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Abstract

In this paper, we formulate and analyse exponential integrations when applied to nonlinear
Schrödinger equations in a normal or highly oscillatory regime. A kind of exponential integra-
tors with energy preservation, optimal convergence and long time near conservations of actions,
momentum and density will be formulated and analysed. To this end, we derive continuous-
stage exponential integrators and show that the integrators can exactly preserve the energy of
Hamiltonian systems. Three practical energy-preserving integrators are presented. It is shown
that these integrators exhibit optimal convergence and have near conservations of actions, mo-
mentum and density over long times. A numerical experiment is carried out to support all the
theoretical results presented in this paper. Some applications of the integrators to other kinds
of ordinary/partial differential equations are also presented.

Keywords: Schrödinger equations; exponential integration; energy-preserving methods; optimal
convergence; modulated Fourier expansion
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1 Introduction

The main aim of this paper is to present the formulation and analysis of exponential integration
when applied to the nonlinear Schrödinger equation (NSE) with periodic boundary conditions (see
[16, 17]) 



iut(t, x) = −1

ε
△u(t, x) + λ|u(t, x)|2u(t, x), (t, x) ∈ [0, T ]× [−π, π]d,

u(0, x) = u0(x), x ∈ [−π, π]d,
(1)

where λ is a parameter and ε determines the regime of the solution. In this paper, we consider
two different regimes: the normal regime ε = 1 and the highly oscillatory regime 0 < ε ≪ 1 which
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means that the solution is highly oscillatory. It is known that the solution of this equation exactly
conserves the following energy

H [u, ū] =
1

2(2π)d

∫

[−π,π]d

(1
ε
|∇u|2 + 1

2
λ|u|4

)
dx, (2)

where | · | denotes the Euclidean norm. Apart from this, the solution also has the conservations of
the momentum

K[u, ū] = i
1

(2π)d

∫

[−π,π]d
(u∇ū− ū∇u)dx, (3)

and of the density or mass

m[u, ū] = i
1

(2π)d

∫

[−π,π]d
|u|2dx. (4)

For the linear Schrödinger equation, its solution exactly conserves the actions

Ij(u, ū) =
1

2
|uj|2 , j ∈ Z

d, (5)

where uj is defined by u(t, x) =
∑

j∈Zd

uj(t)e
i(j·x) with j · x = j1x1 + · · · + jdxd. For nonlinear

equation (1), it has been shown that these actions are approximately conserved over long times
under conditions of small initial data and non-resonance (see [29, 30]). In this paper, only cubic
Schrödinger equation with x ∈ [−π, π]d is considered for brevity, although all our ideas, algorithms
and analysis can be easily extended to the solutions of other NSEs.

As is known, NSEs often arise in a wide range of applications such as in fiber optics, physics,
quantum transport and other applied sciences, and we refer the reader to [23, 40, 43]. In order to
effectively solve NSEs, various numerical methods have been developed and researched in recent
decades. With regard to some related methods of this topic, we refer the reader to exponential-type
integrators (see, e.g. [5, 8, 12, 14, 19, 21, 52]), splitting methods (see, e.g. [1, 9, 17, 22, 30, 45, 50]),
multi-symplectic methods (see, e.g. [5]), Fourier integrators (see, e.g. [24, 42, 47]), waveform
relaxation algorithms (see, e.g. [27]) and other effective methods (see, e.g. [2, 3, 6, 31, 38, 41]).

In the last two decades, structure-preserving algorithms of Hamiltonian partial differential equa-
tions (PDEs) have also been received much attention and we refer to [10, 35, 38, 57]. Amongst the
typical subjects of structure-preserving algorithms are energy-preserving (EP) schemes (see, e.g.
[20, 26, 32, 39, 49, 46, 53, 54]). One important property of EP methods is that they can exactly
preserve the energy of the considered system. On the other hand, long-time conservation properties
of different methods when applied to Hamiltonian systems have been researched in many research
publications (see, e.g. [19, 29, 30, 34, 35]). All the long-time analyses can be achieved by using the
technique of modulated Fourier expansions, which was developed by Hairer and Lubich in [33].

With regard to the existing researches on these two topics for Schrödinger equations, we have
comments as follows:

a) Concerning EP methods for NSEs, although the average vector field method (see [15]) and
Hamiltonian Boundary Value Methods (see [11]) were considered, exponential EP methods have not
been studied well for Schrödinger equations in the literature. Recently, the authors in [55] derived
a kind of exponential collocation methods, but the energy conservation only holds under some
special conditions. Exponential structure-preserving Runge-Kutta methods have been studied in
[10] for first-order ODEs and the methods are shown to exactly preserve conformal symplecticity and
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decay (or growth) rates in linear and quadratic invariants. However, energy-preserving exponential
Runge-Kutta methods have not been considered there. Exponential EP integrators as well as their
convergence have not been established rigorously for NSEs.

b) For the long time analysis of numerical methods applied to NSEs, there have also been many
publications, and we refer the reader to [19, 28, 29, 30]. Unfortunately, however, all the methods
described in these publications are not EP methods. Too little attention has been paid to the long
term analysis of EP methods in other qualitative aspects for solving NSEs in the literature.

The above facts motivate this paper and the main contributions will be made as follows:
A) By using the idea of continuous-stage methods, we formulate a kind of exponential integra-

tion. This formulation will provide novel energy-preserving methods and this will be discussed in
detail in Sect. 2.

B) For the obtained EP methods, we analyze their optimal convergence for the first time. We
prove by using the averaging technique [17], that some schemes exhibit improved error bounds for
highly oscillatory NSEs (Sect. 3).

C) It is also shown that these EP integrators have near conservations of actions, momentum
and density over long times by using modulated Fourier expansions (Sect. 4).

After these steps, a novel kind of exponential integration with energy preservation, optimal
convergence and long time near conservations of actions, momentum and density is obtained. All the
theoretical results presented in this paper will be supported numerically by a numerical experiment
carried out in Sect. 5. The last section concerns some applications of the integrators and some
issues which will be studied further.

2 Energy-preserving exponential integrators

In order to derive energy-preserving exponential integrators, we consider the simple but classical
way: Duhamel formulation of the equation and the discretization of the integral, which has been
used in many publications (see, e.g. [3, 8, 10, 12, 14, 19, 21, 36, 44, 47]). Although this formulation
is not new, the obtained methods will have some advantages and we will make some important
notes in Remark 1 below.

Rewrite the NSE (1) as

∂u

∂t
(t, x) = iAu(t, x) + f(u(t, x)), u(0, x) = u0(x), (6)

where A is the differential operator defined by (Au)(t, x) = 1
ε△u(t, x) and f(u) = −iλ|u|2u. The

Duhamel principle of this system gives

u(tn + h, x) = eihAu(tn, x) + h

∫ 1

0

e(1−ξ)ihAf(u(tn + ξh, x))dξ (7)

with the time stepsize h and tn = nh. Then we define the operator-argument functions ϕj by

ϕ0(itA) := eitA, ϕj(itA) :=

∫ 1

0

ei(1−ξ)tA ξj−1

(j − 1)!
dξ, j = 1, 2, . . . . (8)

We deal with the integral appearing in (7) by the idea of continuous-stage methods and define
the novel integrators as follows.
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Definition 1 (Exponential time integrators.) For solving the NSE (1), a continuous-stage
exponential time integrator is defined as follows:

un+τ (x) = Φτh(un(x)) := Cτ (V)un(x) + h

∫ 1

0

Aτ,σ(V)f(un+σ(x))dσ, 0 ≤ τ ≤ 1, n = 0, 1, . . . ,

(9)
where V = ihA, Cτ (V) and Aτ,σ(V) are bounded operator-argument functions and Cτ (V) is required
to satisfy Ccj (V) = ecjV for j = 0, . . . , s with the fitting nodes cj and s ≥ 1. It is required that
c0 = 0 and cs = 1. The numerical solution after one time stepsize h is obtained by letting τ = 1 in
(9).

Remark 1 Although this exponential time integrator is formulated by the Duhamel formulation
and the discretization of the integral, which is a very simple and classical way, it is important to
note that this scheme has the following advantages.

• At the first sight, for a p-th order exponential integrator, it will produce errors of order O
(
hp

εp

)

when it is used to solving (1) with a time step size h. However, for the scheme (9) presented

above, we will show that some obtained methods exhibit improved error bounds such as O
(
h2

ε

)

or O
(
h3

ε2

)
.

• We have noticed that some novel methods with improved or uniform accuracy have been pre-
sented (see, e.g. [3, 16, 17, 42, 47]). These methods have good even better convergence result
than the methods given in this paper but they do not have energy, actions, momentum and
density conservations. Based on the scheme (9), we will obtain some energy-preserving expo-
nential integrators with improved error bounds. We will also show that this scheme (9) can
provide methods with near conservations of actions, momentum and density over long times.
In other words, the scheme (9) can produce some practical methods with three properties si-
multaneously: energy preservation, improved error bounds and near conservations of actions,
momentum and density.

For the integrator (9), its energy conservation property is shown as follows.

Theorem 1 (Energy-preserving conditions.) Let K = hJM with M =

(
A 0
0 A

)
and

J =

(
0 −1
1 0

)
. If the coefficients of the scheme (9) satisfy





A0,σ(K) = 0,

(eK)⊺MA1,τ (K)K + (C′
τ (K))⊺M = 0,

K⊺(A1,τ (K))⊺MA1,σ(K)K +MA′
τ,σ(K)K + (MA′

σ,τ (K)K)⊺ = 0,

(10)

with C
′

τ (K) = d
dτCτ (K) and A′

τ,σ(K) = ∂
∂τAτ,σ(K), then the integrator (9) exactly preserves the

energy (2), i.e., H [un+1, ūn+1] = H [un, ūn] for n = 0, 1, . . . .

Proof By letting u = p+iq, we rewrite the equation (1) as a infinite-dimensional real Hamiltonian
system

∂y

∂t
= JMy + J∇yU(y) y0(x) =

(
Re(u0(x))
Im(u0(x))

)
, (11)

4



where y =

(
p
q

)
and U(y) = −λ

4 (p
2 + q2)2. The energy of this system accordingly becomes

H(p, q) =
−1

2(2π)d

∫

Td

(
pAp+ qAq − λ

2
(p2 + q2)2

)
dx. (12)

Our continuous-stage exponential integrator (9) applying to (11) gives




Y n+τ (x) = Cτ (K)yn(x) + h

∫ 1

0

Aτ,σ(K)g(Y n+σ(x))dσ, 0 ≤ τ ≤ 1,

yn+1(x) = eKyn(x) + h

∫ 1

0

A1,τ (K)g(Y n+τ (x))dτ,

(13)

where g(y) = J∇yU(y).
Inserting the numerical scheme (13) into (12) yields

H[yn+1] =
−1

2(2π)d

∫

Td

{1

2
(yn)⊺Myn + (yn)⊺(eK)⊺M

∫ 1

0

A1,τ (K)Kg̃(Y n+τ )dτ

+
1

2

∫ 1

0

(
A1,τ (K)Kg̃(Y n+τ )

)⊺
dτM

∫ 1

0

A1,τ (K)Kg̃(Y n+τ )dτ + U(yn+1)
}
dx,

(14)

where g̃ = M−1∇yU(y) and we have used the result (eK)⊺MeK = M (see [44]). It follows from
the first condition of (10) that Y n = yn and Y n+1 = yn+1. Then one arrives at

U(yn+1)− U(yn) =

∫ 1

0

(
∇yU(Y n+τ )

)⊺
dY n+τ

=

∫ 1

0

(
∇yU(Y n+τ )

)⊺
d
(
Cτ (K)yn + h

∫ 1

0

Aτ,σ(K)g(Y n+σ)dσ
)

=(yn)⊺
∫ 1

0

(C′
τ (K))⊺Mg̃(Y n+τ )dτ +

∫ 1

0

∫ 1

0

(
g̃(Y n+τ )

)⊺MA′
τ,σ(K)Kg̃(Y n+σ)dτdσ.

