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Abstract The aim of this paper is to study the numerical approximation of an
axisymmetric time-harmonic eddy current problem involving an in-plane current.
The analysis of the problem restricts to the conductor. The source of the problem
is given in terms of boundary data currents and/or voltage drops defined in the
so-called electric ports, which are parts of the boundary connected to exterior
sources. This leads to an elliptic problem written in terms of the magnetic field with
nonlocal boundary conditions. First, we prove the existence and uniqueness of the
solution for a weak formulation written in terms of Sobolev spaces with appropriate
weights. We show that the magnetic field is not the most appropriate variable
to impose the boundary conditions when Lagrangian finite elements are used to
discretize the problem. We propose an alternative weak formulation of the problem
which allows us to avoid this drawback. We compute the numerical solution of the
problem by using Lagrangian finite elements ad hoc modified on the vicinity of the
symmetry axis. We provide a convergence result under rather general conditions.
Moreover, we prove quasi-optimal order error estimates under additional regularity
assumptions. Finally, we report numerical results which allow us to confirm the
theoretical estimates and to assess the performance of the proposed method in
a physical application which is the motivation of this paper: the computation of
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R. Rodŕıguez
CI2MA, Departamento de Ingenieŕıa Matemática, Universidad de Concepción, Concepción,
Chile
E-mail: rodolfo@ing-mat.udec.cl

P. Venegas
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1 Introduction

This paper deals with modeling, mathematical analysis and numerical computation
of an axisymmetric eddy current problem characterized by the fact that, on each
meridional section of a revolution domain, the current density J lies in this section;
namely, vector J is of the form J := Jrer+Jzez, being er and ez the basis vectors
corresponding to radial and axial directions in a cylindrical coordinate system.

This kind of problem arises in several industrial applications where an alternat-
ing current passes through a cylindrical workpiece in contact with some parts of
another piece connected to a external source. We refer the reader to [2] for a met-
allurgical application related to electrodes that carry the current into submerged
arc furnaces; see also [3] for an application related with circular magnetization in
the framework of magnetic particle inspection.

In particular, this paper is motivated by the study of the electromagnetic
behavior of a steel bar submitted to a preforming process called electro-upsetting.
This process, which actually requires a multiphysics model [21,22], consists in
passing a current through a cylindrical bar which is heated by Joule effect and then
to deform it to a particular shape; see, for instance Fig. 1. If the current source
is alternating, the computation of the current distribution in the cylindrical bar
requires the solution of an eddy current model, which can be solved in a meridional
section in terms of a current density that has no azimuthal component. The current
source is usually given in terms of either the total current at some electric ports
of the electro-upsetter connected to a transformer or the voltage drops between
such ports. Thus, the typical configuration is the one presented in Fig. 2.

Fig. 1 Enlarging the diameter at the end of a steel bar submitted to electro-upsetting.

The axisymmetric eddy current model with azimuthal current density (or out
of plane current) has been extensively studied in the literature from modeling,
mathematical and numerical points of view; see, for instance, [5], [25], [12], [8],
[17] and [15]. This problem has a great interest as it governs the electromagnetic
behavior in many applications related to induction heating of cylindrical pieces.
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Fig. 2 Sketch of the axisymmetric setting in an electro-upsetting process. The current density
lies in a meridional section.

In this case, the most popular and computationally efficient formulation is the one
based on the azimuthal component of the magnetic vector potential and this is the
classical option implemented in commercial software. However, the mathematical
and numerical analysis of the eddy current model involving an in-plane current,
which is the topic in this paper, has only been covered in a few papers and it offers
interesting challenges.

An interesting feature of the axisymmetric problem with an in-plane current
is that it can be written in terms of the azimuthal component of the magnetic
field and so it can be formulated in the conducting domain by defining suitable
boundary conditions without the need of considering air around. This advantage
has been exploited from the modeling point of view in a time-harmonic linear
case in [2] and in a transient non-linear case in [3]. Concerning the theoretical
analysis of these models we refer the reader to [7] which deals with the mathe-
matical analysis of the linear time-harmonic model in the framework of a coupled
thermoelectrical analysis and to [4] where the authors address the mathematical
and numerical analysis in a transient non-linear case. Both publications consider
Dirichlet boundary conditions defined from the total current intensity crossing the
domain.

In this paper, we will focus on an axisymmetric formulation of the linear time-
harmonic in-plane eddy current model written in terms of the azimuthal compo-
nent of the magnetic field, Hθ, by considering more general boundary conditions
than those cited above [7,4]. Namely, we will introduce as boundary data currents
and/or voltage drops in the electric ports, which are parts of the boundary con-
nected to exterior sources. We refer the reader to [1, Chapter 8] and [5, Chapter 10]
for a quite complete review of 3D eddy current problems with electric ports on the
boundary. Actually, the model studied in this paper will be similar to that studied
in Section 4 from [9] for a 3D conducting domain, but now assuming cylindrical
symmetry.
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We notice that in order to impose these boundary conditions, a natural un-
known for approximating the formulation will be rHθ instead of Hθ, as in [4].
Although in the continuous problem there is no difference on working with any
one of these unknowns as long as suitable weighted Sobolev spaces are chosen in
each case, in the discrete case there are remarkable differences. Indeed, the un-
known rHθ offers clear advantages for enforcing exactly the currents and voltage
drops which can be imposed by static condensation and by natural source terms
in the weak formulation, respectively.

However, using the unknown rHθ leads to an obvious difficulty when defin-
ing and analyzing the discrete schemes, because the term 1/r that appears in
some integrals introduces singularities at the symmetry axis r = 0. We will spe-
cially focus on how to deal with these singularities to prove convergence results,
in order to be able to provide a theoretical support for a competitive formulation
that can be used in many industrial applications. With this aim, we will exploit
some techniques introduced recently in [23] for the numerical approximation of an
axisymmetric acoustic vibration problem.

We notice that an eddy current formulation in terms of rHθ can also be found in
[6] motivated by the formulation previously introduced in [26]; in these papers, the
unknown rHθ is the natural one to impose non-local source conditions. However,
in these references, the axisymmetric domain does not intersect the axis r = 0 and
currents and voltages on the boundary are not considered. On the other hand,
in-plane current problems with current or voltage data have been studied in the
continuous case in [25, Section 3.2], but only for two-dimensional non-bounded
geometries.

The outline of this paper is as follows: in Section 2 we present the eddy current
model in an axisymmetric setting, obtain a formulation in terms of the azimuthal
component of the magnetic field and prove that the problem is well posed. We
also establish the equivalence between the weak formulations written in terms of
Hθ and in terms of rHθ. In Section 3 we propose a finite element approximation
in terms of rHθ for which we provide a convergence result without assuming any
additional regularity of the solution. Then, we prove a quasi-optimal order error
estimate in case of having some additional regularity of the continuous solution.
In Section 4 we present some numerical experiments that allow us to assess the
performance of the proposed method. First, we solve an academic test with known
analytical solution to validate the order of convergence provided by the theoretical
results. Secondly, we solve an example related to the electric-upsetting, which has
been the main motivation of this work. We end the paper with an appendix,
where we describe an alternative implementation of the discrete problem based on
a mixed formulation that avoids static condensation, which we have used in our
numerical tests. The appendix also includes the proof of the equivalence between
this mixed problem and the discrete problem previously analyzed.

