous, they can be approximated by a finite number of Legendre

polynomials to any desired accuracy. That is, for any ǫ1 > 0, ǫ2 > 0, there exists t1, t2 ∈ N and

pt1 ∈ (Pt1)
d, pt2 ∈ (Pt2)

d such that

‖β(x)− pt1‖L∞([−1,1]d) < ǫ1, (4.1)

‖α(x)− pt2‖L∞([−1,1]d) < ǫ2. (4.2)

It is stressed that t1 and t2 can be surprisingly small when β(x), α(x) are analytic or many times

differentiable. For practical purposes, the preconditioner M is constructed by replacing β(x) with

pt1 in the matrix A and α(x) with pt2 in the matrix B. More precisely,

• d = 1

pt1(x) =

t1∑

t=0

β̂tLt(x), (4.3)

pt2(x) =

t2∑

t=0

α̂tLt(x), (4.4)

M =
[(
pt1(x)φ

′
i(x), φ

′
j(x)

)
+

(
pt2(x)φi(x), φj(x)

)]
0≤i,j≤N−2

. (4.5)

• d = 2

pt1(x) =

t1∑

m,n=0

β̂mnLm(x)Ln(y), (4.6)

pt2(x) =

t2∑

m,n=0

α̂mnLm(x)Ln(y), (4.7)

M =
[(
pt1(x)∇ϕi,j ,∇ϕm,n

)
+

(
pt2(x)ϕi,j , ϕm,n

)]
0≤i,j,m,n≤N−2

. (4.8)

• d = 3

pt1(x) =

t1∑

m,n,l=0

β̂mnlLm(x)Ln(y)Ll(z), (4.9)

pt2(x) =

t2∑

m,n,l=0

α̂mnlLm(x)Ln(y)Ll(z), (4.10)

M =
[(
pt1(x)∇ψi,j,k,∇ψm,n,l

)
+

(
pt2(x)ψi,j,k, ψm,n,l

)]
0≤i,j,k,m,n,l≤N−2

. (4.11)
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Note that the Legendre expansion coefficients in pt1(x) and pt2(x) can be calculated respec-

tively in O(td1(log t1)
2) operations and O(td2(log t2)

2) operations by means of the fast discrete

Legendre transform. Moreover, the preconditioner M for one-dimensional case is a banded ma-

trix with a fixed bandwidth dependent of t1 and t2 from the following proposition.

Proposition 4.1. Denote

M1 =
[
βji

]
0≤i,j≤N−2

, βji =
(
pt1(x)φ

′
i(x), φ

′
j(x)

)
,

M2 =
[
αji

]
0≤i,j≤N−2

, αji =
(
pt2(x)φi(x), φj(x)

)
.

If t1 in (4.3) and t2 in (4.4) are fixed, the bandwidth q1 of banded matrix M1 and the bandwidth

q2 of banded matrix M2 are as follows:

q1 =

{
2t1 − 1, t1 even,

2t1 + 1, t1 odd,
β(x) is an odd function;

q1 =

{
2t1 + 1, t1 even,

2t1 − 1, t1 odd,
β(x) is an even function;

q2 =

{
2t2 + 3, t1 even,

2t2 + 5, t1 odd,
α(x) is an odd function;

q2 =

{
2t2 + 5, t2 even,

2t2 + 3, t2 odd,
α(x) is an even function.

Proof. In the case d=1, it follows from (2.3) that both pt1(x)φ
′
k(x) and pt2(x)φk(x) can be repre-

sented in Legendre series, i.e.,

pt1(x)φ
′
k(x) = (−2k − 3)Lk+1(x)

t1∑

t=0

β̂tLt(x) =

{∑t1+k+1
j=0 β̃jLj , t1 ≥ k + 1,∑t1+k+1
j=k+1−t1

β̃jLj, t1 < k + 1,

pt2(x)φk(x) = (Lk(x)− Lk+2(x))

t2∑

t=0

α̂tLt(x) =

{∑t2+k+2
j=0 α̃jLj , t2 ≥ k,∑t2+k+2
j=k−t2

α̃jLj , t2 < k,

where β̃j are Legendre expansion coefficients in terms of Cj in (2.3) and β̂j , α̃j are Legendre

expansion coefficients in terms of Cj in (2.3) and α̂j . Together with parity arguments on β(x) and

α(x), this leads to the conclusion.

Remark 4.1. The bandwidth of preconditioner M is of O(N) in the case d = 2 and of O(N2) in

the case d = 3.

