Skip to main content
Log in

A Novel Supermesh Method for Computing Solutions to the Multi-material Stefan Problem with Complex Deforming Interfaces and Microstructure

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A novel supermesh method that was presented for computing solutions to the multimaterial heat equation in complex stationary geometries with microstructure, is now applied for computing solutions to the Stefan problem involving complex deforming geometries with microstructure. The supermesh is established by combining the underlying (fixed) structured rectangular grid with the (deforming) piecewise linear interfaces reconstructed by the multi-material moment-of-fluid method. The temperature diffusion equation with Dirichlet boundary conditions at interfaces is solved by the linear exact multi-material finite volume method upon the supermesh. The interface propagation equation is discretized using the unsplit cell-integrated semi-Lagrangian method. The level set method is also coupled during this process in order to assist in the initialization of the (transient) provisional velocity field. The resulting method is validated on both canonical and challenging benchmark tests. Algorithm convergence results based on grid refinement are reported. It is found that the new method approximates solutions to the Stefan problem efficiently, compared to traditional approaches, due to the localized finite volume approximation stencil derived from the underlying supermesh. The new deforming boundary supermesh approach enables one to compute many kinds of complex deforming boundary problems with the efficiency properties of a body fitted mesh and the robustness of a “cut-cell” (a.k.a. “embedded boundary” or “immersed”) method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

Data Availability Statement

Data will be made available on reasonable request.

Abbreviations

e :

Internal energy

\(\rho \) :

Density

\(C_v\) :

Specific heat at constant volume

T :

Time

\(\kappa \) :

Thermal conductivity

\(\theta \) :

Temperature

\(\theta _{sat}\) :

Saturation temperature

\(\varvec{x},\varvec{y}\) :

Physical coordinate

\(\varGamma \) :

Interface

\(\phi \) :

Signed distance function

\({\varvec{n}}\) :

Normal

V :

Velocity

L :

Latent heat

b :

Intercept

\(E,\epsilon \) :

Error

M :

Number of materials

\(F,F_{1},F_{2},\ldots ,F_{M}\) :

Material volume fraction

\(\varvec{x}_{1},\varvec{x}_{2},\ldots ,\varvec{x}_{M}\) :

Material centroid

\(\varOmega , \varOmega _{1},\varOmega _{2},\ldots ,\varOmega _{M}\) :

Material domain(s)

\(m,m1,m2,\ldots \) :

Material number

q :

Heat flux

\(\omega \) :

Weights

A :

Area

References

  1. Abubakar, A.A., Arif, A.F.M., Akhtar, S.S., Mostaghimi, J.: Splats formation, interaction and residual stress evolution in thermal spray coating using a hybrid computational model. J. Therm. Spray Technol. 28(3), 359–377 (2019)

    Article  Google Scholar 

  2. Andriotis, A., Gavaises, M., Arcoumanis, C.: Vortex flow and cavitation in diesel injector nozzles. J. Fluid Mech. 610, 195–215 (2008)

    Article  MATH  Google Scholar 

  3. Arcoumanis, C., Gavaises, M., Flora, H., Roth, H.: Visualisation of cavitation in diesel engine injectors. Méc. Ind. 2(5), 375–381 (2001)

    Article  Google Scholar 

  4. Arienti, M., Sussman, M.: A numerical study of the thermal transient in high-pressure diesel injection. Int. J. Multiph. Flow 88, 205–221 (2017)

    Article  Google Scholar 

  5. Bao, J.W., Wilczak, J.M., Choi, J.K., Kantha, L.H.: Numerical simulations of air–sea interaction under high wind conditions using a coupled model: a study of hurricane development. Mon. Weather Rev. 128(7), 2190–2210 (2000)

    Article  Google Scholar 

  6. Bartrons, E., Oliet, C., Gutierrez, E., Naseri, A., Pérez-Segarra, C.D.: A finite volume method to solve the frost growth using dynamic meshes. Int. J. Heat Mass Transf. 124, 615–628 (2018)