2 The time-harmonic model in an axisymmetric domain with electric
ports

In this section we describe the eddy currents model in an axisymmetric domain
with electric ports. We will see that the cylindrical symmetry allows us to state
the problem only in the conducting part by using suitable boundary conditions.
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Let us assume that Ω̂ is cylindrically symmetric, namely

Ω̂ := {(r, θ, z) : 0 ≤ θ ≤ 2π, (r, z) ∈ Ω} ,

for some bounded subset Ω ⊂ R2 which corresponds to a meridional section of Ω̂.
From now on, we will usê to denote 3D geometrical domains. Let n = nrer+nzez
be the outward unit normal vector to ∂Ω and ΓD be the intersection of ∂Ω and
the z -axis, namely, ΓD = {(r, z) ∈ ∂Ω : r = 0}. From now on we assume nr ≥ 0

on ∂Ω \ ΓD . Moreover we restrict our attention to a simply connected set Ω̂ that
intersects the axis r = 0 at a set of positive one dimensional measure, so that Ω
is also simply connected.

Let us further assume that the physical properties, electrical conductivity, σ,
and magnetic permeability, µ, are independent on θ, i.e.,

σ := σ(r, z), µ := µ(r, z),

and that source currents are such that the current density in the conducting part
is of the form

J(r, θ, z) := Jr(r, z)er + Jz(r, z)ez

and, of course, null in the dielectric.
Under these assumptions it is possible to define an eddy current model re-

stricted to the conducting domain Ω̂ by using suitable boundary conditions on its
boundary. Firstly, we notice that the classical time-harmonic eddy current model
restricted to Ω̂ and to linear magnetic materials leads to find a magnetic field H
and an electric field E of the form,

iωB + curlE = 0 in Ω̂, (1a)

curlH = J in Ω̂, (1b)

divB = 0, in Ω̂, (1c)

B = µH, (1d)

J = σE, (1e)

ω being the angular frequency, i.e., ω = 2πf with f the electric current frequency.
By assuming that none of the fields depend on θ, we can look for a solution of

the previous equations satisfying,

E(r, θ, z) := Er(r, z)er + Ez(r, z)ez,

H(r, θ, z) := Hθ(r, z)eθ.

Consequently, the following boundary condition can be imposed on the whole
boundary of the conducting domain:

µH · n = 0 on ∂Ω̂ (2)

where n is the outward unit normal to ∂Ω̂. This property will allow us setting
boundary conditions on ∂Ω̂, in order to impose currents and/or voltage drops on

electric ports. Indeed, let assume that the boundary of Ω̂ splits as follows:

∂Ω̂ := Γ̂N ∪ Γ̂J ∪ Γ̂E
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where Γ̂J and Γ̂E are the part of the boundary connected to an electric source with
known voltage drops or currents, while Γ̂N is the isolated part, i.e., there is no
current flux through this boundary. In eddy currents models with electric ports it
is usual to assume that currents enter and exit the domain perpendicularly and
consequently, we will assume

E × n = 0 on Γ̂J ∪ Γ̂E , (3)

while the isolation condition means

J · n = curlH · n = 0 on Γ̂N . (4)

From condition (2) we can deduce that there exists a sufficiently smooth func-

tion V defined in Ω̂ up to a constant, such that V |∂Ω̂ is a surface potential of the

tangential component of E, namely, E × n = −gradV × n on ∂Ω̂ (see [11]). On
the other hand, (3) implies that V must be constant on each connected component

of Γ̂J ∪ Γ̂E to be called port. We assume that the whole Γ̂E is a port and denote
the ports of Γ̂J as Γ̂ k

J
, k being its number. We will assume that V = 0 on Γ̂E and

then the complex number Vk := V |Γ̂k
J

− V |Γ̂
E
is the voltage drop between Γ̂ k

J
and

Γ̂E ; consequently, Vk := V |Γ̂k
J

.

According to the previous discussion, for each surface Γ̂ k
J
, we will assume that

we know

– either voltage drop Vk := V |Γ̂k
J

– or the current intensity going through Γ̂ k
J
, i.e.,∫

Γ̂k
J

J · n =

∫
Γ̂k

J

curlH · n = Ik.

To obtain a weak formulation of this problem, let us multiply the Faraday
equation defined in Ω̂ by a smooth test function G such that curlG · n = 0 on
Γ̂N . From Ampère and Ohm’s laws we obtain∫
Ω̂

iωµH·Ḡ+

∫
Ω̂

E·curl Ḡ =

∫
Ω̂

iωµH·Ḡ+

∫
Ω̂

1

σ
curlH·curl Ḡ = −

∫
Ω̂

gradV ·curl Ḡ

and using a Green’s formula∫
Ω̂

iωµH · Ḡ+

∫
Ω̂

1

σ
curlH · curl Ḡ

= −
∫
Ω̂

gradV · curl Ḡ = −
∫
∂Ω̂

V curl Ḡ · n = −
∫
Γ̂

J

V curl Ḡ · n (5)

where in the last equality we have used that V = 0 on Γ̂E .
Next, we will rewrite this weak formulation in cylindrical coordinates. Let us

denote by ∂Ω the boundary of Ω which can be decomposed as ∂Ω := ΓD ∪ ΓJ ∪
ΓN ∪ ΓE being ΓD the symmetry axis r = 0.

We will write the above weak formulation for a magnetic field H(r, θ, z) =
Hθ(r, z)eθ and test functions of the form G(r, θ, z) = Gθ(r, z)eθ.



Numerical Solution of an Axisymmetric Eddy Current Model 7

First of all, we notice that for these functions

curlG = −∂Gθ

∂z
er +

1

r

∂

∂r
(rGθ) ez

and hence,

curlG · n = −∂Gθ

∂z
nr +

1

r

∂

∂r
(rGθ)nz =

1

r

∂(rGθ)

∂τ
, on ∂Ω,

where τ is a clockwise unit tangent vector to ∂Ω.

Therefore, the isolated condition curlH ·n = 0 leads to
∂(rHθ)

∂τ
= 0 and then

rHθ has to be constant on each connected component of ΓN . Thus, we consider

ΓN :=
N⋃

k=0

Γ k
N
, being Γ k

N
the N +1 connected components of ΓN and let us assume

that Γ 0
N

is the one which touches the symmetry axis and is placed between the
symmetry axis and a connected component of ΓJ ; see Fig. 3. This assumption is
not restrictive in most physical applications.

Fig. 3 Representation of the meridian section Ω of the axisymmetric domain Ω̂.

On the other hand, let us assume that ΓJ also has N connected components

and ΓJ :=
N⋃

k=1

Γ k
J
. For k = 1, . . . , N , we have (see Fig. 3),

∫
Γ̂k

J

curlH · n = Ik = 2π

∫
Γk

J

1

r

∂(rHθ)

∂τ
r

= 2π

∫
Γk

J

∂(rHθ)

∂τ
= 2π(rHθ)|Γk

N
− 2π(rHθ)|Γk−1

N
.
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Thus, we can write

(rHθ)|Γk
N
− (rHθ)|Γk−1

N
=
Ik
2π
, k = 1, . . . , N.

Get to this point and as has been advanced before, we will distinguish between
ports in ΓJ where we know the currents from those where the voltage drops are
given; namely, the set of indices corresponding to the connected component of ΓJ

are divided into two disjoint subsets: {1, . . . , N} = NI ∪NV , where

– For k ∈ NV , voltage drop Vk ∈ C is a given data.
– For k ∈ NI , current Ik ∈ C is a given data.