Therefore, using the above results and the second condition of (10), we obtain

H[yn+1]−H[yn]

=
−1

2(2π)d

∫

Td

1

2

∫ 1

0

∫ 1

0

(
g̃(Y n+τ )

)⊺{
(K)⊺(A1,τ (K))⊺MA1,σ(K)K + 2MA′

τ,σ(K)K
}
g̃(Y n+σ)dτdσdx

=
−1

2(2π)d

∫

Td

1

2

∫ 1

0

∫ 1

0

(
g̃(Y n+σ)

)⊺{
(K)⊺(A1,σ(K))⊺MA1,τ (K)K + 2MA′

σ,τ (K)K
}
g̃(Y n+τ )dσdτdx

=
−1

2(2π)d

∫

Td

1

2

∫ 1

0

∫ 1

0

(
g̃(Y n+τ )

)⊺{
(K)⊺(A1,τ (K))⊺MA1,σ(K)K + (2MA′

σ,τ (K)K)⊺
}
g̃(Y n+σ)dτdσdx.

It is clear from the third equality of (10) that

2(H[yn+1]−H[yn]) =
−1

2(2π)d

∫

Td

∫ 1

0

∫ 1

0

(
g̃(Y n+τ )

)⊺{
(K)⊺(A1,τ (K))⊺MA1,σ(K)K

+MA′
σ,τ (K)K + (MA′

σ,τ (K)K)⊺
}
g̃(Y n+σ)dτdσdx

=0.
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The proof is completed.
In what follows, we present three practical energy-preserving algorithms based on the scheme

(9) and on the conditions (10) of energy preservation. The coefficients are obtained by solving the
conditions (10) and we omit the details of calculations for brevity.

Algorithm 1 (Energy-preserving algorithm 1.) For the integrator given in Definition 1, con-
sider s = 1 and define a practical method (9) with the coefficients

Cτ (V) = (1− τ)I + τeV , Aτ,σ(V) = τϕ1(V).

We shall refer to this integrator by EP1.

Algorithm 2 (Energy-preserving algorithm 2.) We choose s = 2 and the coefficients of (9)
are given by

Cτ (V) = (τ−1)(τ−m)
m I + τ(τ−1)

m(m−1)e
mV + τ(m−τ)

m−1 eV , Aτ,σ(V) =
2∑

l=1

2∑
n=1

aln(V)τ lσn−1,

where m is a parameter required that m 6= 0, 1, and

a11(V) = 1+m
m(1−m)ϕ1(mV) + m+1

m−1ϕ1(V) + 1
1−mϕ1((1−m)V),

a22(V) = 2
m(1−m)

(
ϕ1(mV)− ϕ1(V) + ϕ1((1 −m)V)

)
,

a21(V) = (1 + 1/m)ϕ1(V)− 1/mϕ1((1−m)V)− a11(V),
a12(V) = −2/m(ϕ1(V)− ϕ1((1 −m)V))− a22(V).

As an example of this method, we choose m = 1/2 and denoted it by EP2.

Algorithm 3 (Energy-preserving algorithm 3.) As another example, we choose s = 3 and

Cτ (V) =
3∑

k=0

lk(τ)e
ckV , Aτ,σ(V) =

3∑

l=1

3∑

n=1

aln(V)τ lσn−1,

where lj(τ) =
∏

k 6=j
τ−ck
cj−ck

for j = 0, . . . , 3 and

ajj(V) =−
(
c1Cj0Cj1ϕ1,c1 + c2Cj0Cj2ϕ1,c2 + (c2 − c1)Cj1Cj2ϕ1,c2−c1

+ Cj0Cj3ϕ1,1 + (1− c1)Cj1Cj3ϕ1,1−c1 + (1− c2)Cj2Cj3ϕ1,1−c2

)
/j, j = 1, 2, 3,

aj+1,1(V) =−
(
c1Cj1C00ϕ1,c1 + c2Cj2C00ϕ1,c2 + (c2 − c1)Cj2C01ϕ1,c2−c1

+ Cj3C00ϕ1,1 + (1− c1)Cj3C01ϕ1,1−c1 + (1 − c2)Cj3C02ϕ1,1−c2

)
/j, j = 1, 2,

a1,j+1(V) =−
(
c1Cj0C01ϕ1,c1 + c2Cj0C02ϕ1,c2 + (c2 − c1)Cj1C02ϕ1,c2−c1

+ Cj0C03ϕ1,1 + (1− c1)Cj1C03ϕ1,1−c1 + (1 − c2)Cj2C03ϕ1,1−c2

)
/j, j = 1, 2,

a32(V) =−
(
c1C21C10ϕ1,c1 + c2C22C10ϕ1,c2 + (c2 − c1)C22C11ϕ1,c2−c1

+ C23C10ϕ1,1 + (1− c1)C23C11ϕ1,1−c1 + (1− c2)C23C12ϕ1,1−c2

)
,

a23(V) =−
(
c1C20C11ϕ1,c1 + c2C20C12ϕ1,c2 + (c2 − c1)C21C12ϕ1,c2−c1

+ C20C13ϕ1,1 + (1− c1)C21C13ϕ1,1−c1 + (1− c2)C22C13ϕ1,1−c2

)
.
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Here we choose c1 = 1/3, c2 = 1
18 (14 + (71− 9

√
58)

1
3 + (71 + 9

√
58)

1
3 ) and use the notations

ϕ1,1 = ϕ1(V), ϕ1,c1 = ϕ1(c1V), ϕ1,c2 = ϕ1(c2V),
ϕ1,1−c1 = ϕ1((1 − c1)V), ϕ1,1−c2 = ϕ1((1− c2)V), ϕ1,c2−c1 = ϕ1((c2 − c1)V),
C00 = c1+c2+c1c2

−c1c2
, C01 = c2

(−1+c1)c1(c1−c2)
, C02 = −c1

(c1−c2)(−1+c2)c2)
,

C10 = 2(1+c1+c2)
c1c2

, C11 = 2(1+c2)
(−c1+c2

1
)(−c1+c2)

, C12 = 2(1+c1)
(c1−c2)(−1+c2)c2

,

C20 = −3
c1c2

, C21 = 3
(−1+c1)c1(c1−c2)

, C22 = −3
(c1−c2)(−1+c2)c2)

.

We shall refer to this semi-discrete integrator by EP3.

The presented three algorithms EP1-EP3 are obtained by considering the conditions (10) of
energy preservation and this shows that all of them are energy-preserving schemes. It is noted
that some more energy-preserving schemes can be derived from other value of s and (10) and we
omit them for brevity. The main observation of the paper is that some of these energy-preserving
algorithms show optimal error bound and good near conservations of actions, momentum and
density over long times. All of these observations will be illustrated by numerical experiments in
Sect. 5. The next two sections are devoted to the optimal convergence and long time conservations
in actions, momentum and density.

3 Optimal convergence

In this section, we analyze the convergence of the presented three schemes EP1-EP3.

3.1 Notations and auxiliary results

In this part, we present some auxiliary results which will be used in the analysis.
For the exact solution to (1), we require the following assumption.

Assumption 1 It is assumed that the initial value u0(x) is chosen in Hα with the sufficiently large
exponent α > 0. Then the exact solution to (1) is sufficiently regular.

In the analysis of convergence, we will reparametrize the time variable t as

κ := t/ε. (15)

By letting
w(κ, x) := u(t, x), (16)

it is obtained that

wκ(κ, x) =
∂

∂κ
u(t, x) = εut(t, x).

Thus in this section, we consider the following equivalent long-term NSE ([17])
{
iwκ(κ, x) = −△w(κ, x) + ελ|w(κ, x)|2w(κ, x), (κ, x) ∈ [0, T/ε]× [−π, π]d,

w(0, x) = w0(x) := u0(x), x ∈ [−π, π]d,
(17)

which helps to zoom-in to see the different scales between ε and time step, and to see the averaging
effect which will be used in the proof of the convergence. The solution of (17) satisfies the following
properties.
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Theorem 2 (See [13].) For any ε > 0 and w0 ∈ Hα, there exists a constant T > 0 such that, the
long-term NSE (17) has a unique solution which satisfies

w ∈ C0([0, T/ε];Hα)
⋂

C1([0, T/ε];Hα−2)

and
‖w(κ, ·)‖Hα ≤ K

∥∥w0
∥∥
Hα for any κ ∈ [0, T/ε],

where α > d/2 + 2 and K > 1.

Proposition 1 (See [17].) Let f(w) = −iλ|w|2w and the following two estimates hold for this
function.

• For the function f(w) ∈ C∞ : Hα → Hα, there exists a constant M > 0 such that for all
(w, v) ∈ Hα ×Hα, it has the estimates

‖f(w)‖Hα ≤ M, ‖f ′(w)(v)‖Hα ≤ M ‖v‖Hα .

Moreover, similar estimates for higher derivatives also hold. If α is changed into α − 2 > 0,
all the results are still true.

• The function has the Lipschitz estimate

‖f(w)− f(v)‖Hβ ≤ L ‖u− v‖Hβ , (w, v) ∈ Hα−2 ×Hα−2,

where β ∈ [0, α− 2] and L > 0 is a constant.

Proposition 2 (See [21].) Denote by ϕ a bounded function (bounded by C ≥ 0) from iR to C and
then the operator-argument function ϕ(ih∆) is bounded by

‖ϕ(ih∆)‖Hα →֒Hα ≤ C

for all h > 0 and α ≥ 0. For example, the estimate
∥∥eih∆

∥∥
Hα →֒Hα = 1 holds.

3.2 Main result

We first note that for the long term NSE (17), the evolution operator eit∆ is periodic with period
T0 ([17]). For simplicity, it is assumed that T0 = 1 in this section since this can be achieved by a
simple rescaling of time. For simplicity of notations, we shall denote

A . B

for A ≤ CB with a generic constant C > 0 independent of n or the time step size or ε but depends
on T and the constants appeared in Theorem 2 and Propositions 1-2. We use the abbreviation w(κ)
instead of w(κ, x) for brevity. For solving the long term NSE (17), the exponential time integrator
becomes

wn+τ (x) = Φτδκ(wn(x)) := Cτ (W)wn(x) + εδκ

∫ 1

0

Aτ,σ(W)f(wn+σ(x))dσ, 0 ≤ τ ≤ 1, (18)

where δκ := κn+1 − κn is the time step size and W = iδκ∆. Then EP1-EP3 for solving (17) can
also be obtained by considering Algorithms 1-3, respectively. The optimal convergence of these
algorithms is given by the following theorem.
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Theorem 3 (Optimal convergence of algorithms for the long term system.) There exists
a constant N0 > 0 independent of ε, such that for any time step δκ = T0

N with any integer N ≥ N0,
the EP1-EP3 for solving the long term system (17) have the following error bounds for both regimes
ε:

EP1 :
∥∥(Φδκ)n(w0)− w(κn)

∥∥
Hα−4 . δκ2, α > max(d/2 + 2, 4)

EP2 :
∥∥(Φδκ)n(w0)− w(κn)

∥∥
Hα−6 . εδκ2 + δκ3, α > max(d/2 + 2, 6),

EP3 :
∥∥(Φδκ)n(w0)− w(κn)

∥∥
Hα−8 . εδκ3 + δκ4, α > max(d/2 + 2, 8),

(19)

where nδκ ≤ T
ε . When ε = 1, the above results of EP2 and EP3 can be given in the Hα−4-norm

and Hα−6-norm, respectively.