    Article  Google Scholar 

  7. Bellet, M., Fachinotti, V.D.: ALE method for solidification modelling. Comput. Methods Appl. Mech. Eng. 193(39–41), 4355–4381 (2004)

    Article  MATH  Google Scholar 

  8. Berger, M.: A note on the stability of cut cells and cell merging. Appl. Numer. Math. 96, 180–186 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Can, E., Prosperetti, A.: A level set method for vapor bubble dynamics. J. Comput. Phys. 231(4), 1533–1552 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caramana, E.J., Shashkov, M.J.: Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian subzonal masses and pressures. J. Comput. Phys. 142(2), 521–561 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, S., Merriman, B., Osher, S., Smereka, P.: A simple level set method for solving Stefan problems. J. Comput. Phys. 135(1), 8–29 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christiansen, R.L., Dendy Sloan, E., Jr.: Mechanisms and kinetics of hydrate formation. Ann. N. Y. Acad. Sci. 715(1), 283–305 (1994)

    Article  Google Scholar 

  13. Colella, P., Graves, D.T., Keen, B.J., Modiano, D.: A Cartesian grid embedded boundary method for hyperbolic conservation laws. J. Comput. Phys. 211(1), 347–366 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Das, S.P., Lefèvre, F., Bonjour, J., Khandekar, S.: b, Parametric study of a two-phase oscillating flow in a capillary tube. In: Proceedings of 15th International Heat Pipe Conference (2010)

  15. Diao, P.: The Parareal Algorithm Applied to the Stefan Problem. Ph.D. thesis, The Florida State University (2020)

  16. Dyadechko, V., Shashkov, M.: Moment-of-fluid interface reconstruction. Los Alamos report LA-UR-05-7571 (2005)

  17. Dyadechko, V., Shashkov, M.: Reconstruction of multi-material interfaces from moment data. J. Comput. Phys. 227(11), 5361–5384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Esmaeeli, A., Tryggvason, G.: Computations of film boiling. Part I: numerical method. Int. J. Heat Mass Transf. 47(25), 5451–5461 (2004)

    Article  MATH  Google Scholar 

  19. Faghri, A.: Review and advances in heat pipe science and technology. J. Heat Transf. 134(12) (2012)

  20. Fan, Z., Liou, F.: Numerical modeling of the additive manufacturing (AM) processes of titanium alloy. In: Nurul Amin A.K.M. (ed.) Titanium Alloys—Towards Achieving Enhanced Properties for Diversified Applications, pp. 3–28. InTech, Croatia (2012)

  21. Frank, F.C.: Radially symmetric phase growth controlled by diffusion. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 201(1067), 586–599 (1950)

    MathSciNet  MATH  Google Scholar 

  22. Ghosh, S., Moorthy, S.: An arbitrary Lagrangian–Eulerian finite element model for heat transfer analysis of solidification processes. Numer. Heat Transf. 23(3), 327–350 (1993)

    Article  Google Scholar 

  23. Gibou, F., Chen, L., Nguyen, D., Banerjee, S.: A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with phase change. J. Comput. Phys. 222(2), 536–555 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gibou, F., Fedkiw, R.: A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains, with applications to the Stefan problem. J. Comput. Phys. 202(2), 577–601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gibou, F., Fedkiw, R., Caflisch, R., Osher, S.: A level set approach for the numerical simulation of dendritic growth. J. Sci. Comput. 19(1–3), 183–199 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gibou, F., Fedkiw, R.P., Cheng, L.-T., Kang, M.: A second-order-accurate symmetric discretization of the Poisson equation on irregular domains. J. Comput. Phys. 176(1), 205–227 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Haghani-Hassan-Abadi, R., Fakhari, A., Rahimian, M.-H.: Phase-change modeling based on a novel conservative phase-field method. J. Comput. Phys. 432, 110111 (2021)