Consequently, the above 3D weak formulation could be written in terms of
Hθ as we detail below. To attain this goal, we introduce some weighted Sobolev
spaces that will be used in what follows and establish some of their properties.
More general results can be found in [13], [19], [14] and [10]. For ϑ ⊆ Ω and α ∈ R,
let L2

α(ϑ) be the weighted Lebesgue space of measurable functions G defined in ϑ
with bounded norm

∥G∥2L2
α(ϑ) :=

∫
ϑ

|G|2rα dr dz.

Given k ∈ N, the weighted Sobolev space Hk
1(ϑ) consists of all functions in L2

1(ϑ)
whose derivatives in the sense of distributions up to order k are also in L2

1(ϑ). We
define the norms and semi-norms of these spaces in the standard way; for instance,
in H1

1(ϑ) the semi-norm

|G|2H1
1(ϑ) :=

∫
ϑ

(
|∂rG|2 + |∂zG|2

)
r dr dz.

Throughout the paper, we will use the following Hilbert spaces:

H̃1
1(ϑ) := H1

1(ϑ) ∩ L2
−1(ϑ),

H̃2
1(ϑ) :=

{
G ∈ H̃1

1(ϑ) : ∥G∥H̃2
1(ϑ) <∞

}
,

with their respective norms defined by

∥G∥2
H̃1

1(ϑ)
:= ∥G∥2H1

1(ϑ) + ∥G∥2L2
−1(ϑ), (6)

∥G∥2
H̃2

1(ϑ)
:= ∥G∥2

H̃1
1(ϑ)

+
∣∣∣r−1∂r(rG)

∣∣∣2
H1

1(ϑ)
+ ∥∂zG∥2

H̃1
1(ϑ)

. (7)

We recall that the set of C∞(Ω) functions which vanish in a neighborhood of ΓD

is dense in H̃1
1(Ω) (see [14, Lemma 3.1]). The following results will be used in the

sequel.

Lemma 1 There holds H1
1(Ω) ↪→ L2

−1+ε(Ω) continuously for all ε > 0.

Proof See [19, Remark 4.1].

Lemma 2 For all G ∈ H̃1
1(Ω), ∂r(rG) belongs to L2

−1(Ω) and satisfies

∥∂rG∥2L2
1(Ω) + ∥G∥2L2

−1(Ω) ≤ ∥∂r(rG)∥2L2
−1(Ω) ≤ 2∥∂rG∥2L2

1(Ω) + 2∥G∥2L2
−1(Ω).
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Proof This result is proved in [14, Proposition 3.1] for a square domain. By pro-
ceeding as in this reference we write

∥∂r(rG)∥2L2
−1(Ω) = ∥∂rG∥2L2

1(Ω) + ∥G∥2L2
−1(Ω) + 2

∫
Ω

Re(Ḡ∂rG) dr dz.

By integration by parts, the last term on the right-hand side of the previous
equation can be written as follows

2

∫
Ω

Re(Ḡ∂rG) dr dz =

∫
Ω

∂r(|G|2) dr dz =

∫
∂Ω

|G|2nr =

∫
∂Ω\Γ

D

|G|2nr

where the last equality follows from the fact that G vanishes on ΓD . Since nr ≥ 0
on ∂Ω \ ΓD , the result is a consequence of the previous equalities. ⊓⊔

Remark 1 For a particular G ∈ H̃1
1(Ω), which is actually needed for the inequality

in the lemma to hold true is that |G|2nr ≥ 0 instead of nr ≥ 0 on ∂Ω \ ΓD . Will
be seen below this is of interest in several applications.

In order to establish a weak formulation of (5), we consider the following

subspace of H̃1
1(Ω)

V :=
{
Gθ ∈ H̃1

1(Ω) : (rGθ)|Γk
N
= constant k = 0, . . . , N

}
.

For I := (Ik)k∈N
I
we also define

V(I) :=
{
Gθ ∈ V : (rGθ)|Γ 0

N
= 0, (rGθ)|Γk

N
= (rGθ)|Γk−1

N
+
Ik
2π
, k ∈ NI

}
.

By using test functions of the form G = Gθ(r, z)eθ in (5) we obtain the fol-
lowing weak formulation of the problem in terms of Hθ.

Problem 1 Given Vk ∈ C for k ∈ NV , and Ik ∈ C for k ∈ NI , find Hθ ∈ V(I)
such that∫

Ω

iωµHθḠθ r dr dz +

∫
Ω

1

σ

(∂Hθ

∂z

∂Ḡθ

∂z
+

1

r2
∂

∂r
(rHθ)

∂

∂r
(rḠθ)

)
r dr dz

= −
∑

k∈N
V

Vk

(
(rḠθ)|Γk

N
− (rḠθ)|Γk−1

N

)
∀Gθ ∈ V(0).

As will be shown below V(I) ̸= ∅ (see Corollary 1) then, the well-posedness
of this weak formulation can be proved by using Lemma 2 and the Lax-Milgram
lemma.

Remark 2 In the case where the source is only given by current intensities, it
follows that Gθ ∈ V(0) vanishes on ΓN . Therefore, according to Remark 1, to
prove the existence of solution of Problem 1, condition nr ≥ 0 on ∂Ω \ ΓD can be
replaced by the less restrictive hypothesis: |G|2nr ≥ 0 on ΓJ ∪ΓE , for all G ∈ V(0).



10 A. Bermúdez et al.

Notice that the constraints included in the functional space introduces difficul-
ties from a numerical point of view. In fact, when a finite element method is used
to approximate the previous problem, Gθ is assumed to be piecewise polynomial
and thus, the constraint rGθ = constant implies that Gθ = 0. To avoid this draw-
back we will propose an alternative for its numerical analysis which will be based
on reformulating the problem in terms of H̃ := rHθ. To simplify the notation
we drop subscript θ for the new unknown. For this purpose, let us introduce the
notation G̃k := G̃|Γk

N
, k = 0, . . . , N and the function space

X :=
{
G̃ ∈ H1

−1(Ω) : G̃k = constant, k = 0, . . . , N
}
.

We also introduce the sesquilinear form a : X × X → C given by

a(H̃, G̃) :=

∫
Ω

iωµ

r
H̃

¯̃
Gdr dz +

∫
Ω

1

rσ
gradH̃ · grad ¯̃Gdr dz .

For I := (Ik)k∈N
I
we define

X (I) :=

{
G̃ ∈ X : G̃0 = 0, G̃k = G̃k−1 +

Ik
2π
, k ∈ NI

}
.

Using the previous definitions we rewrite Problem 1 in terms of the new variable
H̃ as follows:

Problem 2 Given Vk ∈ C for k ∈ NV and Ik ∈ C for k ∈ NI , find H̃ ∈ X (I) such
that

a(H̃, G̃) = −
∑

k∈N
V

Vk(
¯̃
G

k
− ¯̃
G

k−1
) ∀G̃ ∈ X (0).

The existence and uniqueness of solution of the previous problem follows from
the fact that X (I) is nonempty which will be shown below (see Lemma 3) and
the Lax-Milgram lemma. Actually, the well-posedness of Problem 2 can be also
derived from the following result.

Proposition 1 Problems 1 and 2 are equivalent in the sense that Hθ is a solution
of Problem 1 if and only if rHθ solves Problem 2.