4.2. Incomplete LU preconditioning for banded linear systems. Without loss of generality,

assume α(x) = 0 in problem (3.1). And the preconditioner M is constructed by using a (T+1)-

term Legendre series in each direction to approximate the coefficient function β(x). In what

follows, it is shown that the preconditioning equation Mz = r is approximately solved by a

one-step iterative process based on the ILU(0) factorization, see for instance, [28, Chapter 10], in

O(T 2dNd) operations for d = 1, 2, 3.

To approximately solve Mz = r, proceed as follows:

Step 1. Perform the ILU(0) factorization to obtain a sparse unit lower triangular matrix L and a

sparse upper triangular matrix U ;
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Step 2. Solve the unit lower triangular system Ly = r by a forward substitution shown in Algo-

rithm 3;

Step 3. Solve the upper triangular system Uz = y by a backward substitution shown in Algorithm

4.

For the sparse matrix M whose elements are mij , i, j = 1, . . . , (N − 1)d, the incomplete LU

factorization process with no fill-in, denoted by ILU(0), is to compute a sparse unit lower triangular

matrix L and a sparse upper triangular matrix U so that the elements of M − LU are zeros in the

locations of NZ(M), where NZ(M) is the set of pairs (i, j), 1 ≤ i, j ≤ (N − 1)d such that

mij 6= 0, and the entries in the extra diagonals in the product LU are called fill-in elements. Due

to the fact that fill-in elements are ignored, it is possible to find L and U so that their product is

equal to M in the other diagonals. By definition, together the L and U matrices in ILU(0) have

the same number of nonzero elements as the matrix M .

Algorithm 2: ILU(0)

1 Initialize: Given H ∈ R
n×n, the following algorithm computes an unit lower triangular

matrix L and an upper triangular matrix U , assuming they exist. H(i, j) is overwritten by

L(i, j) if i > j and by U(i, j) otherwise.

2 for i = 2 : n

3 for k = 1 : i− 1 and (i, k) ∈ NZ(H)

4 H(i, k) = H(i, k)/H(k, k)

5 for j = k + 1 : n and (i, j) ∈ NZ(H)

6 H(i, j) = H(i, j) −H(i, k) ·H(k, j)

7 end for

8 end for

9 end for

Algorithm 3: Forward substitution

1 Initialize: Given an unit lower triangular matrix L ∈ R
n×n and a vector r ∈ R

n, the

following algorithm computes the linear system Ly = r.

2 y(1) = r(1)

3 for i = 2 : n

4 for j = 1 : i− 1 and (i, j) ∈ NZ(L)

5 y(i) = y(i) + L(i, j) · y(j)
6 end for

7 y(i) = r(i)− y(i)

8 end for

To evaluate the complexity of the one-step process to solve a system with the coefficient matrix

M , the number of nonzeros in M is considered. Taking two-dimensional problems as an example,
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Algorithm 4: Backward substitution

1 Initialize: Given an upper triangular matrix U ∈ R
n×n and a vector y ∈ R

n, the following

algorithm computes the linear system Uz = y.

2 z(n) = y(n)/U(n, n)

3 for i = n− 1 : 1

4 for j = n : i and (i, j) ∈ NZ(U)

5 y(i) = y(i)− U(i, j) · z(j)
6 end for

7 z(i) = y(i)/U(i, i)

8 end for

the matrix M can be rewritted in the following formulation:

pT (x) =

T∑

t=0

T∑

k=0

β̂tkLt(x)Lk(y),

M =
T∑

t=0

T∑

k=0

β̂tk

[
M

(k)
1y ⊗ S

(t)
1x + S

(k)
1y ⊗M

(t)
1x

]
,

where

M
(k)
1y =

[(
Lk(y)φj(y), φn(y)

)]
0≤j,n≤N−1

,

S
(t)
1x =

[(
Lt(x)φ

′
i(x), φ

′
m(x)

)]
0≤i,m≤N−1

,

S
(k)
1y =

[(
Lk(y)φ

′
j(y), φ

′
n(y)

)]
0≤j,n≤N−1

,

M
(t)
1x =

[(
Lt(x)φi(x), φm(x)

)]
0≤i,m≤N−1

.