Remark 2 Similarly to [17, 56], the time step δκ = T0/N with some integer N is only a technique
condition for rigorous proof and we only need δκ . 1 in practice, which will be shown numerically
in Sect. 5. In the whole paper, it is noted that estimates are considered in non-negative Sobolev
spaces.

Before we present the proof of Theorem 3, some remarks are given here. By the relation (16)
and by directly comparing (9) and (18), it is clear that for h = εδκ and for all n ≥ 0,

u(tn, x) = w(κnε, x), un(x) = wn(x).

Therefore, the convergence of EP1-EP3 in the original scaling (1) is equivalently presented as
follows.

Corollary 1 (Optimal convergence of algorithms for the original system.) For the meth-
ods EP1-EP3 with a time step size h . ε applied to the original system (1), their error bounds are
given by

EP1 :
∥∥(Φh)n(u0)− u(tn)

∥∥
Hα−4 .

h2

ε2
, α > max(d/2 + 2, 4),

EP2 :
∥∥(Φh)n(u0)− u(tn)

∥∥
Hα−6 .

h2

ε
+

h3

ε3
, α > max(d/2 + 2, 6),

EP3 :
∥∥(Φh)n(u0)− u(tn)

∥∥
Hα−8 .

h3

ε2
+

h4

ε4
, α > max(d/2 + 2, 8),

(20)

where nh ≤ T . The results of EP2 and EP3 can be respectively given in the Hα−4-norm and
Hα−6-norm when ε = 1.

3.3 Proof of Theorem 3

In the light of Proposition 2, it is obtained that the coefficients of integrators EP1-EP3 are bounded
as ‖Cκ(W)‖Hα →֒Hα ≤ 1 and ‖Aτ,σ(W)‖Hα →֒Hα ≤ CA, where the constant CA is independent of
‖W‖Hα →֒Hα . For simplicity, the proof will be given only for EP2 because with little modifications
it can be adapted to EP1 and EP3. We begin with the local errors and stability of EP2.

Lemma 1 (Local errors.) For the local errors

δn+τ := Φτδκ(w(κn))− w(κn + τδκ), for 0 < τ < 1,

δn+1 := Φδκ(w(κn))− w(κn+1),
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there exits δ̂κ0 > 0 independent of ε such that for any 0 < δκ < δ̂κ0, the following bounds hold for
EP2

‖δn+τ‖Hα−2 . δκ, ‖δn+τ‖Hα−4 . δκ2, for 0 < τ < 1,

‖δn+1‖Hα−2 . εδκ2, ‖δn+1‖Hα−4 . εδκ3.

Proof Firstly, according to the scheme (9), the Duhamel principle (7) and the fact that

∥∥Cτ (W)w(κn)− eiτδκ△w(κn)
∥∥
Hα−2 . δκ,

it is clearly that ‖δn+τ‖Hα−2 . δκ. Then it follows from the Duhamel principle (7) that

w(κn + τδκ) =eiτδκ△w(κn) + ετδκϕ1(τW)f(w(κn))

+ ετ2δκ2

∫ 1

0

∫ 1

0

ξe(1−ξ)iτδκ△f ′(w(κn + ζξτδκ))w′(κn + ζξτδκ)dζdξ.

For the integrator (9), we have

Φτδκ(w(κn)) =Cτ (W)w(κn) + εδκ

∫ 1

0

Aτ,σ(W)dσf(w(κn)) + δκ2C1

+ εδκ2

∫ 1

0

∫ 1

0

σAτ,σ(W)f ′(w(κn + ζσδκ))w′(κn + ζσδκ)dζdσ

with ‖C1‖Hα−4 . 1, where we replace Φσδκ(w(κn)) by w(κn + σδκ) in the numerical scheme and
the error brought by this is denoted by δκ2C1. The combination of the above two equalities yields
‖δn+τ‖Hα−4 . δκ2 for 0 < τ < 1, where the inequality

∥∥∥∥
∫ 1

0

Aτ,σ(W)dσ − τϕ1(τW)

∥∥∥∥
Hα−4

. δκ

and the result of Lagrange interpolation have been used.
Then by the same arguments given above and by noticing C1(W) = eiδκ△, the bound of

‖δn+1‖Hα−2 can be derived.
Finally, in the light of

w(κn+1) =eiδκ△w(κn) + εδκϕ1(W)f(w(κn)) + εδκ2ϕ2(W)f ′(w(κn))w
′(κn)

+ εδκ3

∫ 1

0

∫ 1

0

(1− ζ)ξ2e(1−ξ)iδκ△
(
f ′′(w(κn + ζξδκ))(w′(κn + ζξδκ))2

+ f ′(w(κn + ζξδκ))w′′(κn + ζξδκ)
)
dζdξ,

and

Φδκ(w(κn)) =eiδκ△w(κn) + εδκ

∫ 1

0

A1,σ(W)dσf(w(κn)) + εδκ2

∫ 1

0

σA1,σ(W)dσf ′(w(κn))w
′(κn)

+ εδκ3C2 + εδκ3

∫ 1

0

∫ 1

0

(1− ζ)σ2A1,σ(W)
(
f ′′(w(κn + ζσδκ))(w′(κn + ζσδκ))2

+ f ′(w(κn + ζσδκ))w′′(κn + ζσδκ)
)
dζdσ,
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with ‖C2‖Hα−4 . 1, we obtain the bound of ‖δn+1‖Hα−4 as follows

‖δn+1‖Hα−4 .

1∑

j=0

εδκj+1

∥∥∥∥ϕj+1(W)−
∫ 1

0

A1,σ(W)
σj

j!
dσ

∥∥∥∥
Hα−4

+ εδκ3.

Using the results of A1,σ:

∥∥∥∥
∫ 1

0

A1,σ(W)dσ − ϕ1(W)

∥∥∥∥
Hα−4

. 0,

∥∥∥∥
∫ 1

0

A1,σ(W)σdσ − ϕ2(W)

∥∥∥∥
Hα−4

. δκ,

the last local error can be bounded.

Lemma 2 (Stability.) Consider the abbreviations R = 2K
∥∥w0

∥∥
Hα , Hs

R = {w ∈ Hs, ‖w‖Hs ≤
R}. For the numerical solution Φτδκ of EP2 applied to v, w ∈ Hα−2

3R/4, there exist ε0 > 0 and δκ0 > 0

independent of ε such that for any 0 < ε < ε0 and 0 < δκ < δκ0, it holds that Φτδκ(v),Φτδκ(w) ∈
Hα−2

R and

‖Φτδκ(v) − Φτδκ(w)‖Hβ ≤ eετδκLCA‖v − w‖Hβ , 0 ≤ τ ≤ 1,

‖(Φδκ(v)− eiδκ△v)− (Φδκ(w) − eiδκ△w)‖Hβ ≤ εδκLCAe
ετδκLCA‖v − w‖Hβ ,

(21)

where β ∈ [0, α− 2].

Proof Employing the definition of the method, the isometry Cτ (W) and the Lipschitz estimate
of f , one gets

‖Φτδκ(v)− Φτδκ(w)‖Hβ ≤ ‖v − w‖Hβ + εLCA

∫ δκ

0

‖Φσ(v)− Φσ(w)‖Hβdσ,

as long as Φσ(v), Φσ(w) ∈ Hα−2
R for σ ∈ [0, δκ]. Considering τ = 1 and using the Gronwall’s lemma

yields
‖Φδκ(v)− Φδκ(w)‖Hβ ≤ eεδκLCA‖v − w‖Hβ ,

which gives the first statement of (21) by modifying δκ to τδκ. Setting in particular w = 0 implies
Φτδκ(v) ∈ Hα−2

R under the condition that 0 < δκ < δκ0. It is also direct to have

‖(Φδκ(v)− eiδκ△v)− (Φδκ(w) − eiδκ△w)‖Hβ ≤ εδκLCA‖Φτδκ(v)− Φτδκ(w)‖Hβ .

The second result of (21) follows immediately from this inequality and the first statement.
We are now in a position to prove Theorem 3.
Proof of Theorem 3. Proof Boundedness of the method. The stated local errors and

stability imply

∥∥(Φδκ)n(w0)− w(κn)
∥∥
Hα−2 =

∥∥∥∥∥
n∑

l=1

(
(Φδκ)n−lΦδκ(w(κl−1))− (Φδκ)n−l(w(κl))

)
∥∥∥∥∥
Hα−2

≤
n∑

l=1

eε(n−l)δκLCA
∥∥δl

∥∥
Hα−2 ≤ Cεδκ2

n∑

l=1

eε(n−l)δκLCA ≤ C̃
eLTCA − 1

L
δκ.
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Therefore, there exist δ̃κ0 > 0 independent of ε such that 0 < δκ < δ̃κ0, the time-discrete solutions
satisfy (Φδκ)n(w0) ∈ Hα−2

3R/4, where w(κn) ∈ Hα−2
R/2 has been used here. Using a stability estimate

with respect to the Hα−4-norm and considering the local error result in this norm yields

∥∥(Φδκ)n(w0)− w(κn)
∥∥
Hα−4 ≤ C̃

eLTCA − 1

L
δκ2.

Refined local error. For the method (9), we expand the nonlinear function f at Cξw(κn) and
then get

Φδκ(w(κn)) =eiδκ△w(κn) + εδκ

∫ 1

0

A1,ξf(Cξw(κn))dξ

+ ε2δκ2

∫ 1

0

∫ 1

0

A1,ξAξ,σf
′(Cξw(κn))f(Φ

σδκ(w(κn)))dξdσ

+ ε3δκ3

∫ 1

0

∫ 1

0

(1− ζ)A1,ξf
′′
(
Cξw(κn) + ζεδκ

∫ 1

0

Aξ,σf(Φ
σδκ(w(κn)))dσ

)

(∫ 1

0

Aξ,σf(Φ
σδκ(w(κn)))dσ

)2

dξdζ

=eiδκ△w(κn) + εδκ

∫ 1

0

A1,ξf(Cξw(κn))dξ

+ ε2δκ2

∫ 1

0

∫ 1

0

A1,ξAξ,σf
′(Cξw(κn))f(Cσw(κn))dξdσ + ε3δκ3ΞΦ,

with

ΞΦ =

∫ 1

0

∫ 1

0

∫ 1

0

A1,ξAξ,σf
′
(
Cξw(κn))f

′(Cσw(κn) + ζ(Φσδκ(w(κn))− Cσw(κn))
)

( ∫ 1

0

Aσ,ςf(Φ
ςδκ(w(κn)))dς

)
dζdξdσ

+

∫ 1

0

∫ 1

0

(1− ζ)A1,ξf
′′
(
Cξw(κn) + ζεδκ

∫ 1

0

Aξ,σf(Φ
σδκ(w(κn)))dσ

)

( ∫ 1

0

Aξ,σf(Φ
σδκ(w(κn)))dσ

)2

dξdζ.

For the exact solution (7), similarly we obtain its expansion as

w(κn+1) =eiδκ△w(κn) + εδκ

∫ 1

0

e(1−ξ)iδκ△f(eiξδκ△w(κn))dξ

+ ε2δκ2

∫ 1

0

∫ 1

0

ξe(1−ξ)iδκ△f ′(eiξδκ△w(κn))e
(1−σ)iξδκ△f(eiσδκ△w(κn))dξdσ + ε3δκ3Ξw,
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with

Ξw =

∫ 1

0

∫ 1

0

∫ 1

0

e(1−ξ)iδκ△e(1−σ)ξiδκ△f ′(eξiδκ△w(κn))f
′
(
eiσδκ△w(κn)

+ ζ(w(κn + σδκ− eiσδκ△w(κn))
)(∫ 1

0

e(1−ς)iσδκ△f(w(κn + ςδκ))dς
)
dζdξdσ

+

∫ 1

0

∫ 1

0

(1 − ζ)e(1−ξ)iδκ△f ′′
(
eξiδκ△w(κn) + ζεδκ

∫ 1

0

e(1−σ)iξδκ△f(w(κn + σδκ))dσ
)

(∫ 1

0

e(1−σ)iξδκ△f(w(κn + σδκ))dσ
)2

dξdζ.