Proof The proof is a consequence of the following relation: if G ∈ H̃1
1(Ω) then

rG ∈ H1
−1(Ω) and the estimate (cf. Lemma 2)

∥G∥2
H̃1

1(Ω)
≤ ∥rG∥2H1

−1(Ω) ≤ 2∥G∥2
H̃1

1(Ω)
. (8)

3 Finite element approximation

In this section we introduce a Galerkin approximation of Problem 2 and prove some
convergence results. We assume that {Th}h>0 is a regular family of partitions of

Ω in triangles T so that the edges of the triangulation lying on ∂Ω belong only
to ΓD , ΓJ , ΓN , or ΓE ; parameter h stands for the mesh-size and, from now on, we
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Fig. 4 Decomposition of the finite element triangulation Th (left). Notations used in the proof
of Lemmas 3 (center) and 5 (right).

assume that any generic constant denoted by C is independent of h and r. We
denote

T 0
h := {T ∈ Th : T ∩ ΓD ̸= ∅} , T 1

h = Th \ T 0
h

and define the open sets Ω0
h, Ω

1
h ⊂ Ω such that Ω0

h :=
⋃

T∈T 0
h
T , and Ω1

h :=⋃
T∈T 1

h
T (see Fig. 4 (left)). For any K ⊂ Ω, we define rKmax := max{r : (r, z) ∈ K}

and rKmin := min{r : (r, z) ∈ K}. The following inequalities hold: for all T ∈ T 1
h ,

rTmin ≥ ChT , rTmax ≤ CrTmin.

Moreover, clearly, rTmax < ChT for all T ∈ T 0
h .

Let Yh be the space of piecewise linear continuous finite elements with vanish-
ing values in Ω0

h,

Yh := {G̃h ∈ C(Ω) : G̃h = 0 in Ω0
h, G̃h|T ∈ P1(T ) ∀T ∈ T 1

h }

and

Xh := {G̃h ∈ Yh : G̃h|Γk
N
= constant, k = 0, . . . , N} ⊂ X .

We use the same notation as in the continuous case and define G̃k
h := G̃h|Γk

N
,

k = 0, . . . , N . Whence, for I = (Ik)k∈N
I
, the natural approximation space of X (I)

is

Xh(I) :=

{
G̃h ∈ Xh : G̃0

h = 0, G̃k
h = G̃k−1

h +
Ik
2π
, k ∈ NI

}
.

The Galerkin approximation of Problem 2 reads as follows:

Problem 3 Find H̃h ∈ Xh(I) such that

a(H̃h, G̃h) = −
∑

k∈N
V

Vk(
¯̃
Gh

k
− ¯̃
Gh

k−1
) ∀G̃h ∈ Xh(0).
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The existence and uniqueness of solution to Problem 3 is a consequence of the
following lemma.

Lemma 3 Let I = (Ik)k∈N
I
, then Xh(I) ̸= ∅.

Proof Let e0h be the unique edge of ΓE intersecting ΓD (see Fig. 4 (center)) and

Γ := ΓN∪ΓJ∪ΓE (see Fig. 3). We define G̃Γ , a continuous piecewise linear function
in Γ such that:

– G̃Γ = 0 in Γ 0
N
and e0h,

– G̃Γ is constant in Γ k
N

for k = 1, . . . , N , and in Γ k
J
, k ∈ NV ,

– G̃Γ restricted to each Γ k
J
, k ∈ NI , is linear and such that the values at the

ends of the segment Γ k
J

differ in Ik
2π .

By extending the aforementioned function to the interior of the domain we obtain
an element in Xh(I). ⊓⊔

Remark 3 For a better understanding of how to build a function G̃Γ in the proof of
Lemma 3, we consider the boundary configuration given in Fig. 4 (center), where

the construction of G̃Γ when k ∈ NI = {2, 3} is the following: G̃Γ vanishes from
point A to B and evaluated at point C is equal to I2

π . From point C to D it is

constant and evaluated at point E is equal to I2+I3
2π . Finally, from point E to F,

the function G̃Γ is constant and from F to G it is piecewise linear continuous and
vanishes at G.

As an immediate consequence of the previous result and the fact that functions in
Xh(I) vanish in Ω0

h, we have

Corollary 1 Let I = (Ik)k∈N
I
. For all G̃h in Xh(I), G̃h/r is well defined and

belongs to V(I).

3.1 Convergence

In this section we prove that the Galerkin approximation given by Problem 3
converges to the solution of Problem 2. We obtain a convergence result in the
H1

−1-norm without assuming any additional regularity of the solution. Moreover,
under appropriate smoothness assumptions, we also obtain a quasi-optimal-order
error estimate.

To begin with we introduce the classical Scott-Zhang operator Ih : H1(Ω) →
Lh, where the finite element space Lh is defined by:

Lh :=
{
ψh ∈ C(Ω) : ψh|T ∈ P1(T ) ∀T ∈ Th

}
.

Let us recall that this operator preserves piecewise lineal values at the boundary
(see [24]). We also introduce Ĩh : H1(Ω) ∩H1

−1(Ω) → Yh such that ĨhG̃ is defined

differently in the triangles in T 0
h and T 1

h . On the former, we just define ĨhG̃ = 0.
On the latter, ĨhG̃ is IhG̃, the classical Scott-Zhang interpolant of G̃, connected
such that the resulting interpolant ĨhG̃ ∈ C(Ω). Namely, on those triangles T ∈ T 1

h

with a vertex x on γh := ∂Ω0
h ∩ ∂Ω1

h (see Fig. 4 (right)) we consider ĨhG̃(x) = 0.
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For any T ∈ Th, let ωT be the union of all triangles that intersect triangle T .
It is well known that (see, [24]), for all G̃ ∈ H1(ωT ),

∥G̃− IhG̃∥L2(T ) + h|G̃− IhG̃|H1(T ) ≤ Ch|G̃|H1(ωT ) (9)

and, for all G̃ ∈ H2(ωT ),

|G̃− IhG̃|H1(T ) ≤ Ch|G̃|H2(ωT ). (10)

Before proving an error estimate between the solutions to problems 2 and 3, we
give an estimate for IhG̃ − ĨhG̃ in the H1

−1(Ω)-norm which will be used in the
sequel. With this aim we consider the following auxiliary result.

Lemma 4 If G ∈ H̃2
1(Ω) then G̃ := rG ∈ H2(Ω). Moreover, for all T ∈ Th

|G̃|2H2(T ) ≤ 5rTmax∥G∥2
H̃2

1(T )
+ 2max{r1−2ε : (r, z) ∈ T}∥r−1∂r(rG)∥2L2

−1+2ε(T )

(11)
for all ε > 0.

Proof Let G ∈ H̃2
1(Ω), from (8) it follows that G̃ := rG ∈ H1

−1(Ω) ⊂ H1(Ω), thus

we focus on the H2 semi-norm of G̃, namely, we will show that ∂zzG̃, ∂zrG̃ and
∂rrG̃ belong to L2(Ω). Clearly ∂zzG̃ = r∂zzG ∈ L2

−1(Ω). On the other hand, since

r−1∂rG̃ = r−1∂r(rG) belongs to H1
1(Ω) (cf. (7)), then r∂z(r

−1∂rG̃), r∂r(r
−1∂rG̃) ∈

L2
−1(Ω) and r−1∂rG̃ ∈ L2(Ω), where the last inclusion follows from the continu-

ous embedding H1
1(Ω) ↪→ L2(Ω) (see Lemma 1). Hence, ∂zrG̃ = r∂z(r

−1∂rG̃) ∈
L2
−1(Ω),

∂rrG̃ = ∂rr(r
−1∂rG̃) = r−1∂rG̃+ r∂r(r

−1∂rG̃) ∈ L2(Ω)

and thus G̃ ∈ H2(Ω). Let T ∈ Th, in order to prove (11) we bound each term on
the right-hand side of

|G̃|2H2(T ) = ∥∂rrG̃∥2L2(T ) + 2∥∂zrG̃∥2L2(T ) + ∥∂zzG̃∥2L2(T ). (12)