It follows from Proposition 4.1 that each matrix M
(T )
1y , S

(T )
1x , S

(T )
1y ,M

(T )
1x has O(TN) nonzero

elements. Thus, the number of nonzeros in M is of O(T 2N2). Then it is deduced that the number

of nonzeros in M for three-dimensional problems is of O(T 3N3).
From Algorithm 2, the cost of performing the ILU(0) factorization essentially depends on the

number of nonzero elements in M , which is of O(T 2dNd). And the complexity of performing

either the forward substitution in Algorithm 3 or the backward substitution in Algorithm 4 is of

O(T dNd). As a result, the one-step iterative process to approximately solve the preconditioning

equation Mz = r costs O(T 2dNd) numerical operations, d = 1, 2, 3.

4.3. Fast matrix-vector multiplications. The fast transforms of the Legendre expansions pro-

vide the possibility for fast matrix-vector multiplications of vectors by the discrete matrix A+ B
resulting from the Legendre-Gelerkin method.

Denote Λ = (a, b)d and P d
N = (PN )d. Define the interpolation operator IN : C(Λ) → P d

N (Λ)
such that for any u ∈ C(Λ),

(INu)(x) = u(x), x ∈ {x0, x1, · · · , xN}d,
where x0, x1, · · · , xN are the Legendre-Gauss quadrature nodes mentioned above.
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Given the coefficient vector p of uN ∈ Xd
N , the matrix-vector multiplicaton of (A + B)p is

performed as follows (with the operation counts of each step in parenthese):

Step 1. Compute the Legendre coefficients of ∇uN and uN respectively;
(
O(Nd)

)

Step 2. Perform the BDLT of ∇uN and uN respectively;
(
O(Nd(logN)2)

)

Step 3. Compute β(x)∇uN and α(x)uN at the Legendre-Gauss quadrature nodes and then the

FDLT of IN (β(x)∇uN ), IN (α(x)uN );
(
O(Nd(logN)2)

)

Step 4. Compute the matrix-vector multiplicaton of (A+B)p.
(
O(Nd)

)

For clarity of presentation, fast matrix-vector multiplicatons are described in details.

One dimensional case. Given uN =
∑N−2

k=0 ûkφk(x), the computation

(Aû)j =
(
IN (βu′N ), φ′j

)
, j = 0, 1, · · · , N − 2

without explicitly forming the matrix A is presented as follows.

1, Using (2.1) to determine {ũ′} from

u′N (x) =

N−2∑

k=0

ûkφ
′
k(x) =

N∑

k=0

ũ′kLk(x);

2, (BDLT) Compute

u′N (xj) =

N∑

k=0

ũ′kLk(xj), j = 0, 1, · · · , N ;

3, (FDLT) Determine {β̂k} from

IN (βu′N )(xj) =

N∑

k=0

β̂kLk(xj), j = 0, 1, · · · , N ;

4, For j = 0, 1, · · · , N − 2, compute

(Aû)j =
(
IN (βu′N ),−(2j + 3)Lj+1(x)

)
= −2β̂j+1.

Similarly, the computation

(Bû)j =
(
IN (αuN ), φj

)
, j = 0, 1, · · · , N − 2

without explicitly forming the matrix B is presented as follows.

1, Determine {û(1)k } from

uN (x) =
N−2∑

k=0

ûkφk(x) =
N∑

k=0

û
(1)
k Lk(x);

2, (BDLT) Compute

uN (xj) =

N∑

k=0

û
(1)
k Lk(xj), j = 0, 1, · · · , N ;

3, (FDLT) Determine {α̂k} from

IN (αuN )(xj) =
N∑

k=0

α̂kLk(xj), j = 0, 1, · · · , N ;



11

4, For j = 0, 1, · · · , N − 2, compute

(Bû)j =
(
IN (αuN ), φj(x)

)
=

2α̂j

2j + 1
− 2α̂j+2

2j + 5
.

Two dimensional case. Given uN =
∑N−2

k,j=0 ûkjϕk,j(x), the calculation

(Aû)kj =
(
IN (β∇uN ),∇ϕk,j

)
, k, j = 0, 1, · · · , N − 2

without explicitly forming the matrix A is presented below.