Then the local error δn+1 can be refined as

δn+1 = εδκΨ(κn) + ε2δκ2∆(κn), (22)

where

Ψ(κn) =

∫ 1

0

A1,ξf(Cξw(κn))dξ −
∫ 1

0

e(1−ξ)iδκ△f(eξiδκ△w(κn))dξ,

∆(κn) =

∫ 1

0

∫ 1

0

A1,ξAξ,σf
′(Cξw(κn))f(Cσw(κn))dξdσ

−
∫ 1

0

∫ 1

0

ξe(1−ξ)iδκ△f ′(eξiδκ△w(κn))e
(1−σ)ξiδκ△f(eiσδκ△w(κn))dξdσ + εδκΞΦ − εδκΞw.

Concerning the previous local errors given in Lemma 1, one has

‖Ψ(κn)‖Hα−4 . δκ2, ‖∆(κn)‖Hα−4 . δκ.

Refined convergence over one period. In this part, we consider convergence over one
period, that is nδκ = T0 = 1. For the global error

(Φδκ)n(w0)− w(κn) =

n∑

l=1

(
(Φδκ)n−lΦδκ(w(κl−1))− (Φδκ)n−l(w(κl))

)
,

we introduce Θδκ
n−l := (Φδκ)n−l − ei(n−l)δκ△ and then rewrite it as

(Φδκ)n(w0)− w(κn) =

n∑

l=1

ei(n−l)δκ△δl

︸ ︷︷ ︸
E1

+

n∑

l=1

(
Θδκ

n−l(Φ
δκ(w(κl−1)))−Θδκ

n−l(w(κl))
)

︸ ︷︷ ︸
E2

.
(23)

For the part E2, we first estimate
∥∥Θδκ

l v −Θδκ
l w

∥∥
Hβ =

∥∥(Φδκ)lv − eilδκ△v − (Φδκ)lw + eilδκ△w
∥∥
Hβ

≤
l∑

k=1

∥∥Θδκ
1 (Φδκ)k−1v −Θδκ

1 (Φδκ)k−1w
∥∥
Hβ ≤ εδκLCAe

ετδκLCA

l∑

k=1

∥∥(Φδκ)k−1v − (Φδκ)k−1w
∥∥
Hβ

≤εδκLCAe
ετδκLCA

l∑

k=1

eε(k−1)δκLCA ‖v − w‖Hβ ≤ εLCAT0e
εLCAT0 ‖v − w‖Hβ .
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Then the following bound holds

‖E2‖Hα−4 ≤ εLCAT0e
εLCAT0

n∑

l=1

∥∥δl
∥∥
Hα−4 . ε2δκ2. (24)

For the part E1, we use the refined local error (22) and then have

E1 =

n∑

l=1

ei(n−l)δκ△εδκΨ(κl−1) +

n∑

l=1

ei(n−l)δκ△ε2δκ2∆(κl−1). (25)

According to (23)-(25) and the following bound

∥∥∥∥∥
n∑

l=1

ei(n−l)δκ△ε2δκ2∆(κl−1)

∥∥∥∥∥
Hα−4

≤ ε2δκ3
n∑

l=1

∥∥∥ei(n−l)δκ△
∥∥∥
Hα−4

. ε2δκ2,

the global error is bounded by

∥∥(Φδκ)n(w0)− w(κn)
∥∥
Hα−4 . εδκ

∥∥∥∥∥
n∑

l=1

ei(n−l)δκ△Ψ(κl−1)

∥∥∥∥∥
Hα−4

+ ε2δκ2. (26)

In what follows, we derive the optimal bound for εδκ
∥∥∑n

l=1 e
i(n−l)δκ△Ψ(κl−1)

∥∥
Hα−4 , which

satisfies

εδκ

∥∥∥∥∥
n∑

l=1

ei(n−l)δκ△Ψ(κl−1)

∥∥∥∥∥
Hα−4

.εδκ

∥∥∥∥∥
n∑

l=1

ei(n−l)δκ△

∫ 1

0

A1,ξf(Cξe
i(l−1)δκ△w0)dξ − ε

n∑

l=1

ei(n−l+1)δκ△

∫ δκ

0

e−iξ△f(eiξ△ei(l−1)δκ△w0)dξ

∥∥∥∥∥
Hα−4

+ ε2δκ2

.

∥∥∥∥∥εδκ
n∑

l=1

e−ilδκ△

∫ 1

0

A1,ξf(Cξe
i(l−1)δκ△w0)dξ − ε

∫ 1

0

e−iξ△f(eiξ△w0)dξ

∥∥∥∥∥
Hα−4

+ ε2δκ2.

Here we used the result
∥∥w(κl−1)− ei(l−1)δκ△w0

∥∥
Hα−4 . ε. We first consider Fourier expansion

Fξ(w) =
∑

k∈Z
ei2kπξF̂k(w) of Fκ(w) := e−iξ△f(eiξ△w), which yields that

∫ 1

0
e−iξ△f(eiξ△w0)dξ =

F̂0(w0). Then let Glδκ(w) = e−ilδκ△
∫ 1

0
A1,ξf(Cξe

ilδκ△w)dξ and the Fourier expansion of Glδκ(w)

is given by Glδκ(w) =
∑

k∈Z
ei2kπlδκĜk(w). Therefore, it is obtained that

εδκ

n∑

l=1

e−ilδκ△

∫ 1

0

A1,ξf(Cξe
i(l−1)δκ△w0)dξ = εδκe−iδκ△

n−1∑

l=0

∑

k∈Z

ei2kπlδκĜk(w)

=εe−iδκ△
∑

k∈Z

( 1

n

n−1∑

l=0

ei2kπlδκĜk(w)
)
= εe−iδκ△

∑

k∈Z

Ĝnk(w).
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Based on the above results, it follows that

εδκ

∥∥∥∥∥
n∑

l=1

ei(n−l)δκ△Ψ(κl−1)

∥∥∥∥∥
Hα−6

.ε
∥∥∥F̂0(w0)− e−iδκ△Ĝ0(w)

∥∥∥
Hα−6

+ ε

∥∥∥∥∥
∑

k∈Z∗

Ĝnk(w)

∥∥∥∥∥
Hα−6

+ ε2δκ2

.ε

∥∥∥∥
∫ 1

0

e−iξ△f(eiξ△w0)dξ −
∫ 1

0

e−iξ△
[
e−iδκ△

∫ 1

0

A1,ξf(Cξe
iξ△w0)dξ

]
dξ

∥∥∥∥
Hα−6

+ εδκ3 + ε2δκ2

.εδκ3 + εδκ3 + ε2δκ2.

(27)

Here Lemma A.1 of [17] and the results A1,ξ and Cξ of EP2 are used to obtain the last two
inequalities, respectively. Finally, combining (26) with (27), we obtain the global error over one
period ∥∥(Φδκ)n(w0)− w(κn)

∥∥
Hα−6 . εδκ3 + ε2δκ2, nδκ = T0. (28)

Refined global error.

For nδκ ≤ T/ε, the global error of EP2 given in (19) can be derived by considering (28) and by
using the same way presented in Sect. 5 of [17].

The whole proof is complete.

Remark 3 It is noted that for EP1, the estimate of (27) is only εδκ2. Therefore, EP1 does not
have optimal convergence.

4 Long time conservations in actions, momentum and den-

sity

In this section, we turn back to the methods applied to the original system (1) and in order to make
the analysis be succinct, we choose λ = 1. For our integrator (9), spectral semi-discretisation (see
[18, 19, 29, 30]) with the points xk = π

M k, k ∈ M is used in space, where M = {−M, . . . ,M − 1}d
and 2M presents the number of internal discretisation points in space. Then the fully discrete
scheme of (9) is

un+τ = Cτ (V )un + h

∫ 1

0

Aτ,σ(V )f(un+σ)dσ, 0 ≤ τ ≤ 1, (29)

where V = ihΩ, Ω = −diag((ωj)j∈M) and f(u) = −iQ(|u|2 u) 1 . Here, ωj =
1
ε |j|

2
= 1

ε (j
2
1+· · ·+j2d)

for j = (j1, . . . , jd) ∈ M are the eigenvalues of the linear part of (1) after spectral semi-discretisation
in space, and the notation Q(v) denotes the trigonometric interpolation of a periodic function
v =

∑
j∈Zd

vje
i(j·x) in the collocation points, i.e., Q(v) =

∑
j∈M

( ∑
l∈Zd

vj+2Ml

)
ei(j·x).

1We still use the notation f in this section without any confusion.
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The following notations are needed in this section which have been used in [19, 29, 30]. For a
sequence k = (kj)j∈M of integers kj and the sequence ω = (ωj)j∈M, denote

‖k‖ =
∑

j∈M

|kj |, k · ω =
∑

j∈M

kjωj , ωσ|k| = Πj∈Mω
σ|kj |
j

for a real σ. Denote by 〈j〉 the unit coordinate vector (0, . . . , 0, 1, 0, . . . , 0)⊺ with the only entry 1
at the |j|-th position.

4.1 Result of near-conservation properties

Theorem 4 (Long time near-conservations.) Consider the small initial data
∥∥u0

∥∥
Hs ≤ ǫ̃ ≪ 1, (30)

and define the set

Rǫ̃,M,h =
{
(j, k) : j = j(k), k 6= 〈j〉,

∣∣∣∣sin
(1
2
h(ωj − k · ω)

)∣∣∣∣ ≤
1

2
ǫ̃1/2h, ‖k‖ ≤ 2N + 2

}
, (31)

where j(k) :=
∑
l∈M

kll mod 2M ∈ M. For the near-resonant indices (j, k) in Rǫ̃,M,h, they are

required such that

sup
(j,k)∈Rǫ̃,M,h

|ωj |s−
d+1

2

ω(s− d+1

2
)|k|

ǫ̃‖k‖+1 ≤ C̃ǫ̃2N+4 (32)

with a constant C̃ independent of ǫ̃. For given N ≥ 1 and s ≥ d + 1, the numerical solution un of
EP1 has the following conservations of actions, momentum and density, respectively

∑

j∈M

|ωj|s
|Ij(un, ūn)− Ij(u

0, ū0)|
ǫ̃2

≤ Cǫ̃
3
2 ,

d∑

r=1

|Kr[u
n, ūn]−Kr[u

0, ū0]|
ǫ̃2

≤ Cǫ̃
3
2 ,

|m[un, ūn]−m[u0, ū0]|
ǫ̃2

≤ Cǫ̃
3
2 ,

where 0 ≤ tn = nh ≤ ǫ̃−N and the constant C depends on C̃, maxj∈M

{
1

|cos( 1
2
hωj)|

}
, the dimension

d,N, s and the norm of the potential but is independent of n, the size of the initial value ǫ̃, the
regime of the solution ε, and the discretisation parameters M and h. Here Kr is referred to the rth
component of K. For the schemes EP1-EP2, if the midpoint rule is used to the integral appearing
in these methods, the above near conservations still hold.

Remark 4 We remark that the method EP3 does not have such near conservations and the reason
will be explained at the end of this section.