From the previous equalities it is straightforward to obtain that

∥∂zzG̃∥2L2(T ) ≤ rTmax∥∂zzG∥2L2
1(T ), ∥∂zrG̃∥2L2(T ) ≤ rTmax∥∂z(r−1∂r(rG))∥2L2

1(T )

and

∥∂rrG̃∥2L2(T ) ≤ 2rTmax

∫
T

r|∂r(r−1∂r(rG))|2

+ 2max{r1−2ε : (r, z) ∈ T}
∫
T

1

r1−2ε
|r−1∂r(rG)|2

≤ 2rTmax∥∂r(r−1∂r(rG))∥2L2
1(T )

+ 2max{r1−2ε : (r, z) ∈ T}∥r−1∂r(rG)∥2L2
−1+2ε(T )

for all ε > 0. Thus, from the previous estimates and (12) we obtain

|G̃|2H2(T ) ≤ 5rTmax∥G∥2
H̃2

1(T )
+ 2max{r1−2ε : (r, z) ∈ T}∥r−1∂r(rG)∥2L2

−1+2ε(T )

which concludes the proof. ⊓⊔
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Lemma 5 For all G̃ ∈ H1
−1(Ω)

lim
h→0

∥IhG̃− ĨhG̃∥H1
−1(Ω

1
h)

= 0 . (13)

Additionally, if r−1G̃ ∈ H̃2
1(Ω), then for all ε > 0

∥IhG̃− ĨhG̃∥H1
−1(Ω

1
h)

≤ Ch1−ε∥r−1G̃∥H̃2
1(Ω). (14)

Finally, if G̃ ∈ H2
−1(Ω), then

∥IhG̃− ĨhG̃∥H1
−1(Ω

1
h)

≤ Ch∥G̃∥H2
−1(Ω). (15)

Proof Let {ϕj}Mj=1 be the nodal basis of Lh and {xj}Mj=1 be the vertices of the
triangulation such that ϕj(xi) = δij for i, j = 1, · · · ,M . We order these basis
functions so that the firstM1 of them correspond to nodal values on the boundary
γh. From the definition of Ih and Ĩh it follows that

IhG̃− ĨhG̃ =

M1∑
i=1

(IhG̃)(xi)ϕi in Ω1
h,

It is straightforward to show that the basis functions are bounded as follows

∥ϕi∥L2
−1(Ω

1
h∩ωi) ≤ Ch1/2 and ∥∇ϕi∥L2

−1(Ω
1
h∩ωi) ≤ Ch−1/2 i = 1, . . . ,M1,

where ωi := supp(ϕi) and constant C only depends on the regularity of the meshes.
From the previous equations we obtain

∥IhG̃− ĨhG̃∥2H1
−1(Ω

1
h)

= ∥
M1∑
i=1

(IhG̃)(xi)ϕi∥2L2
−1(Ω

1
h)

+ ∥
M1∑
i=1

(IhG̃)(xi)∇ϕi∥2L2
−1(Ω

1
h)

≤ C

M1∑
i=1

|(IhG̃)(xi)|2∥ϕi∥2L2
−1(Ω

1
h∩ωi)

+ C

M1∑
i=1

|(IhG̃)(xi)|2∥∇ϕi∥2L2
−1(Ω

1
h∩ωi)

≤ Ch−1
M1∑
i=1

|(IhG̃)(xi)|2. (16)

Next, we bound the last term on the right-hand side of the previous equation. Let
Ti ∈ T 0

h be such that xi is a vertex of Ti, i = 1, ...,M1 (see Fig. 4 (right)), by
proceeding as in [24, Theorem 3.1] it can be prove that

|IhG̃(xi)| ≤ C∥∇G̃∥L2(ωTi
). (17)

Let us define Ωh := ∪M
i=1supp(ωTi

) (see Fig. 4 (right)) then, from (16) and (17) it
follows that

∥IhG̃− ĨhG̃∥2H1
−1(Ω

1
h)

≤ Ch−1
M1∑
i=1

∥∇G̃∥2L2(ωTi
)

=Ch−1
M1∑
i=1

∫
ωTi

r

r
|∇G̃|2 ≤ C∥∇G̃∥2L2

−1(Ωh)
.
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Since G̃ ∈ H1
−1(Ω), (13) follows from the previous estimate and Lebesgue’s domi-

nated convergence theorem.

Let G̃ be such that r−1G̃ ∈ H̃2
1(Ω). To prove (14) we first notice that each

component of ∇G̃ belongs to H̃1
1(Ω) and thus vanishes on ΓD . In fact, from (7) it

follows that r−1G̃, ∂z(r
−1G̃) ∈ H̃1

1(Ω) and ∂r(r
−1G̃) ∈ H1

1(Ω), then the result is a

consequence of the identity ∇G̃ = (r∂r(r
−1G̃)+ r−1G̃, r∂z(r

−1G̃))⊤. Hence, since
ωTi

∩ ΓD is an edge or union of edges, from (16), (17) and by using the Poincaré
inequality it follows that

∥IhG̃− ĨhG̃∥2H1
−1(Ω

1
h)

≤ Ch−1
M1∑
i=1

∥∇G̃∥2L2(ωTi
) ≤ Ch

M1∑
i=1

|G̃|2H2(ωTi
). (18)

Moreover, by applying Lemma 4 and Lemma 1 to estimate the last term of the
previous equation we obtain

M1∑
i=1

|G̃|2H2(ωTi
) ≤ C

M1∑
i=1

(
h∥r−1G̃∥2

H̃2
1(ωTi

)
+ h1−2ε∥r−1∂rG̃∥2L2

−1+2ε(ωTi
)

)
≤ Ch1−2ε∥r−1G̃∥2

H̃2
1(Ω)

(19)

for all ε > 0. Thus (14) follows from (18) and (19). We finish the proof by noticing

that (15) follows directly from (18) when G̃ ∈ H2
−1(Ω). ⊓⊔

Now, we are in a position to write the main result of this paper related to the
convergence of the proposed scheme

Theorem 1 Let H̃ and H̃h be the solutions to problems 2 and 3, respectively.
Then

lim
h→0

∥H̃ − H̃h∥H1
−1(Ω) = 0 . (20)

Additionally, let Hθ = r−1H̃ be the solution of Problem 1. If Hθ ∈ H̃2
1(Ω), then

for all ε > 0

∥H̃ − H̃h∥H1
−1(Ω) ≤ C h1−ε∥Hθ∥H̃2

1(Ω) . (21)

Finally, if rHθ ∈ H2
−1(Ω), then

∥H̃ − H̃h∥H1
−1(Ω) ≤ C h∥rHθ∥H2

−1(Ω). (22)

Proof Let H̃ and H̃h be the solutions to problems 2 and 3, we note that

a(H̃ − H̃h, H̃ − H̃h) = a(H̃ − H̃h, H̃ − G̃h) ∀G̃h ∈ Xh(I),

and, since there exists C > 0 such that C∥H̃− H̃h∥2H1
−1(Ω) ≤ |a(H̃− H̃h, H̃− H̃h)|

we have

∥H̃ − H̃h∥H1
−1(Ω) ≤ C∥H̃ − G̃h∥H1

−1(Ω) ∀G̃h ∈ Xh(I).
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We notice that H̃ ∈ H1
−1(Ω) ⊂ H1(Ω) and thus ĨhH̃ is well defined. Moreover,

since H̃ ∈ X (I) then IhH̃|Γk
N
= H̃|Γk

N
= constant, k = 0, . . . , N and ĨhH̃ ∈ Xh(I).