1, Using (2.1) to determine {ũxkj} and {ũykj} from

∂xuN =
N−2∑

k=0

N−2∑

j=0

ûkjφ
′
k(x)φj(y) =

N∑

k=0

N∑

j=0

ũxkjLk(x)Lj(y),

∂yuN =

N−2∑

k=0

N−2∑

j=0

ûkjφk(x)φ
′
j(y) =

N∑

k=0

N∑

j=0

ũykjLk(x)Lj(y);

2, (BDLT) For m,n = 0, 1, · · · , N , compute

∂xuN (xm, yn) =

N∑

k=0

N∑

j=0

ũxkjLk(xm)Lj(yn),

∂yuN (xm, yn) =

N∑

k=0

N∑

j=0

ũykjLk(xm)Lj(yn);

3, (FDLT) Determine {β̂xkj} and {β̂ykj} from

IN (β∂xuN )(xm, yn) =

N∑

k=0

N∑

j=0

β̂xkjLk(xm)Lj(yn),

IN (β∂yuN )(xm, yn) =

N∑

k=0

N∑

j=0

β̂ykjLk(xm)Lj(yn);

4, For k, j = 0, 1, · · · , N − 2, compute

(Aû)kj =
(
IN (β∂xuN ), φ′k(x)φj(y)

)
+
(
IN (β∂yuN ), φk(x)φ

′
j(y)

)

=
(
IN (β∂xuN ), (−2k − 3)Lk+1(x)φj(y)

)
+
(
IN (β∂yuN ), (−2j − 3)φk(x)Lj+1(y)

)

=
4

2j + 5
β̂xk+1,j+2 −

4

2j + 1
β̂xk+1,j +

4

2k + 5
β̂yk+2,j+1 −

4

2k + 1
β̂yk,j+1.

Similarly, the evaluation

(Bû)kj =
(
IN (αuN ), ϕk,j

)
, k, j = 0, 1, · · · , N − 2

without explicitly forming the matrix B is shown below.

1, Determine {ũ(1)kj } from

uN =

N−2∑

k=0

N−2∑

j=0

ûkjφk(x)φj(y) =

N∑

k=0

N∑

j=0

ũ
(1)
kj Lk(x)Lj(y);
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2, (BDLT) Compute

uN (xm, ym) =

N∑

k=0

N∑

j=0

ũ
(1)
kj Lk(xm)Lj(yn), m, n = 0, 1, · · · , N ;

3, (FDLT) Determine {α̂kj} from

IN (αuN )(xm, yn) =

N∑

k=0

N∑

j=0

α̂kjLk(xm)Lj(yn), m, n = 0, 1, · · · , N ;

4, For k, j = 0, 1, · · · , N − 2, compute

(Bû)kj =
(
IN (αuN ), φk(x)φj(y)

)

=
4α̂k,j

(2k + 1)(2j + 1)
− 4α̂k,j+2

(2k + 1)(2j + 5)
− 4α̂k+2,j

(2k + 5)(2j + 1)
+

4α̂k+2,j+2

(2k + 5)(2j + 5)
.

Three dimensional case. Given uN =
∑N−2

k,j,l=0 ûkjlψk,j,l(x), the evaluation

(Aû)kjl =
(
IN (β∇uN ),∇ψk,j,l

)
, k, j, l = 0, 1, · · · , N − 2

without explicitly forming the matrix A is presented below.

1, Using (2.1) to determine {ũxkjl}, {ũykjl} and {ũzkjl} from

∂xuN =

N−2∑

k=0

N−2∑

j=0

N−2∑

l=0

ûkjlφ
′
k(x)φj(y)φl(z) =

N∑

k=0

N∑

j=0

N∑

l=0

ũxkjlLk(x)Lj(y)Ll(z),

∂yuN =
N−2∑

k=0

N−2∑

j=0

N−2∑

l=0

ûkjlφk(x)φ
′
j(y)φl(z) =

N∑

k=0

N∑

j=0

N∑

l=0

ũykjlLk(x)Lj(y)Ll(z),

∂zuN =

N−2∑

k=0

N−2∑

j=0

N−2∑

l=0

ûkjlφk(x)φj(y)φ
′
l(z) =

N∑

k=0

N∑

j=0

N∑

l=0

ũzkjlLk(x)Lj(y)Ll(z);

2, (BDLT) For m,n, i = 0, 1, · · · , N , compute

∂xuN (xm, yn, zi) =
N∑

k=0

N∑

j=0

N∑

l=0

ũxkjlLk(xm)Lj(yn)Ll(zi),

∂yuN (xm, yn, zi) =

N∑

k=0

N∑

j=0

N∑

l=0

ũykjlLk(xm)Lj(yn)Ll(zi),

∂zuN (xm, yn, zi) =
N∑

k=0

N∑

j=0

N∑

l=0

ũzkjlLk(xm)Lj(yn)Ll(zi);