Remark 5 It is noted that the authors in [19, 28, 30] analysed the long-time behaviour of expo-
nential integrators, splitting integrators and split-step Fourier method for Schrödinger equations.
However, those methods cannot preserve the energy (12) exactly. We remark that Theorem 4 shows
that our energy-preserving integrators also have a near conservation of actions, momentum and
density over long times.
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4.2 The proof of Theorem 4

The proof makes use of a modulated Fourier expansion [19, 29, 30, 54] in time of the numerical
solution. We will use the following expansion

ũ(t, x) =
∑

‖k‖≤K

zk(ǫ̃t, x)e−i(k·ω)t =
∑

‖k‖≤K

∑

j∈M

zkj (ǫ̃t)e
i(j·x)e−i(k·ω)t

(33)

to describe the numerical solution un at time tn = nh after n time steps, where the functions zk

are termed the modulation functions which evolve on a slow time-scale τ̃ = ǫ̃t. Following [19], these
functions can be assumed to be single spatial waves: zk(ǫ̃t, x) = zkj(k)(ǫ̃t)e

i(j(k)·x), i.e., their Fourier

coefficients zkj vanish for j 6= j(k) with j(k) =
∑
l∈M

kll mod 2M ∈ M.

It is noted that as a standard approach to the study of the long-time behavior of numerical
methods, modulated Fourier expansion is also used in the analysis of [19, 29, 30, 54]. However, in this
paper, there are novel modifications adapted to our integrators, which come from the implicitness
of the integrator and the integral appearing in the integrator. We present the main differences in
the proof. For the similar derivations as those of [19, 29, 30], we skip them in the analysis for
brevity.

4.2.1 Modulation equations

Proposition 3 (Modulation equations.) Define

Lk : = (Lk
2)

−1Lk
1 ,

Lk
1 : = e−i(k·ω)heǫ̃hD − 2 cos(hΩ) + ei(k·ω)he−ǫ̃hD,

Lk
2 : = ϕ1(ihΩ)e

− 1
2
i(k·ω)he

1
2
ǫ̃hD − ϕ1(−ihΩ)e

1
2
i(k·ω)he−

1
2
ǫ̃hD,

where D is the differential operator (see [35]). The modulation equations for the coefficients zkj
appearing in (33) are given by

Lkzkj (ǫ̃t) = −ih
∑

k1+k2−k3=k

∫ 1

0

wk1

j(k1)(ǫ̃t, σ)w
k2

j(k2)(ǫ̃t, σ)w
k3

j(k3)(ǫ̃t, σ)dσ, (34)

where
wk

j(k)(ǫ̃t, σ) = Lk
3(σ)z

k
j(k)(ǫ̃t) (35)

with
Lk
3(σ) := (1− σ)e

1
2
i(k·ω)he−

h
2
ǫ̃D + σe−

1
2
i(k·ω)he

h
2
ǫ̃D.

The initial condition for modulation equations is given by

u0
j =

∑

k

zkj(k)(0). (36)

Proof In order to derive the modulation equations for EP1, a new approach different from [19,
29, 30] is considered here. To this end, we define the operator Lk and it can be expressed in Taylor
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expansions as follows:

L
〈j〉
j =

1

2
ǫ̃h2ωj csc

(1
2
hωj

)
D +

1

48
ǫ̃3h4ωj csc

(1
2
hωj

)
D3 + · · · ,

Lk =ihΩcsc
(1
2
hΩ

)
sin

(1
2
h(−Ω− (k · ω)I)

)

+
1

2
ǫ̃h2Ωcsc

(1
2
hΩ

)
cos

(1
2
h((k · ω)I +Ω)

)
D + · · · .

(37)

Moreover, for the operator Lk
3(σ), we have

Lk
3(
1

2
) = cos

(h(k · ω)
2

)
+

1

2
sin

(h(k · ω)
2

)
(ihǫ̃D) + · · · .

By using the symmetry of the EP1 integrator and

∫ 1

0

f((1− σ)un + σun−1)dσ =

∫ 1

0

f((1− σ)un−1 + σun)dσ,

we can rewrite the scheme of EP1 as 2

un+1 − 2 cos(hΩ)un + un−1

=h
[
ϕ1(V )

∫ 1

0

f((1− σ)un + σun+1)dσ − ϕ1(−V )

∫ 1

0

f((1− σ)un−1 + σun)dσ
]
.

(38)

For the term (1− σ)un + σun+1, we look for a modulated Fourier expansion of the form

ũh(t+
h

2
, x, σ) =

∑

‖k‖≤K

wk
j(k)

(
ǫ̃(t+

h

2
), σ

)
ei(j(k)·x)e−i(k·ω)(t+h

2
),

which leads to

wk
j(k)

(
ǫ̃(t+

h

2
), σ

)
=Lk

3(σ)z
k
j(k)

(
ǫ̃(t+

h

2
)
)
. (39)

Likwise, for (1− σ)un−1 + σun, we have the following modulated Fourier expansion

ũh(t−
h

2
, x, σ) =

∑

‖k‖≤K

wk
j(k)

(
ǫ̃(t− h

2
), σ

)
ei(j(k)·x)e−i(k·ω)(t−h

2
).

Inserting (33) and (39) into (38) yields

ũ(t+ h, x)− 2 cos(hΩ)ũ(t, x) + ũ(t− h, x)

=h
[
ϕ1(V )

∫ 1

0

f
(
ũh(t+

h

2
, x, σ)

)
dσ − ϕ1(−V )

∫ 1

0

f
(
ũh(t−

h

2
, x, σ)

)
dσ

]
,

which can be expressed by operators as

(ϕ1(ihΩ)e
1
2
hD − ϕ1(−ihΩ)e−

1
2
hD)−1(ehD − 2 cos(hΩ) + e−hD)ũ(t, x) = h

∫ 1

0

f(ũh(t, x, σ))dσ.

(40)

2This form has been given in [44] for first-order ODEs.
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On the other hand, we rewrite the nonlinearity f as:

f(u) = −i
∑

‖k‖≤K

∑

j(k)∈M

∑

k1+k2−k3=k

wk1

l1 w
k2

l2 w
k3

l3
ei(j(k)·x)e−i(k·ω)t,

where j(k) = (j(k1) + j(k2) − j(k3)) mod 2M if k = k1 + k2 − k3. On the basis of this fact and
(40), considering the jth Fourier coefficient and comparing the coefficients of e−i(k·ω)t, the result of
this proposition is obtained.

4.2.2 Iterative solution of modulation system

In order to achieve an approximate solution of the modulation system (34)–(36), we introduce an
iterative procedure in this subsection which was used in [19, 30].

For j = j(k) with k 6= 〈j〉, the modulation system takes the form

ihωj csc
(1
2
hωj

)
sin

(1
2
h(ωj − k · ω)

)
zkj(k)(ǫ̃t) = N(w(ǫ̃t))kj(k) +B(z(ǫ̃t))kj(k), (41)

and for j = j(〈j〉), the modulation system becomes

1

2
ǫ̃h2ωj csc

(1
2
hωj

)
ż
〈j〉
j (ǫ̃t) = N(w(ǫ̃t))

〈j〉
j +A(z(ǫ̃t))

〈j〉
j , (42)

where ż
〈j〉
j stands for the derivative with respect to τ̃ = ǫ̃t and we have used the differential operators

B(z(ǫ̃t))kj(k) = −1

2
ǫ̃h2ωj csc

(1
2
hωj

)
cos

(1
2
h(k · ω − ωj)

)
ż(ǫ̃t)kj(k) − . . . ,

A(z(ǫ̃t))
〈j〉
j = − 1

48
ǫ̃3h4ωj csc

(1
2
hωj

)
z(3)(ǫ̃t)

〈j〉
j − . . . ,

and

N(w(ǫ̃t))kj(k) = −ih
∑

k1+k2−k3=k

∫ 1

0

wk1

j(k1)(ǫ̃t, σ)w
k2

j(k2)(ǫ̃t, σ)w
k3

j(k3)(ǫ̃t, σ)dσ.

Denote by [·]l the lth iterate and we choose the starting iterates (l = 0) as [zkj (τ̃ )]
0 = 0 for

k 6= 〈j〉, and [z
〈j〉
j (τ̃ )]0 = u0

j . Then the modulation functions are distinguished as follows.

Definition 2 (Iterative solution of modulation system.)

• For near-resonant indices (j, k) ∈ Rǫ̃,M,h or ‖k‖ > K = 2N + 2, it is set for 0 ≤ ǫ̃t = τ̃ ≤ 1
that [zkj (τ̃ )]

l+1 = 0.

• For near-resonant indices (j, k) = (j, 〈j〉), in the light of (42),
[
z
〈j〉
j

]l+1
is defined as the

solution of the differential equation

[
ż
〈j〉
j (ǫ̃t)

]l+1
=

[ sinc
(
1
2hωj

)

hǫ̃
N(w(ǫ̃t))

〈j〉
j +

sinc
(
1
2hωj

)

hǫ̃
A(z(ǫ̃t))

〈j〉
j

]l

with the initial value
[
z
〈j〉
j (0)

]l+1
= u0

j −
[ ∑
k 6=〈j〉

zkj (0)
]l

and sinc(x) = sin(x)/x.
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• For the remaining indices (j, k) in the set

Lǫ̃,M,h = {(j, k) : j = j(k), k 6= 〈j〉, (j, k) /∈ Rǫ̃,M,h, ‖k‖ ≤ K}, (43)

it follows from (41) that

[
zkj(k)(ǫ̃t)

]l+1
=

[ sinc
(
1
2hωj

)

2i sin
(
1
2h(ωj − k · ω)

)(N(w(ǫ̃t))kj(k) +B(z(ǫ̃t))kj(k)
)]l

. (44)

It is noted that by this iterative construction, the iterated modulation functions [zkj(k)(ǫ̃t)]
l are

polynomials in ǫ̃t of degree bounded in terms of the number of iterations l.

4.2.3 Rescaling

Following [19, 30], this subsection rescales and splits the modulation functions in order to make
good use of the powers of ǫ̃. By letting

[[k]] =

{
max(2, (‖k‖+ 1)/2), k 6= 〈j〉,
(‖k‖+ 1)/2 = 1, k = 〈j〉,

we split the functions zkj into two parts zkj = ǫ̃[[k]]akj + ǫ̃[[k]]bkj , where akj denotes the “diagonal”

entries (i.e., akj 6= 0 only for k = 〈j〉) and bkj presents the “off-diagonal” entries (i.e., bkj 6= 0 only for
k 6= 〈j〉). We use the following notations

a = (ak)k = (akj(k)e
i(j(k)·x))k, b = (bk)k = (bkj(k)e

i(j(k)·x))k (45)

and define the operator

(Ωc)kj =





2i sin
(
1
2h(ωj − k · ω)

)

sinc
(
1
2hωj

) ckj , (j, k) ∈ Lǫ̃,M,h,

ǫ̃
1
2hckj , else.

(46)

Furthermore, we rescale the non-linearity N(w) by

F(v)kj = ǫ̃−max([[k]],2)N(w), (47)

where v = (vk)k is defined by vk = ǫ̃−[[k]]wk = ǫ̃−[[k]]wk
j(k)e

i(j(k)·x).
We are now in a position to rewrite the iteration from the previous subsection in these rescaled

variables.

Proposition 4 (Rescaling.) Using the above rescaled variables, the iteration given by Definition
2 can be formulated as

[
bkj
]l+1

=
[
(Ω−1B(b))kj

]l
+
[
(Ω−1F(v))kj

]l
, (j, k) ∈ Lǫ̃,M,h,

[
ȧ
〈j〉
j

]l+1
=

sinc(12hωj)

hǫ̃

[
(A(a))

〈j〉
j

]l
+

sinc(12hωj)

h

[
(F(v))

〈j〉
j

]l
,

[
a
〈j〉
j (0)

]l+1
= ǫ̃−1u0

j −
[ ∑

k 6=〈j〉

ǫ̃[[k]]−1bkj (0)
]l
,

(48)
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where [vkj ]
l = ǫ̃−[[k]][wk

j ]
l defined by (35).