Therefore, from the previous inequality and the definition of Ĩh we have

∥H̃ − H̃h∥H1
−1(Ω) ≤ C∥H̃ − ĨhH̃∥H1

−1(Ω)

≤ C
(
∥H̃∥H1

−1(Ω
0
h)

+ ∥IhH̃ − ĨhH̃∥H1
−1(Ω

1
h)

+ ∥H̃ − IhH̃∥H1
−1(Ω

1
h)

)
. (23)

From Lebesgue’s dominated convergence theorem and Lemma 5 (cf. (13)) it follows
that the first two terms on the right-hand side of the previous equation converge
to 0 as h→ 0. To estimate the last term, it is first rewritten as follows

∥H̃ − IhH̃∥2H1
−1(Ω

1
h)

= ∥H̃ − IhH̃∥2L2
−1(Ω

1
h)

+ ∥∇(H̃ − IhH̃)∥2L2
−1(Ω

1
h)

(24)

and then we use standard error estimates for the Scott-Zhang interpolant (cf. (9))
to estimate each term

∥H̃ − IhH̃∥2L2
−1(Ω

1
h)

≤
∑

T∈T 1
h

1

rTmin

∫
T

|H̃ − IhH̃|2

≤
∑

T∈T 1
h

h2T
rTmin

∫
ωT

|∇H̃|2 ≤
∑

T∈T 1
h

h2T
rTmax

rTmin

∫
ωT

|∇H̃|2

r
≤ Ch2∥H̃∥2H1

−1(Ω). (25)

Next we estimate the semi-norm term in (24). On the other hand, to estimate the
semi-norm term in (24) we recall that the set of C∞(Ω) functions which vanish

in a neighborhood of ΓD is dense in H̃1
1(Ω) (see [14, Lemma 3.1]). Since r−1H̃

belongs to H̃1
1(Ω) (cf. (8)), it follows that there exists {Gn}n∈N ⊂ C∞(Ω) such

that Gn → r−1H̃ in H̃1
1(Ω). Moreover, by defining G̃n := rGn, it is straightforward

to show that ∥G̃n − H̃∥H1
−1(Ω) ≤

√
2∥Gn − r−1H̃∥H̃1

1(Ω), and hence G̃n → H̃ in

H1
−1(Ω). Thus we write

H̃ − IhH̃ = H̃ − (G̃n − IhG̃n)− IhH̃ + (G̃n − IhG̃n)

= (G̃n − IhG̃n) + (H̃ − G̃n)− Ih(H̃ − G̃n)

and therefore

∥∇(H̃ − IhH̃)∥2L2
−1(Ω

1
h)

≤ ∥∇(G̃n − IhG̃n)∥2L2
−1(Ω

1
h)

+ ∥∇((H̃ − G̃n)− Ih(H̃ − G̃n))∥2L2
−1(Ω

1
h)
. (26)

To bound the first term on the right-hand side of the previous equation we proceed
as in (25)

∥∇(G̃n − IhG̃n)∥2L2
−1(Ω

1
h)

≤
∑

T∈T 1
h

1

rTmin

∫
T

|∇(G̃n − IhG̃n)|2 ≤
∑

T∈T 1
h

h2T
rTmin

|G̃n|2H2(ωT ).

(27)
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The last term of the previous equation can be estimated by applying Lemma 4
(cf. (11)) and Lemma 1

∥∇(G̃n − IhG̃n)∥2L2
−1(Ω

1
h)

≤
∑

T∈T 1
h

h2T
rTmin

(
5rTmax∥Gn∥2H̃2

1(T )

+2max{r1−2ε : (r, z) ∈ T}∥r−1∂r(rGn)∥2L2
−1+2ε(T )

)
≤ Ch2∥Gn∥2H̃2

1(Ω)
+ h2−2ε∥r−1∂r(rGn)∥2L2

−1+2ε(Ω)

≤ h2−2ε∥Gn∥2H̃2
1(Ω)

(28)

for all ε > 0. On the other hand, we use (9) to bound the last term on (26):

∥∇((H̃ − G̃n)− Ih(H̃ − G̃n))∥2L2
−1(Ω

1
h)

≤
∑

T∈T 1
h

1

rTmin

∫
T

|∇((H̃ − G̃n)− Ih(H̃ − G̃n))|2

≤
∑

T∈T 1
h

C

rTmin

∫
ωT

|∇(H̃ − G̃n)|2

≤ C
∑

T∈T 1
h

rωT
max

rTmin

∫
ωT

1

r
|∇(H̃ − G̃n)|2

≤ C∥∇(H̃ − G̃n)∥2L2
−1(Ω). (29)

Therefore from (24) and (25)-(29) we obtain

∥H̃ − IhH̃∥2H1
−1(Ω

1
h)

≤ C
(
h2∥H̃∥H1

−1(Ω) + h2−2ε∥Gn∥2H̃2
1(Ω)

+ ∥∇(H̃ − G̃n)∥2L2
−1(Ω)

)
.

The prove of (20) follows from the previous inequality and the fact that G̃n → H̃
in H1

−1(Ω).

To prove (21) we proceed as before. Since H̃ = rH, H ∈ H̃2
1(Ω), by using (24),

Lemma 5 (cf. (14)) and by proceeding as in (27)-(28) we get

∥H̃ − H̃h∥H1
−1(Ω) ≤ ∥H̃∥H1

−1(Ω
0
h)

+ ∥H̃ − IhH̃∥H1
−1(Ω

1
h)

+ ∥IhH̃ − ĨhH̃∥H1
−1(Ω

1
h)

≤ ∥H̃∥H1
−1(Ω

0
h)

+ h1−ε∥H∥H̃2
1(Ω), (30)

for all ε > 0. Since r−1∂r(rH) ∈ H1
1(Ω), the first term on the right-hand side of

the previous equation can be bounded by applying Lemma 1

∥H̃∥2H1
−1(Ω

0
h)

=

∫
Ω0

h

1

r
r2H2 +

∫
Ω0

h

1

r
r2|∂zH|2 +

∫
Ω0

h

r−2ε

r−2ε

1

r
|∂r(rH)|2

≤ Ch2
∫
Ω0

h

1

r
H2 + Ch2

∫
Ω0

h

1

r
|∂zH|2 +

∫
Ω0

h

r2−2ε

r1−2ε
|r−1∂r(rH)|2

≤ Ch2∥H∥2L2
−1(Ω) + Ch2∥∂zH∥2L2

−1(Ω) + Ch2−2ε∥r−1∂r(rH)∥2L2
r−1+2ε (Ω)

≤ Ch2−2ε∥H∥H̃2
1(Ω), (31)
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for all ε > 0. Therefore (21) follows from (30) and (31). Finally, to prove (22) we

estimate each term on the right-hand side of (23). Let H̃ ∈ H2
−1(Ω), we bound

the first term by applying a Poincaré-type inequality

∥H̃∥H1
−1(Ω

0
h)

≤ Ch∥H̃∥H2
−1(Ω),

which follows from the fact that H̃, ∂rH̃, ∂zH̃ ∈ H̃1
1(Ω) and thus vanish on ΓD .

For the second term of (23) we apply (15) whereas the last one can be bounded
by proceeding as in (25) and using standard error estimates for the Scott-Zhang
interpolant (cf. (9)-(10)):

∥IhH̃ − ĨhH̃∥H1
−1(Ω

1
h)

+ ∥H̃ − IhH̃∥H1
−1(Ω

1
h)

≤ h∥H̃∥H2
−1(Ω).