3, (FDLT) Determine {β̂xkjl}, {β̂ykjl} and {β̂zkjl} from

IN (β∂xuN )(xm, yn, zi) =

N∑

k=0

N∑

j=0

N∑

l=0

β̂xkjlLk(xm)Lj(yn)Ll(zi),
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IN (β∂yuN )(xm, yn, zi) =

N∑

k=0

N∑

j=0

N∑

l=0

β̂ykjlLk(xm)Lj(yn)Ll(zi),

IN (β∂zuN )(xm, yn, zi) =
N∑

k=0

N∑

j=0

N∑

l=0

β̂zkjlLk(xm)Lj(yn)Ll(zi);

4, For k, j, l = 0, 1, · · · , N − 2, compute

(Aû)kjl =
(
IN (β∂xuN ), φ′k(x)φj(y)φl(z)

)
+

(
IN (β∂yuN ), φk(x)φ

′
j(y)φl(z)

)

+
(
IN (β∂zuN ), φk(x)φj(y)φ

′
l(z)

)

=− 8

(2j + 1)(2l + 1)
β̂xk+1,j,l +

8

(2j + 5)(2l + 1)
β̂xk+1,j+2,l

+
8

(2j + 1)(2l + 5)
β̂xk+1,j,l+2 −

8

(2j + 5)(2l + 5)
β̂xk+1,j+2,l+2

− 8

(2k + 1)(2l + 1)
β̂yk,j+1,l +

8

(2k + 5)(2l + 1)
β̂yk+2,j+1,l

+
8

(2k + 1)(2l + 5)
β̂yk,j+1,l+2 −

8

(2k + 5)(2l + 5)
β̂yk+2,j+1,l+2

− 8

(2k + 1)(2j + 1)
β̂zk,j,l+1 +

8

(2k + 5)(2j + 1)
β̂zk+2,j,l+1

+
8

(2k + 1)(2j + 5)
β̂zk,j+2,l+1 −

8

(2k + 5)(2j + 5)
β̂zk+2,j+2,l+1;

Similarly, the computation

(Bû)kjl =
(
IN (αuN ), ψk,j,l

)
, k, j, l = 0, 1, · · · , N − 2

without explicitly forming the matrix B is shown below.

1, Determine {ũ(1)kj } from

uN =

N−2∑

k=0

N−2∑

j=0

N−2∑

l=0

ûkjlφk(x)φj(y)φl(z) =

N∑

k=0

N∑

j=0

N∑

l=0

ũ
(1)
kjlLk(x)Lj(y)Ll(z);

2, (BDLT) Compute

uN (xm, yn, zi) =

N∑

k=0

N∑

j=0

N∑

l=0

ũ
(1)
kjlφk(xm)φj(yn)φl(zi), m, n, i = 0, 1, · · · , N ;

3, (FDLT) Determine {α̂kjl} from

IN (αuN )(xm, yn, zi) =

N∑

k=0

N∑

j=0

N∑

l=0

α̂kjlLk(xm)Lj(yn)Ll(zi), m, n, i = 0, 1, · · · , N ;

4, For k, j, l = 0, 1, · · · , N − 2, compute

(Bû)kjl =
(
IN (αuN ), φk(x)φj(y)φl(z)

)

=− 8α̂k,j,l+2

(2k + 1)(2j + 1)(2l + 5)
+

8α̂k,j,l

(2k + 1)(2j + 1)(2l + 1)
− 8α̂k,j+2,l

(2k + 1)(2j + 5)(2l + 1)
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+
8α̂k,j+2,l+2

(2k + 1)(2j + 5)(2l + 5)
− 8α̂k+2,j,l

(2k + 5)(2j + 1)(2l + 1)
+

8α̂k+2,j+2,l

(2k + 5)(2j + 5)(2l + 1)

+
8α̂k+2,j,l+2

(2k + 5)(2j + 1)(2l + 5)
− 8α̂k+2,j+2,l+2

(2k + 5)(2j + 5)(2l + 5)
.

Note that the main cost in the above procedure of evaluating Aû andBû is the discrete Legendre

transforms in steps 2 and 3. The cost for each of steps 1 and 4 is of O(Nd) flops. In summary, the

total cost for evaluating (A + B)û is dominated by several fast discrete legendre transforms, and

is of O(Nd(logN)2).

5. NUMERICAL RESULTS

In this section, some numerical experiments are provided to demonstrate the effectiveness of

both the proposed preconditioner M and matrix-vector multiplications. Meanwhile, the properties

of matrices from the Legendre-Galerkin methods are numerically studied. In particular, a class

of coefficient functions with high variations are test. In all numerical experiments, the stopping

criterion ε = 10−12. All the numerical results are performed on a 3.30GHz Intel Core i5-4590

desktop computer with 12GB RAM. The code is in MATLAB 2016b.