Another rescaling of the variables will be used in this section

âkj =
∣∣∣ω 2s−d−1

4
|k|
∣∣∣ akj , b̂kj =

∣∣∣ω 2s−d−1

4
|k|
∣∣∣ bkj , v̂kj =

∣∣∣ω 2s−d−1

4
|k|
∣∣∣ vkj .

For these rescaled variables, the iteration for b̂ becomes

[
b̂kj
]l+1

=
[
(Ω−1B(b̂))kj

]l
+
[
(Ω−1F̂(v̂))kj

]l
, (j, k) ∈ Lǫ̃,M,h,

where F̂(v̂)kj =
∣∣∣ω 2s−d−1

4
|k|
∣∣∣F(v)kj .

4.2.4 Size of the iterated modulation functions

In this subsection, we will control the size of the iterated modulation functions. The norm |||z|||2s =∑
j

|ωj|s
(∑

k

∣∣zkj
∣∣ )2 (see, e.g. [19]) will be used in the rest of this paper.

Before presenting the size of the iterated modulation functions, we first need to estimate the
bounds of the operator Ω (46) and the non-linearity F (47).

Proposition 5 (Bounds of the operator Ω and the non-linearity F.) The following bounds
hold

|||Ω−1v|||s ≤ ǫ̃−
1
2h−1|||v|||s, |||F(v)|||s ≤ Cǫ̃h|||v̌|||3s,

|||F(v1)− F(v2)|||s ≤ Cǫ̃h|||v̌1 − v̌2|||s max(|||v̌1|||s, |||v̌2|||s)2,
(49)

where v̌ = sup0≤σ≤1{v(τ̃ , σ)} and the constant C is independent of ǫ̃ but depends on d, s, and V .

The same estimates are ture for v̂, F̂ and ||| · ||| d+1

2

instead of v,F and ||| · |||s, respectively.

Proof The proof is given in Appendix I.
We next consider the iterated modulation functions given in (45). Their sizes are controlled by

the following result.

Proposition 6 (Size of the iterated modulation functions.) For 0 ≤ τ̃ = ǫ̃t ≤ 1 and for all
l ≥ 0, it is true that

|||
[
a(τ̃ )

]l|||s ≤ C, |||
[
a(n)(τ̃ )

]l|||s ≤ Cǫ̃, for n ≥ 1,

|||
[
b(n)(τ̃ )

]l|||s ≤ Cǫ̃
1
2 , for n ≥ 0,

(50)

where the constant C depends only on C0, d, n, s and the norm of V . For â and b̂ instead of a and
b, the same estimates are true if ||| · |||s is replaced by ||| · ||| d+1

2

. It follows from these bounds that

the modulated Fourier expansion of the numerical scheme ũ is bounded by

‖ũ(t, ·)‖s ≤ Cǫ̃ (51)

and its coefficients z are controlled by

∑

j∈M

|ωj|s
∣∣∣z〈j〉j

∣∣∣
2

≤ Cǫ̃2,
∑

j∈M

|ωj |s
( ∑

k 6=〈j〉

∣∣zkj
∣∣ )2 ≤ Cǫ̃5. (52)

Proof The proof is given in Appendix II.
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4.2.5 Defect of the iterated modulation functions

After l iterations, the defect in the modulation system (44) with the initial value (36) has the form

[
dkj

]l
=

[
ihωj csc

(1
2
hωj

)
sin

(1
2
h(ωj − k · ω)

)
zkj −B(z)kj −N(w)kj

]l
,

[
d̃
〈j〉
j (0)

]l
= u0

j −
[∑

k

zkj(k)(0)
]l
.

(53)

Clearly, it can be decomposed into four parts:
[
dkj

]l
=

[
ekj + fk

j + gkj + ḣk
j

]l
, where [ekj ]

l = 0 for

(j, k) ∈ Lǫ̃,M,h, [f
k
j ]

l = 0 for non-near resonant indices (j, k) ∈ Rǫ̃,M,h, [ḣ
k
j ]

l = 0 for k 6= 〈j〉, and
[gkj ]

l = 0 for ‖k‖ ≤ K. The size of each part can be estimated as follows.

Proposition 7 (Defect of the iterated modulation functions.) For all l ≥ 0 and for 0 ≤ τ̃ =
ǫ̃t ≤ 1, it is true that

|||[f(τ̃ )]l|||s ≤ Cǫ̃N+3h, |||[g(τ̃ )]l|||s ≤ Cǫ̃N+3h,

|||[e(τ̃ )]l|||s ≤ Cǫ̃
p+4

2 h, |||[ḣ(τ̃ )]l|||s ≤ Cǫ̃
p+4

2 h,

|||[d̃(0)]l|||s ≤ Cǫ̃
p+2

2 h,

(54)

where the constant C depends on C0, d, p, s and the norm of V . We have the same estimates for ê

and ĥ instead of e and h provided ||| · |||s is replaced by ||| · ||| d+1

2

.

Proof The proof is given in Appendix III.

4.2.6 The numerical solution on short time intervals

In this subsection, the size of the numerical solution un on a short time interval of length ǫ̃ is studied.
It is noted that since the considered integrator is implicit, fixed point arguments are considered for
EP1 and we rewrite it as the following scheme

Un+1 = eV un + hϕ1(V )

∫ 1

0

f((1− σ)un + σUn+1)dσ,

un+1 = eV un + hϕ1(V )

∫ 1

0

f((1− σ)un + σUn+1)dσ.

(55)

Proposition 8 (The numerical solution on short time intervals.) For 0 ≤ tn = nh ≤ ǫ̃−1

with a sufficiently small ǫ̃, it is obtained that ||un||s ≤ 2ǫ̃.

Proof This result is proved by induction on n that

||un||s ≤ ǫ̃+ 125Cnhǫ̃3 for 0 ≤ nh ≤ ǫ̃−1 (56)

and by letting ǫ̃ be sufficiently small compared to C.
For n = 0 the estimate (56) is clear by considering (30). For n > 0, it follows from the definition

of the integrator that

‖un‖s ≤
∥∥un−1

∥∥
s
+ h

∥∥∥∥
∫ 1

0

f((1− σ)un−1 + σUn)dσ

∥∥∥∥
s

≤
∥∥un−1

∥∥
s
+ h

( ∥∥un−1
∥∥
s
+ ‖Un‖s

)3
,

(57)
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where (4.9) of [19] is used and Un is a fixed point of

G : U → eV un−1 + hϕ1(V )

∫ 1

0

f((1− σ)un−1 + σU)dσ.

For 0 ≤ nh ≤ ǫ̃−1, since
∥∥un−1

∥∥
s
≤ 2ǫ̃ ≤ 3ǫ̃, the function G maps the ball {U : ‖U‖s ≤ 3ǫ̃} to itself.

Furthermore, using (4.11) in [19], we obtain

∥∥∥∥hϕ1(V )

∫ 1

0

f((1− σ)un−1 + σU)dσ − hϕ1(V )

∫ 1

0

f((1− σ)un−1 + σŨ)dσ

∥∥∥∥
s

≤3Cmax
( ∥∥un−1

∥∥
s
+ ‖U‖s ,

∥∥un−1
∥∥
s
+
∥∥∥Ũ

∥∥∥
s

)2 ∥∥∥U − Ũ
∥∥∥
s
.

This shows that the map G has a Lipschitz constant smaller than one for sufficiently small ǫ̃ in
the norm ‖·‖s on the ball {U : ‖U‖s ≤ 3ǫ̃}. In view of the Banach fixed point theorem, one
has ||Un||s ≤ 3ǫ̃ for the fixed point Un of G. Therefore, (56) can be obtained by the induction
hypothesis applied to (57).

4.2.7 The error between the modulated Fourier expansion and the numerical solution

This subsection pays attention to the error un − ũ(t, x) between the numerical solution un and the
modulated Fourier expansion

ũ(t, x) =
∑

k

[zkj(k)(ǫ̃t)]
Lei(j·x)e−i(k·ω)t,

where the iterated modulation functions zkj = [zkj ]
L after L := 2N + 2 iterations replace the exact

solution of the modulation system which is not available in fact. For brevity, the index L in the
following analysis is omitted.

Proposition 9 (The error between the modulated Fourier expansion and the numerical
solution.) For 0 ≤ tn = nh ≤ ǫ̃−1, it is obtained that

||un − ũ(tn, x)||s ≤ Cǫ̃N+2 (58)

for ǫ̃ sufficiently small compared to d, s and the norm of the potential V .

Proof As stated in the previous subsection, fixed point arguments are employed. By the definition
of the modulation system (34)-(35) and fixed point arguments, it is arrived at that

ũ(tn, x) = eV ũ(tn−1, x) + hϕ1(V )

∫ 1

0

f((1 − σ)ũ(tn−1, x) + σŨ(tn, x))dσ + δ(tn, x)

with the defect δ(t, x) =
∑
k

dkj(k)(ǫ̃t)e
i(j·x)e−i(k·ω)(t+h). Here we have the following result

(1− σ)ũ(tn−1, x) + σŨ(tn, x) =
∑

‖k‖≤K

wk
j(k)

(
ǫ̃(t+

h

2
), σ

)
ei(j(k)·x)e−i(k·ω)(t+h

2
).
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It follows from Proposition 7 that ||δ(t, x)||s ≤ Chǫ̃N+3 for 0 ≤ t ≤ ǫ̃−1, where the constant C
depends on C0, d,N, s and the norm of the potential V .

• Proof of the difference Un − Ũ(tn, x).
For the solution Un appearing in the numerical method (55), we first examine the difference

Un − Ũ(tn, x). By (34)-(35) and (53), Ũ(tn, x) is a fixed point of

G̃ : Ũ → eV ũ(tn−1, x) + hϕ1(V )

∫ 1

0

f((1 − σ)ũ(tn−1, x) + σŨ )dσ + δ(tn−1, x).

Obviously, it follows from the proof of Proposition 8 that the fixed point iteration [U ]l =
G([U ]l−1), [U ]0 = eV un−1 converges in the norm ‖·‖s to Un and is bounded in this norm by 3ǫ̃. In

what follows, we study the error between [U ]l and Ũ = Ũ(tn, x), i.e., [U ]l − Ũ , for l = 0, . . . ,.
On noticing the fact ||Ũ ||s ≤ Cǫ̃ by Proposition 6 and the property (4.9) of [19], we obtain the

estimate of the defect for l = 0
∥∥∥[U ]0 − Ũ

∥∥∥
s
=

∥∥∥eV un−1 − G̃(Ũ)
∥∥∥
s

≤
∥∥un−1 − ũ(tn−1, x)

∥∥
s
+ h

∥∥∥∥
∫ 1

0

f((1− σ)ũ(tn−1, x) + σŨ)dσ

∥∥∥∥
s

+ ‖δ(tn−1, x)‖s

≤
∥∥un−1 − ũ(tn−1, x)

∥∥
s
+ Chǫ̃3 + Chǫ̃N+3.

For l > 0, using (4.11) of [19] gives that
∥∥∥[U ]l − Ũ

∥∥∥
s
=

∥∥∥G([U ]l−1)− G̃(Ũ)
∥∥∥
s

≤
∥∥un−1 − ũ(tn−1, x)

∥∥
s
+ Chǫ̃2

∥∥∥[U ]l−1 − Ũ
∥∥∥
s
+ Chǫ̃N+3

with a constant C independent of l. This leads to a recursion on l as follows

∥∥∥[U ]l − Ũ
∥∥∥
s
≤

( ∥∥un−1 − ũ(tn−1, x)
∥∥
s
+ Chǫ̃N+3

) l∑

j=0

(Chǫ̃2)j + Chǫ̃3(Chǫ̃2)l.