Hence (22) is a consequence of (23) and the two previous equations. ⊓⊔

Finally we derive from Theorem 1 an estimate for the original variable Hθ,
namely, the magnetic field.

Corollary 2 Let Hθ and H̃h be the solutions to problems 1 and 3, respectively.
Then

lim
h→0

∥Hθ − H̃h/r∥H̃1
1(Ω) = 0 .

Additionally, if Hθ ∈ H̃2
1(Ω), then for all ε > 0

∥Hθ − H̃h/r∥H̃1
1(Ω) ≤ C h1−ε∥Hθ∥H̃2

1(Ω) .

Finally, if rHθ ∈ H2
−1(Ω), then

∥Hθ − H̃h/r∥H̃1
1(Ω) ≤ C h∥rHθ∥H2

−1(Ω).

Proof Since H̃ = rHθ is solution to Problem 2, the result follows immediately
from Theorem 1 and the inequality (cf. (8))

∥Hθ − H̃h/r∥H̃1
1(Ω) = ∥(rHθ − H̃h)/r∥H̃1

1(Ω) ≤ ∥H̃ − H̃h∥H1
−1(Ω).

⊓⊔

Thus, H̃h/r converges to the magnetic field Hθ in H̃1
1(Ω). Moreover, the rate of

convergence coincides with that obtained for the solution of Problem 2, although
in a different weighted norm.

4 Numerical results

In this section, we present some numerical results obtained with a Fortran code im-
plemented with the help of a new library developed by our group called ForFEM.
The code implements Problem 4 described in the Appendix. First, we report a test
with a known analytical solution to check the error estimates proved above. Sec-
ondly, we apply the method to an industrial problem which arises in the framework
of a preforming technique: electro-upsetting [21,22].
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Fig. 5 Sketch of the domain.

4.1 An example with analytical solution

We have solved the eddy current problem in a cylindrical domain Ω̂ of radius R
and height L, which is a bounded section of an infinite cylinder (see Fig. 5).

We have considered an alternating density J going through the conductor Ω̂
in the direction of its axis. This current is assumed to be axially symmetric and
the current intensity crossing each horizontal section is equal to I(t) = I1 cos(ωt)
with I1 being the amplitude and ω the angular frequency. Thus, we have taken
the bottom surface of the cylinder as Γ̂E , its lateral surface as the current density
flux-free boundary Γ̂ 0

N
, and its top as Γ̂ 1

J
; see again Fig. 5. Concerning the physical

properties, the electric conductivity σ and the magnetic permeability µ have been
taken as constants in Ω̂. Under these assumptions we can obtain an analytical
expression for the magnetic field, which only has azimuthal component (see [9] for
further details):

H(r, θ, z) =
I1
2πR

I1(γr)

I1(γR)
eθ,

J(r, θ, z) = curlH(r, θ, z) =
I1 γ

2πR I1(γR)
I0(γr) ez

for all r ∈ [0, R], θ ∈ [0, 2π], z ∈ [0, L], where I1 and I0 are the modified Bessel
functions of the first kind and orders 1 and 0, respectively, and γ :=

√
iωµσ ∈ C.

We have used the following geometrical and physical data:

– R = 1m;
– L = 1m;
– σ = 240000 (Ωm)−1;
– µ = µ0 = 4π 10−7 Hm−1 (magnetic permeability of free space);
– I1 = 62000A;
– ω = 2π × 50Hz.
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We have computed the numerical solution of Problem 4 on several successively
refined meshes built from a uniform mesh of Ω, a meridional section of Ω̂; we have
compared H̃h with the analytically computed H̃ = rHθ and have also computed
the error for the genuine physical variable, namely, the magnetic field. Table 1
shows the percentage errors for both of these quantities and Fig. 6 plots of these
errors versus the number of degrees of freedom (d.o.f) in a log-log scale. Notice
that the order of convergence for both quantities is clearly O(h), as was predicted
by the theoretical results from the previous section.

Table 1 Percentage errors for the computed solution H̃h of Problem 4 in H1
−1(Ω)-norm and

for the magnetic field in H̃1
1(Ω)-norm.

d.o.f. 100
∥ H̃ − H̃h∥H1

−1(Ω)

∥H̃h∥H1
−1(Ω)

100
∥Hθ − H̃h

r
∥
H̃1

1(Ω)

∥ H̃h
r

∥
H̃1

1(Ω)

16 60.7647 69.6094
49 29.9278 32.6174
169 14.3020 15.3579
625 7.0384 7.5331
2401 3.5040 3.7478
9409 1.7496 1.8716
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Fig. 6 Percentage errors for the computed solution H̃h of Problem 4 in H1
−1(Ω)-norm (left)

and for the magnetic field in H̃1
1(Ω)-norm (right) versus d.o.f (log-log scale).

4.2 Study of the currents in an electro-upsetting application

In this section we report the results obtained by applying the axisymmetric ap-
proximation proposed above to compute the current density distribution in a steel
cylindrical bar submitted to electric-upsetting.

The process of electric-upsetting consists in passing an electric current through
a cylindrical workpiece, which is heated by Joule effect and then deformed to a
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particular shape. For instance, the process can be used for enlarging the diameter
at one of the ends of the piece for later forging in an easier way. In the electric-
upsetting process, a cold bar is placed in an horizontal upsetter and clamped by
gripper jaws. A low-voltage, high-amperage electric current passes through the bar
by contact between one of its ends and the gripper jaws. The currents heats the
bar which acquires a plastic behavior. When it reaches enough temperature, the
bar is pushed against the anvil with the help of a force applied by an hydraulic
cylinder (pusher) located at the opposite end. Thus, the bar enlarges its diameter
at the hot end, by getting a shape of onion or ball against the anvil; see Figs. 1
and 7. We notice that electro-upsetting does not provide the finished shape of the
manufacturing process, but it provides the preform to be finished by a stamping
procedure. Fig. 7 shows a simple sketch and the main elements involved in the
process.

Fig. 7 Sketch of the electro-upsetting process.

In practical cases, the electric current going through the machine can be direct
(DC) or alternating (AC). In this example, we consider an alternating current of
frequency f and assume that the current intensity crossing the lateral surface of
the jaws is known. The potential is fixed to 0 at the end of the anvil.

Although the bar is usually composed of a ferromagnetic material with nonlin-
ear magnetic behavior that also depends on temperature, in this test we assume a
linear behavior in order to fit the problem to the analyzed theoretical framework,
because our focus here is only in the electromagnetic problem. Let us remark that
the formulation could be adapted to a non-linear case, even keeping the harmonic
regime to avoid mixing the very different time scales of thermal and electromag-
netic problems.

Fig. 8 (left) shows a simple sketch of a cylindrical domain corresponding to
the conducting part, which includes the bar, the jaws and the anvil. In its turn,
Fig. 8 (right) describes the corresponding meridional section. The electrical ports
connected to the source are Γ 1

J
and ΓE , on the lateral surface of the gripper and

the bottom of the anvil, respectively. Notice that the domain Ω does not satisfies
the assumption nr ≥ 0 on ∂Ω \ ΓD . However, since the source term is only given
by current intensities and nr ≥ 0 on Γ 1

J
∪ ΓE , the domain satisfies the condition

given in Remark 2.