5.1. Numerical results for fast matrix-vector multiplications. The first test investigates the

time taken to compute one matrix-vector multiplication of a vector by the discretization matrix

resulting from the Legendre-Gelerkin method. The vector is generated randomly by the rand()

command. For this purpose, the numerical experiments are carried out for different coefficients

β(x) and α(x) in one, two and three dimensions.

TABLE 5.1. CPU time for fast multiplication of matrix A ∈ R
(N−1)×(N−1) by

any vector.

β(x) = (2x2 + 1)4

N 320 640 1280 2560 5120 10240

time(s) 0.0157 0.0211 0.0306 0.0514 0.1130 0.2349

β(x) = e2x

N 320 640 1280 2560 5120 10240

time(s) 0.0184 0.0207 0.0301 0.0522 0.1128 0.2376

The average time of 10 tests of matrix-vector multiplications by matrix A is reported in Table

5.1, Table 5.3, Table 5.5, and by matrix B in Table 5.2, Table 5.4, Table 5.6 respectively. It can

be observed that the time scales roughly linearly in the dimension of matrices A and B, which is

consistent with the discussions in section 4.3.

5.2. Numerical results for the number of iterations. The second test is to demonstrate the ef-

fectiveness of proposed preconditioner M . To this end, the iteration steps of the PCG method with

a constant-coefficient preconditioner (PCG-I) and the PCG method with the proposed precondi-

tioner M (PCG-II) are compared. The preconditioner M is constructed by approximating β(x)
and α(x) with a (t1+1)-term Legendre series and a (t2+1)-term Legendre series in each direction
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TABLE 5.2. CPU time for fast multiplication of matrix B ∈ R
(N−1)×(N−1) by

any vector.

α(x) = (2x2 + 1)4

N 320 640 1280 2560 5120 10240

time(s) 0.0178 0.0215 0.0320 0.0529 0.1140 0.2414

α(x) = e2x

N 320 640 1280 2560 5120 10240

time(s) 0.0202 0.0236 0.0300 0.0518 0.1188 0.2404

TABLE 5.3. CPU time for fast multiplication of matrix A ∈ R
(N−1)2×(N−1)2 by

any vector.

β(x) =
(
2x2 + 2y2 + 1

)4

N 16 32 64 128 256 512

time(s) 0.0596 0.2052 0.7670 2.9913 12.2643 50.4063

β(x) = e2(x+y)

N 16 32 64 128 256 512

time(s) 0.0575 0.2077 0.7650 2.9453 12.0757 49.7519

TABLE 5.4. CPU time for fast multiplication of matrix B ∈ R
(N−1)2×(N−1)2 by

any vector.

α(x) =
(
2x2 + 2y2 + 1

)4

N 16 32 64 128 256 512

time(s) 0.0297 0.1046 0.3723 1.5264 6.2888 26.0985

α(x) = e2(x+y)

N 16 32 64 128 256 512

time(s) 0.0281 0.1049 0.3794 1.4797 6.0668 25.1772

respectively. In each iteration of PCG-I, the system with the constant-coefficient preconditioner

as the coefficient matrix is solved by direct methods in O(N) operations for d = 1 [21] and in

O(Nd(logN)d−1) operations for d = 2, 3[21, 26]. Numerical results are presented in Table 5.7,

5.8 and 5.9. Test problems are considered as follows:

Example 1. The problem (3.1) in one dimension takes the following coefficients:

(a) β(x) = (2x2 + 1)4 and α(x) = cos(x).
(b) β(x) = e2x and α(x) = 0.
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TABLE 5.5. CPU time for fast multiplication of matrix A ∈ R
(N−1)3×(N−1)3 by

any vector.

β(x) =
(
2x2 + 2y2 + 2z2 + 1

)4

N 4 8 16 32 64

time(s) 0.0778 0.3989 2.5246 20.4493 166.0483

β(x) = e2(x+y+z)

N 4 8 16 32 64

time(s) 0.0770 0.3982 2.2168 16.3830 132.7023

TABLE 5.6. CPU time for fast multiplication of matrix B ∈ R
(N−1)3×(N−1)3 by

any vector.