Considering l → ∞ and Chǫ̃2 ≤ 1
2 implies

∥∥∥Un − Ũ(tn, x)
∥∥∥
s
≤ 2 ‖un − ũ(tn, x)‖s + 2Chǫ̃N+3. (59)

• Proof of the difference un − ũ(tn, x).
We are now in a position to consider un − ũ(tn, x). When n > 0, using (4.11) of [19] gives

‖un − ũ(tn, x)‖s ≤
∥∥un−1 − ũ(tn−1, x)

∥∥
s
+ Chǫ̃2

∥∥∥Un − Ũ(tn, x)
∥∥∥
s
+ Chǫ̃N+3.

Considering again the result (59), we have by induction on n

‖un − ũ(tn, x)‖s ≤ (1 + 2Chǫ̃2)n
(
Cnhǫ̃N+3 +

∥∥u0 − ũ(0, x)
∥∥
s

)
. (60)

On the other hand, by Proposition 7 with the defect d̃ in the initial condition, we have
∥∥u0 − ũ(0, x)

∥∥
s
≤

|||[d̃(0)]n|||s ≤ Cǫ̃N+3. This result together with (60) guarantees the desired result if ǫ̃ is sufficiently
small.
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4.2.8 Almost invariants close to the actions

In what follows, we show an invariant of the modulation system and its relationship with the
actions.

Proposition 10 (Almost invariant.) There exits ǫ̃J〈j〉(τ̃ ) such that

∑

j∈M

|ωj |s
∣∣∣∣
d

dτ̃
J〈j〉(τ̃ )

∣∣∣∣ ≤ Chǫ̃N+3,

where τ̃ ≤ 1 and C depends on maxj∈M

{
1

|cos( 1
2
hωj)|

}
. Moreover, it is true that

J〈j〉(τ̃ ) =
1

2

∣∣∣z〈j〉j (τ̃ )
∣∣∣
2

+O
(
hǫ̃2

)
.

Proof Let

U(w) =
∑

k1+k2−k3−k4=0

1

(2π)d

∫

[−π,π]d

∫ 1

0

wk1

wk2

wk3wk4dσdx.

From the above analysis, we can write the defect formula dk as

L̃kzk = −ih
∑

k1+k2−k3=k

∫ 1

0

wk1

j(k1)w
k2

j(k2)w
k3

j(k3)dσ + dk. (61)

Here we use L̃k to denote the truncation of the operator Lk after the ǫ̃N term. The transformation
wk → ei(k·µ)θwk for real sequences µ = (µl)l≥0 and θ ∈ R and the choice of k = 〈j〉 leaves U
invariant

0 = h
d

dθ
|θ=0 U

(
(ei(〈j〉·µ)θw〈j〉)〈j〉

)

=− 4hRe
(∑

j

i(〈j〉 · µ)w〈j〉
j

∑

k1+k2−k3=〈j〉

∫ 1

0

wk1

j(k1)w
k2

j(k2)w
k3

j(k3)dσ
)

=4Re
(∑

j

(〈j〉 · µ)w〈j〉
j

(
L̃〈j〉z

〈j〉
j − d

〈j〉
j

))

=4Re
(∑

j

(〈j〉 · µ)L〈j〉
3 (σ)z

〈j〉
j

(
L̃〈j〉z

〈j〉
j − d

〈j〉
j

))
.

Since the right-hand side is independent of σ, we choose σ = 1/2 in the following analysis. With
the above formula, we have

4Re
∑

j

(〈j〉 · µ)L〈j〉
3 (1/2)z

〈j〉
j L̃〈j〉z

〈j〉
j = 4Re

∑

j

(〈j〉 · µ)L〈j〉
3 (1/2)z

〈j〉
j d

〈j〉
j . (62)

By the expansions of L
〈j〉
3 (1/2) and L̃〈j〉 and the “magic formulas” on p. 508 of [35], it is known

that the left-hand side of (62) is a total derivative of function ǫ̃Jµ(τ̃ ). Therefore (62) is identical to

ǫ̃
d

dτ̃
Jµ = 4Re

∑

j

(〈j〉 · µ)L〈j〉
3 (1/2)z

〈j〉
j d

〈j〉
j .
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Considering the special case of µ =
sinc( 1

2
hωj)

cos( 1
2
hωj)

〈j〉 and for the first result, it needs to prove that

∑

j∈M

|ωj|s
∣∣∣∣
sinc(12hωj)

cos(12hωj)

∣∣∣∣
∣∣∣L〈j〉

3 (1/2)z
〈j〉
j d

〈j〉
j

∣∣∣ ≤ Chǫ̃N+4.

By the property of L3, we have

∑

j∈M

|ωj |s
∣∣∣∣
sinc(12hωj)

cos(12hωj)

∣∣∣∣
∣∣∣L〈j〉

3 (1/2)z
〈j〉
j d

〈j〉
j

∣∣∣ ≤ C
∑

j∈M

|ωj |s
∣∣∣z〈j〉j

∣∣∣
∣∣∣ḣ〈j〉

j

∣∣∣ .

Taking advantage of Cauchy-Schwarz inequality, one gets

∑

j∈M

|ωj|s
∣∣∣∣
sinc(12hωj)

cos(12hωj)

∣∣∣∣
∣∣∣L〈j〉

3 (1/2)z
〈j〉
j d

〈j〉
j

∣∣∣

≤ C

√∑

j∈M

(
|ωj|

s
2

)2 ∣∣∣z〈j〉j

∣∣∣
2
√∑

j∈M

(
|ωj|

s
2

)2 ∣∣∣ḣ〈j〉
j

∣∣∣
2

≤ C
√
ǫ̃2
√
h2ǫ̃p+4 = Chǫ̃

p
2
+3 = Chǫ̃

L
2
+3,

where the results (52) and (54) are used here. The first statement is immediately obtained by
considering L = 2N + 2.

Then, using the Taylor expansions of L
〈j〉
3 (1/2) and L〈j〉 and the “magic formulas” on p. 508 of

[35] gives the construction of J〈j〉.
After obtaining the almost invariant, its relationship with the actions is derived below.

Proposition 11 (The relationship between the almost invariant and the actions.) It is

true that
∑

j∈M

|ωj |s
∣∣J〈j〉(τ̃ )− Ij(u

n, un)
∣∣ ≤ Cǫ̃

7
2 , where τ̃ ≤ 1.

Proof This result can be obtained by following the proof of Proposition 6 given in [29].

4.2.9 Near-conservation of actions, density and momentum

According to the analysis stated above, we consider the interface between the modulated Fourier
expansions and extend it from short to long time intervals in the same way used in Sects. 4.10-
4.11 of [19]. Then the near conservation of actions given in Theorem 4 is obtained. Meanwhile,
it follows from the results presented in Sect. 6.4 of [30] and Sect. 4.11 of [19] that the long-time
near-conservation of actions implies the long-time near-conservation of density and of momentum.
Therefore, the other statements of Theorem 4 are proved.

This concludes the proof of Theorem 4 for the integrator EP1.

4.2.10 Proof for EP2

Consider the one-point quadrature formula with (c̃1, d̃1) and then the scheme of (29) becomes

un+1 = eV un + hd̃1A1,c̃1(V )f
(
Cc̃1(V )un +Ac̃1,c̃1(V )A−1

1,c̃1
(V )(un+1 − eV un)

)
. (63)
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Methods Energy conservation Optimal convergence Near conservations
EP1

√ × (h2)
√

EP2
√ √

(εh2)
√

EP3
√ √

(εh3) ×

Table 1: Properties of the methods.

In terms of this formula, we can derive the modulation equations for the modulation functions zkj

as Lkzkj (ǫ̃t) = −ih
∑

k1+k2−k3=k

zk
1

j(k1)(ǫ̃t)z
k2

j(k2)(ǫ̃t)z
k3

j(k3)(ǫ̃t) by defining

Lk : =
(
Ac̃1,c̃1A

−1
1,c̃1

(e−i(k·ω)heǫ̃hD − eihΩ) + Cc̃1

)−1
(e−i(k·ω)heǫ̃hD − eihΩ)(d̃1Bc̃1)

−1.

It can be seen that this formula has more concise expression than that of EP1. Then by modify-
ing the nonlinearity and concerning the property of Lk, the analysis given above can be changed
accordingly for EP2.

Remark 6 It is noted that the scheme (63) has been analysed in [19]. Under an assumption on
the coefficient functions of exponential integrator, long term conservations have been derived there.
However, for the coefficients Ac̃1,c̃1(V ), A1,c̃1(V ) of EP2, they do not satisfy that assumption required
in [19]. Thus the part 4.2 of the proof given in [19] cannot be used for EP2. Therefor we consider
the above approach to proving the result. On the other side, the operator Lk determined by EP3
does not have similar property as (37). Therefore, there is no invariant of the modulation system
and the near conservations are not true for EP3.

5 Numerical experiment

For the algorithms presented in this paper, their properties are summarized in Table 1. In order to
show their advantages, we choose the second-order explicit exponential integrator which is termed
pseudo steady-state approximation which was given in [51] (denoted by EEI) and the fourth-order
explicit exponential Runge–Kutta method which was given in [37] (denoted by IEI4). As a numerical
experiment, we consider the problem with d = 1 and λ = −2 and the pseudospectral method with
64 points. In the practical computations, we apply the three-point Gauss-Legendre’s rule to the
integral in (9) and use a fixed-point iteration with the error tolerance 10−16 and the maximum
number 100 for each iteration. In order to show the obtained methods behave well for different
initial and boundary conditions, we will use various conditions in the experiment.

Energy conservation. The initial value is given by u0(x) = 0.5i + 0.025 cos(µx) and the
periodic boundary condition is u(t, 0) = u(t, L). We consider L = 4

√
2π and integrate this problem

on [0, 100] with h = 1/100 for different ε. The conservation of discretised energy is shown in Figures
1. From these results, it can be seen clearly that the EP integrators EP1-EP3 preserve the energy
with a very good accuracy, which supports the results of Theorem 1.

Convergence. Following [17], u0(x) is chosen as u0(x) = cos(x) + sin(x) and the boundary
condition is u(t, 0) = u(t, 2π). The long term NSE (17) is solved in [0, T/ε] with T = 1 and
h = 1/2i for i = 1, . . . , 6. The global errors of our methods measured in L2 and H1 for different
ε are presented in Figure 2. For comparison, the errors of EEI are also displayed in Figure 2. It
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Figure 1: The relative error of discrete energy (EER) against t.

follows that EP1 only has the global error O(h2) while EP2 has the error bound O(εh2) and EP3
shows O(εh3). This agrees with the results of Theorem 3. It seems here that EP3 has a better
convergence than O(εh3). But after presenting the errors for ε = 1 in Figure 3, it can be observed
that EP3 still shows a third-order convergence.

Near-conservations in other aspects. In order to show the near-conservations in other
aspects, small initial value is required. Following [19, 30], we change the initial value into u0(x) =

0.1
(
x
π − 1

)3( x
π + 1

)2
+ i × 0.1

(
x
π − 1

)3(x
π + 1

)3
and consider the periodic boundary condition

u(t,−π) = u(t, π). The problem is solved on [0, 10000] with h = 1
100 and the relative errors of

density and momentum are shown in Figures 4-5, respectively 3 . It can be observed clearly from
these results that the density and momentum are conserved well by EP1-EP2 but not by EP3 over
long terms, which supports the results stated in Theorem 4.