We have compared the electromagnetic solution computed by the axisymmet-
ric code with the results of a 3D code implemented in the commercial software
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Altair Flux.® Notice that the 3D simulation requires to build a domain includ-
ing the conducting part and a dielectric around, in order to impose appropriate
approximate boundary conditions. The 3D formulation used by this software is
based on the vector electric potential T and the magnetic scalar potential ϕ (see
[20]).

Fig. 8 Sketch of the electro-upsetting process: conducting 3D domain (left) and its meridional
section (right).

We have fixed the electrical conductivity of the different materials and com-
pared the results for two different values of the relative magnetic permeability
µr := µ/µ0 of the bar. In practice, this value changes along the process and con-
sequently the skin effect in the bar is very different at different times.

Fig. 9 shows the modulus of field H̃h computed by the 3D (left) and the
axisymmetric (right) codes in a meridional section. Notice that the values are very
similar, except on the surface corresponding to the current entrance. Let us remark
that in our proposed axisymmetric model, the total current crossing this surface
is imposed but not the distribution of the current density. Actually, it is not clear
whether both codes should lead to similar currents in this part.

In its turn, Fig. 10 shows the modulus of the current density, which is quite
concentrated on the surface of the bar due to the skin effect. Notice that the
axisymmetric model is able to capture this effect in an easier way, because finer
meshes can be afforded without increasing too much the computational cost. The
3D code would need similarly fine meshes to better capture this effect.

This effect can be more clearly observed if we increase the relative magnetic
permeability to 100. In such a case, the magnetic field is well approximated (see
Figs. 11 and 12), but the skin effect is more diffuse in the 3D case. The latter can
be clearly seen by doing a zoom in these figures as that shown on Fig. 12 left.
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Fig. 9 H̃ field computed with a 3D software (left) and the axisymmetric model (right). Rel-
ative magnetic permeability µr = 10.

Fig. 10 Current density computed with a 3D software and the axisymmetric model. Relative
magnetic permeability µr = 10.

Fig. 11 H̃ field computed with a 3D software and the axisymmetric model. Relative magnetic
permeability µr = 100.

A Appendix. A mixed formulation

For the implementation of Problem 3, it is necessary to impose the boundary condition G̃k
h =

G̃k−1
h + Ik

2π
, k ∈ NI . This can be easily obtained by a static condensation procedure applied to

the matrix arising from the sesquilinear form a(·, ·). However, depending on the computational
tool, this boundary constraint can be difficult to implement. In order to propose an alternative
for the computational implementation, in this appendix we introduce a mixed finite element
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Fig. 12 Current density computed with a 3D software and the axisymmetric model. Relative
magnetic permeability µr = 100.

approximation of Problem 3 which avoids static condensation. This new formulation could be
solved, for instance, by using general purpose finite element software packages like FEniCS [18]
and FreeFEM [16].

To begin with, let us introduce a finite element space. Let E be the set of edges in Th lying
on ΓN . Let e1h ∈ E be the unique edge of Γ 0

N
intersecting ΓD (see Fig. 13).

Fig. 13 Notations used in the proof of Theorem 2.

We define

Ph := {ξh ∈ L2(ΓN ) : ξh = 0 in e1h, ξh|e ∈ P0(e), ∀e ∈ E}.

A mixed Galerkin approximation of Problem 2 reads as follows:



Numerical Solution of an Axisymmetric Eddy Current Model 25

Problem 4 Find H̃h ∈ Yh, Vh ∈ Ph and Vk ∈ C, k ∈ NI such that

a(H̃h, G̃h) +

N∑
k=0

∫
Γk
N

Vh
∂

¯̃
Gh

∂τ
+

∑
k∈N

I

∫
Γk
J

Vk
∂

¯̃
Gh

∂τ
= −

∑
k∈N

V

Vk(
¯̃
Gh

k
− ¯̃

Gh

k−1
)

N∑
k=0

∫
Γk
N

∂H̃h

∂τ
ξ̄h = 0

∑
k∈N

I

∫
Γk
J

∂H̃h

∂τ
W̄k =

∑
k∈N

I

Ik

2π
W̄k

for all (G̃h, ξh,Wk) ∈ Yh × Ph × C, k ∈ NI .

Since Xh(0) ⊂ Yh and

∫
Γk
J

∂H̃h

∂τ
= H̃k

h − H̃k−1
h , it is straightforward to show that if H̃h

is solution to Problem 4 then is also a solution to Problem 3. Moreover, from the following
theorem we obtain the equivalence between problems 3 and 4.

Theorem 2 Problem 4 has a unique solution.

Proof Let H̃h ∈ Yh, Vh ∈ Ph and Vk ∈ C, k ∈ NI be a solution of the corresponding Problem 4
with Vk = 0, k ∈ NV and Ik = 0, k ∈ NI , that is,

a(H̃h, G̃h) +

N∑
k=0

∫
Γk
N

Vh
∂

¯̃
Gh

∂τ
+

∑
k∈N

I

∫
Γk
J

Vk
∂

¯̃
Gh

∂τ
= 0 ∀G̃h ∈ Yh ,

N∑
k=0

∫
Γk
N

∂H̃h

∂τ
ξ̄h = 0 ∀ξh ∈ Ph ,

∑
k∈N

I

∫
Γk
J

∂H̃h

∂τ
W̄k = 0 ∀Wk ∈ C, k ∈ NI .

Taking G̃h := H̃h, ξh := Vh and Wk := Vk, k ∈ NI , we obtain

a(H̃h, H̃h) +

N∑
k=0

∫
Γk
N

Vh
∂

¯̃
Hh

∂τ
+

∑
k∈N

I

∫
Γk
J

Vk
∂

¯̃
Hh

∂τ
= 0 ,

N∑
k=0

∫
Γk
N

∂H̃h

∂τ
V̄h = 0 ,

∑
k∈N

I

∂H̃h

∂τ
V̄k = 0.

Therefore, a(H̃h, H̃h) = 0. We recall that the sesquilinear form a(·, ·) is elliptic in H1
−1(Ω)

then H̃h = 0. Thus, we have

N∑
k=0

∫
Γk
N

Vh
∂

¯̃
Gh

∂τ
+

∑
k∈N

I

∫
Γk
J

Vk
∂

¯̃
Gh

∂τ
= 0 ∀G̃h ∈ Yh . (32)

By proceeding as in Lemma 3 it is straightforward to show that, for each k ∈ NI there exists

G̃k,h ∈ Yh such that

∂G̃k,h

∂τ
=

{
Vk on Γk

J
,

0 on ∂Ω \ Γk
J
.
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By taking G̃h = G̃k,h in (32) we get |Γk
J
||Vk|2 = 0 and then Vk = 0, k ∈ NI . Next, we prove

that Vh also vanishes. With this aim, for each k ∈ N , we introduce the curve γk(x) with end

points xk and x and lying in Γk
N

(see Fig. 13). For any k ∈ N we define G̃k,h ∈ Yh such that,
on ΓN ∪ ΓJ ∪ ΓE , satisfies

G̃k,h(x) :=


0 x ∈ e0h, x ∈ Γ i

J
, 1 ≤ i ≤ k, x ∈ Γ i

N
, 0 ≤ i < k,∫

γk(x)
Vh x ∈ Γk

N
,∫

Γk
N

Vh x ∈ Γ i
J
, k < i < N, x ∈ Γ i

N
, k ≤ i < N.

On ΓE we define G̃k,h as in Remark 3. Then, by taking G̃h = G̃k,h in (32) we get Vh = 0 on

Γk
N
, ∀k ∈ N , and thus Vh = 0 on ΓN . ⊓⊔
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