α(x) =
(
2x2 + 2y2 + 2z2 + 1

)4

N 4 8 16 32 64

time(s) 0.0251 0.1404 0.7706 6.2419 50.8091

α(x) = e2(x+y+z)

N 4 8 16 32 64

time(s) 0.0255 0.1268 0.7127 5.7871 47.1070

Example 2. The coefficients of problem (3.1) in two dimensions are as follows :

(a) β(x) =
(
2x2 + 2y2 + 1

)4
and α(x) = cos(x+ y).

(b) β(x) = e2(x+y) and α(x) = 0.

Example 3. The coefficients of problem (3.1) in three dimensions are as follows:

(a) β(x) =
(
2x2 + 2y2 + 2z2 + 1

)4
and α(x) = cos(x+ y + z).

(b) β(x) = e2(x+y+z) and α(x) = 0.

Table 5.7 reports the results for the one-dimensional problem. Note that the PCG method with

the proposed preconditioner M exhibits excellent performance in terms of iteration step over the

PCG method with a constant-coefficient preconditioner. Meanwhile, the iteration steps of PCG-II

only increase slightly as the discretization parameter N increases. As β(x) and α(x) are approxi-

mated by a finite number of Legendre series to a higher accuracy, the iteration steps decrease which

indicates that the PCG method converges more quickly. Table 5.8 and 5.9 list the numerical results

for the two- and three-dimensional problems respectively. The iteration steps of PCG-II for the

2-D and 3-D cases behave similarly as the 1-D case. All of the examples show that the proposed

preconditioner M is very effective for problems with large variations in coefficient functions.
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TABLE 5.7. Iteration counts for Example 1.

Example 1 (a)

N 320 640 1280 2560 5120 10240

PCG-I t1=0, t2=0 130 134 138 142 145 148

PCG-II
t1=4, t2=2 16 17 17 17 18 18

t1=6, t2=2 7 8 8 8 8 8

Example 1 (b)

N 320 640 1280 2560 5120 10240

PCG-I t1=0, t2=0 108 110 113 116 119 121

PCG-II
t1=4, t2=0 11 11 11 12 12 12

t1=5, t2=0 7 7 7 8 8 8

TABLE 5.8. Iteration counts for Example 2.

Example 2 (a)

N 40 60 80 100 120

PCG-I t1=0, t2=0 242 281 288 291 292

PCG-II
t1=4, t2=3 15 17 19 21 23

t1=6, t2=3 6 7 9 10 10

Example 2 (b)

N 40 60 80 100 120

PCG-I t1=0, t2=0 545 585 602 610 615

PCG-II
t1=5, t2=0 14 18 22 26 30

t1=7, t2=0 8 11 13 13 13

Example 4. The PCG method with the proposed preconditioner M can be applied to more general

second order problems:

{
−(β1(x)ux)x − (β2(y)uy)y + α(x)u = f, x ∈ Ω = (−1, 1)2,

u|∂Ω = 0,
(5.1)

{
−(β1(x)ux)x − (β2(y)uy)y − (β3(z)uz)z + α(x)u = f, x ∈ Ω = (−1, 1)3,

u|∂Ω = 0.
(5.2)

Consider the problem (5.1) and (5.2) with the following coefficients:

(a) β1(x) = e2x,β2(y) = cos(y) and α(x) = 0.

(b) β1(x) = e2x,β2(y) = cos(y),β3(z) = cos(z) and α(x) = 0.
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TABLE 5.9. Iteration counts for Example 3.

Example 3 (a)

N 12 16 20 24

PCG-I t1=0, t2=0 256 366 436 476

PCG-II
t1=4, t2=3 15 19 22 23

t1=6, t2=3 7 7 8 9

Example 3 (b)

N 12 16 20 24

PCG-I t1=0, t2=0 1484 2186 2564 2744

PCG-II
t1=5, t2=0 7 9 13 16

t1=6, t2=0 5 8 10 12

For problems of the form (3.1), Shen in [21] have pointed out that it is efficient to make a change

of dependent variable v =
√
βu [6] which reduces (3.1) to the following equation:

{
−∆v + p(x)v = q, x ∈ Ω = [−1, 1]d, d = 1, 2, 3,

v|∂Ω = 0,
(5.3)

where p(x) = ∆(
√
β)√
β

+ α(x)
β

and q(x) = f√
β
, then the resulting system from the above prob-

lem (5.3) can be solved by using a preconditioned conjugate gradient method with a constant-

coefficient preconditioner. However, this strategy is limited in the situation such as problem (5.1)

and (5.2). In what follows, both PCG-I and PCG-II are performed for the linear systems rising

from problem (5.1) and (5.2). The preconditioner M is constructed by approximating βj in case

(a) with the t1j-term Legendre polynomials, j=1,2, and βj in case (b) with the t1j-term Legendre

polynomials, j=1,2,3. Numerical results are shown in Table 5.10 and Table 5.11.