Based on the numerical results, we can draw the following observations.
1) The energy-preserving methods EP1-EP3 preserve the energy with a very good accuracy for

both regimes of ε, which is much better than the existed exponential integrators EEI and EEI4 (see
Figure 1).

2) For the highly oscillatory regime, the integrators EP2-EP3 show improved error bounds while
EP1 and EEI do not have the optimal convergence (see Figure 2). For the regime ε = 1, EP1-EP3

3The methods show similar conservation of actions and we omit the corresponding numerical results for brevity.
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Systems Replace iA by New f
Hamiltonian system with

H(q, p) = 1
2p

⊺p+ 1
2q

⊺Ωq + U(q)

(
0 I

−Ω 0

) (
0

−∇U(q)

)

Wave equation
utt − a2∆u = g(u)

(
0 I

−a2∆ 0

) (
0

g(u)

)

Damped Helmholtz-Duffing oscillator
q′′ + 2υq′ = −Aq −Bq2 − εq3

(
0 I
0 2υ

) (
0

−Aq −Bq2 − εq3

)

Charged-particle dynamics
in a constant magnetic field

x′′ = B̃x′ + F (x)

(
0 I

0 B̃

) (
0

F (x)

)

First-order ODEs
x′ = 1

εAx + f(x)
1
εA f(x)

Table 2: Some systems which the presented methods can be applied.

show the normal global errors (see Figure 3).
3) The integrators EP1-EP2 have the long term near conservations in the density, momentum

and action but the methods EP3, EEI and EEI4 do not show such long time behaviour (see Figures
4-5).

6 Applications and future issues

This is a preliminary research on the long-time behaviour of energy-preserving exponential integra-
tors and it is noted that the algorithms can be extended to the numerical solutions of the following
equations (see Table 2) by replacing iA and f in (6) with the new ones.

We also note that there are some issues which can be further considered.

• The extensions of the methods as well as their analysis in this paper to the logarithmic
Schrödinger equation ([4]) and time-dependent Schrödinger equation in semiclassical scaling
([43]) will be researched in future.

• The long term analysis of other kinds of energy-preserving integrators in other PDEs such as
Vlasov-Poisson system ([26, 46]) and Maxwell equations will also be considered.

• Another issue for future exploration is the analysis of parareal algorithms of Schrödinger
equations.

Appendix

Appendix I. Proof of Proposition 5

• Proof of the first result.
For the case that (j, k) ∈ Lǫ̃,M,h, we have

∣∣2i sin
(
1
2h(ωj − k · ω)

)∣∣ > ǫ̃
1
2h. Then from this it

follows that

∣∣∣∣
sinc

(
1
2
hωj

)

2i sin
(

1
2
h(ωj−k·ω)

)
∣∣∣∣ ≤ 1

ǫ̃
1
2 h

, which yields |||Ω−1v|||s ≤ ǫ̃−
1
2h−1|||v|||s. For other (j, k),

the statement is obtained by considering the definition of Ω.
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Figure 2: The global error (err) measured in L2 (left) and H1 (right) against the stepsize.
30



10-2 10-1
10-8

10-6

10-4

10-2

100

EP1
EP2
EP3
EEI4
EEI
slope 2
slope 3

10-2 10-1
10-6

10-4

10-2

100

102

EP1
EP2
EP3
EEI4
EEI
slope 2
slope 3

Figure 3: The global error (err) measured in L2 (left) and H1 (right) against the stepsize.
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Figure 4: The relative error of density against t.
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Figure 5: The relative error of momentum against t.
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• Proof of the second result.
Taking into account the result proved in [29] [[k1]] + [[k2]] + [[k3]] ≥ max([[k1]], 2) + 1, one has

|||F(v)|||2s =
∑

j

|ωj |s
(∑

k

ǫ̃−max([[k]],2)

∣∣∣∣∣∣
ih

∑

k1+k2−k3=k

∫ 1

0

ǫ̃[[k
1]]+[[k2]]+[[k3]]vk

1

j(k1)v
k2

j(k2)v
k3

j(k3)dσ

∣∣∣∣∣∣

)2

≤h2ǫ̃2
∑

j

|ωj |s
∑

k1,k2,k3

( ∣∣∣∣
∫ 1

0

vk
1

j(k1)v
k2

j(k2)v
k3

j(k3)dσ

∣∣∣∣
)2

=h2ǫ̃2

∥∥∥∥∥∥
∑

k1,k2,k3

∫ 1

0

vk
1

j(k1)v
k2

j(k2)v
k3

j(k3)dσ

∥∥∥∥∥∥

2

≤ Ch2ǫ̃2(|||v̌|||3s)2.

• Proof of the last result.
According to [29], the following result is true

a1a2a3 − b1b2b3 =
3∑

j=1

2−j(a1 + b1) · · · (aj−1 + bj−1)(aj + bj)(aj+1 · · ·a3 + bj+1 · · · b3).

Then from this result and by a similar calculation to that for the second result, the last statement
is arrived at.

The same calculation is also true for v̂, F̂ and ||| · ||| d+1

2

instead of v,F and ||| · |||s, respectively.

Appendix II. Proof of Proposition 6

• Proof of (50).
In the light of the choice of the initial iteration, we have

|||
[
a(τ̃ )

]0|||s ≤ C, |||
[
a(n)(τ̃ )

]0|||s = 0 for n ≥ 1,

|||
[
b(n)(τ̃ )

]0|||s = 0 for n ≥ 0.

From the third equality of (48), it follows that

|||
[
a(0)

]l+1|||s =
(∑

j

|ωj |s
∣∣∣
[
a
〈j〉
j (0)

]l+1
∣∣∣
2 )1/2

≤ ǫ̃−1 ‖u(0)‖s + ǫ̃
∥∥∥
[
b(0)

]l∥∥∥
s
.

According to the first equality of (48), we have

|||
[
b(n)

]l+1|||s ≤ |||
[
Ω−1B(b)(n)

]l|||s + |||
[
Ω−1F(vl)

](n)|||s
≤ ǫ̃

1
2 |||

[
b(n+1)

]l|||s + h−1ǫ̃−
1
2 |||

[
F(vl)

](n)|||s.
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With the second equality of (48), it is deduced that

|||
[
a(n+1)

]l+1|||s ≤ |||
[ sinc(12hΩ)

hǫ̃
A(a)(n)

]l|||s + |||
[sinc(12hΩ)

hǫ̃
F(vl)

](n)|||s

≤ h2ǫ̃2|||
[
a(n+2)

]l|||s + h−1|||
[
F(vl)

](n)|||s, l = 0, 1, . . . ,

|||
[
a
]l+1|||s ≤ |||

[
a(0)

]l+1|||s + sup
τ̃

|||
[
ȧ(τ̃ )

]l+1|||s.

By Proposition 5 and the same analysis as that described in Section 3.6 of [29], the result (50) can
be proved.

• Proof of (51).
For ũ = [ũ]L =

∑
k

[zk]Le−i(k·ω)t with L the number of ending iterate and by the same calculations

as those presented in [29], one has

‖ũ‖2s =
∑

j

|ωj|s
∣∣∣∣∣
∑

k

[zkj ]
Le−i(k·ω)t

∣∣∣∣∣

2

≤ ǫ̃2
∑

j

|ωj |s
(∑

k

∣∣[ckj ]L
∣∣
)2

= ǫ̃2|||[c]L|||2s,

which proves (51).
• Proof of (52).

We now turn to the size of the variables â and b̂ in the second rescaling, and we have |||â||| d+1

2

=

|||a|||s, |||b̂||| d+1

2

= |||b|||s. Then from this fact and the above analysis, (52) is obtained.

Appendix III. Proof of Proposition 7

• Proof of the first result.
In order to estimate f , the nonresonance condition (32) and Proposition 5 are considered. Under

these conditions and for l = 0, . . . , L, one has

|||[f ]l|||2s =
∑

j

|ωj |s
( ∑

k:(j,k)∈Rǫ̃,M,h

∣∣[fk
j ]

l
∣∣
)2

=
∑

j

|ωj |
d+1

2

( ∑

k:(j,k)∈Rǫ̃,M,h

|ωj|
2s−d−1

4 ǫ̃max([[k]],2)

∣∣∣ω 2s−d−1

4
|k|
∣∣∣

∣∣∣[F̂(û)kj ]l
∣∣∣
)2

≤|||[[F̂(û)]n|||2d+1

2

sup
(j,k)∈Rǫ̃,M,h

( |ωj |
2s−d−1

4

∣∣∣ω 2s−d−1

4
|k|
∣∣∣
ǫ̃[[k]]

)2

≤C(hǫ̃)2ǫ̃2N+4 = Ch2(ǫ̃N+3)2.

• Proof of the second result.
From ‖k‖ > K, it follows that [[k]] ≥ (K + 2)/2 = N + 2. With the same arguments as those
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given in the proof of Proposition 5, we obtain
∥∥∥∥∥∥

∑

‖k‖>K

[gk]l

∥∥∥∥∥∥
s

=

∥∥∥∥∥∥
∑

‖k‖>K

ǫ̃[[k]]
[
ǫ̃−[[k]]

∑

k1+k2−k3=k

∫ 1

0

ǫ̃[[k
1]]+[[k2]]+[[k3]]wk1

j(k1)w
k2

j(k2)w
k3

j(k3)dσ
]
∥∥∥∥∥∥
s

≤Cǫ̃
K+2

2 hǫ̃ = Cǫ̃N+3h.

• Proof of the third and fourth results.
The off-diagonal part e and the diagonal part ḣ of the defect can be expressed respectively by

[ekj ]
l = ǫ̃[[k]]

(
[(Ωb)kj ]

l − [(Ωb)kj ]
l+1

)
, [hk

j ]
l = ǫ̃3/2

(
[(Ωa)kj ]

l − [(Ωa)kj ]
l+1

)
.

Using a Lipschitz estimate given in Proposition 5 for the nonlinearity and by an analysis of the
iteration used as in Sect. 5.7 of [30], it is obtained that

|||[h(τ̃ )]l|||s ≤ Cǫ̃
p+ 4

2
h, |||[h(n)(τ̃ )]l|||s ≤ Cǫ̃

p+ 4

2
h, l ≥ 1,

|||[e(n)(τ̃ )]l|||s ≤ Cǫ̃
p+ 4

2
h, l ≥ 0

for 0 ≤ τ̃ ≤ 1.
• Proof of the last result.
The last result can follows from the same arguments as the description of (29) in [30].
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[17] Ph. Chartier, F. Méhats, M. Thalhammer, and Y. Zhang, Improved error estimates
for splitting methods applied to nonlinear Schrödinger equations, Math. Comp., 85 (2016), pp.
2863-2885.

[18] J.B. Chen and M.Z. Qin, Multisymplectic Fourier pseudospectral method for the nonlinear
Schrödinger equation, Electron. Trans. Numer. Anal., 12 (2001), pp. 193-204.

36



[19] D. Cohen and L. Gauckler, One-stage exponential integrators for nonlinear Schrödinger
equations over long times, BIT, 52 (2012), pp. 877–903.

[20] M. Dahlby and B. Owren, A general framework for deriving integral preserving numerical
methods for PDEs, SIAM J. Sci. Comput., 33 (2011), pp. 2318–2340.

[21] G. Dujardin, Exponential Runge-Kutta methods for the Schrödinger equation, Appl. Numer.
Math., 59 (2009), pp. 1839–1857.

[22] J. Eilinghoff, R. Schnaubelt, and K. Schratz, Fractional error estimates of splitting
schemes for the nonlinear Schrödinger equation, J. Math. Anal. Appl. 442 (2016), pp. 740–760.

[23] E. Faou, Geometric Numerical Integration and Schrödinger Equations, European Math. Soc.
Publishing House, Zürich, 2012.
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