TABLE 5.10. Iteration counts for Example 4 (a).

N 40 60 80 100 120

PCG-I t11=0, t12=0 86 89 90 92 92

PCG-II
t11=4, t12=3 10 11 12 12 13

t11=5, t12=3 8 10 12 13 13

Tables 5.10 and 5.11 show that the strategy that using a constant-coefficient problem precondi-

tion variable-coefficient problems is not effective if coefficient functions have large variation over

the domain. Further, it indicates the effectiveness of the proposed preconditioner M .

5.3. Numerical ranks of off-diagonal blocks of matrices in the Legendre-Galerkin method.

A direct spectral method for differential equations with variable coefficients in one dimension was

proposed in [22]. The strategy therein is based on the rank structures of the matrices in Fourier-



19

TABLE 5.11. Iteration counts for Example 4 (b).

N 12 16 20 24

PCG-I t11=0, t12=0, t13=0 84 92 96 98

PCG-II
t11=4, t12=3, t13=3 9 10 10 11

t11=6, t12=3, t13=3 6 6 7 8

and Chebyshev-spectral methods. Numerical ranks of the off-diagonal block (A)|1:N
2
,N
2
+1:end and

(B)|1:N
2
,N
2
+1:end with different variable coefficients are computed. Here A|j,k denotes the (j, k)

entry of A and can be similarly understood when j and k are replaced by index sets, which is the

same as the notation in [22].

TABLE 5.12. Numerical ranks of the off-diagonal block (B)|1:N
2
,N
2
+1:end for

α(x), with different sizes N and tolerances τ .

N 320 640 1280 2560 5120 10240

Numerical rank
(
with α(x) = cos(sin(x))

) τ = 10−6 6 6 2 2 2 2

τ = 10−12 8 8 8 8 8 8

Numerical rank
(
with α(x) = ex

) τ = 10−6 3 3 3 3 3 3

τ = 10−12 5 5 5 5 5 5

Numerical rank
(
with α(x) = 1

100x2+1

) τ = 10−6 2 2 2 2 2 2

τ = 10−12 2 2 2 2 2 2

TABLE 5.13. Numerical ranks of the off-diagonal block (A)|1:N
2
,N
2
+1:end for

β(x), with different sizes N and tolerances τ .

N 320 640 1280 2560 5120 10240

Numerical rank
(
with β(x) = cos(sin(x))

) τ = 10−6 6 6 8 8 8 16

τ = 10−12 115 291 610 1260 2551 5116

Numerical rank
(
with β(x) = ex

) τ = 10−6 4 4 4 4 5 20

τ = 10−12 117 292 610 1260 2549 5116

Numerical rank
(
with β(x) = 1

100x2+1

) τ = 10−6 2 2 2 2 2 2

τ = 10−12 8 65 374 1105 2440 5052

Table 5.12 indicates that the off-diagonal numerical ranks of the matrix B do not increase with

N , indicating the low-rank property for all cases. However, when N doubles, the numerical ranks

of A increase apparently if the accuracy τ increases from 10−6 to 10−12, as is shown in Table

5.13. Therefore the direct spectral solver based on the rank structures of the coefficient matrices is

impracticable for the Legendre-Gelerkin method. Besides, the algorithm of constructing an HSS
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approximation to a dense matrix requires considerable programming effort. Moreover, for two-

and three-dimensional problems, a simple HSS structure is generally not practical.

6. CONCLUSION

An efficient preconditioner M for the PCG method is proposed for the linear system arising

from the Legendre-Galerkin method of second-order elliptic equations. Since the iteration step

of the PCG method increase slightly as the discretization parameter N increases, matrix-vector

multiplications can be evaluated in O(Nd(logN)2) operations, and the complexity of approxi-

mately solving the system with a preconditioner M is of O(T 2dNd), where the preconditioner M
is constructed by using the (T+1)-term Legendre polynomials in each direction to approximate the

variable coefficient functions, the algorithm admits an O(Nd(logN)2) computational complexity

for d = 1, 2, 3 while providing spectral accuracy. Furthermore, numerical results indicate that it is

very robust.
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