    Article  MathSciNet  Google Scholar 

  28. Helenbrook, B.T., Hrdina, J.: High-order adaptive arbitrary-Lagrangian–Eulerian (ALE) simulations of solidification. Comput. Fluids 167, 40–50 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Höhmann, C., Stephan, P.: Microscale temperature measurement at an evaporating liquid meniscus. Exp. Therm. Fluid Sci. 26(2–4), 157–162 (2002)

    Article  Google Scholar 

  30. Jemison, M., Sussman, M., Shashkov, M.: Filament capturing with the multimaterial moment-of-fluid method. J. Comput. Phys. 285, 149–172 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Juric, D., Tryggvason, G.: A front-tracking method for dendritic solidification. J. Comput. Phys. 123(1), 127–148 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Juric, D., Tryggvason, G.: Computations of boiling flows. Int. J. Multiph. Flow 24(3), 387–410 (1998)

    Article  MATH  Google Scholar 

  33. Kaiser, J.W.J., Adami, S., Akhatov, I.S., Adams, N.A.: A semi-implicit conservative sharp-interface method for liquid–solid phase transition. Int. J. Heat Mass Transf. 155, 119800 (2020)

    Article  Google Scholar 

  34. Khalloufi, M., Mesri, Y., Valette, R., Massoni, E., Hachem, E.: High fidelity anisotropic adaptive variational multiscale method for multiphase flows with surface tension. Comput. Methods Appl. Mech. Eng. 307, 44–67 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Koo, E., Pagni, P.J., Weise, D.R., Woycheese, J.P.: Firebrands and spotting ignition in large-scale fires. Int. J. Wildland Fire 19(7), 818–843 (2010)

    Article  Google Scholar 

  36. Kopriva, D.A., Nordström, J., Gassner, G.J.: On the theoretical foundation of overset grid methods for hyperbolic problems: well-posedness and conservation. J. Comput. Phys. 448, 110732 (2022)

    Article  MathSciNet  Google Scholar 

  37. Kumar, V., Durst, F., Ray, S.: Modeling moving-boundary problems of solidification and melting adopting an arbitrary Lagrangian–Eulerian approach. Numer. Heat Transf. Part B Fundam. 49(4), 299–331 (2006)

    Article  Google Scholar 

  38. Kundan, A., Nguyen, T.T.T., Plawsky, J.L., Wayner, P.C., Jr., Chao, D.F., Sicker, R.J.: Arresting the phenomenon of heater flooding in a wickless heat pipe in microgravity. Int. J. Multiph. Flow 82, 65–73 (2016)

    Article  Google Scholar 

  39. Kundan, A., Plawsky, J.L., Wayner, P.C., Jr.: Effect of capillary and Marangoni forces on transport phenomena in microgravity. Langmuir 31(19), 5377–5386 (2015)

    Article  Google Scholar 

  40. Le Chenadec, V., Pitsch, H.: A 3d unsplit forward/backward volume-of-fluid approach and coupling to the level set method. J. Comput. Phys. 233, 10–33 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Lakehal, D.: Highly-resolved les of turbulent convective flow along a PWR rod bundle. Int. J. Heat Mass Transf. 122, 785–794 (2018)

    Article  Google Scholar 

  42. Lakehal, D.: Status and future developments of large-Eddy simulation of turbulent multi-fluid flows (leis and less). Int. J. Multiph. Flow 104, 322–337 (2018)

    Article  MathSciNet  Google Scholar 

  43. Liu, Y., Sussman, M., Lian, Y., Yousuff Hussaini, M.: A moment-of-fluid method for diffusion equations on irregular domains in multi-material systems. J. Comput. Phys. 402, 109017 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  44. Losasso, F., Fedkiw, R., Osher, S.: Spatially adaptive techniques for level set methods and incompressible flow. Comput. Fluids 35(10), 995–1010 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Losasso, F., Gibou, Frédéric, F.R.: Simulating water and smoke with an octree data structure. In: SIGGRAPH ’04, pp. 457–462. Association for Computing Machinery, New York, NY, USA (2004)

  46. Lynch, D.R., O’Neill, K.: Continuously deforming finite elements for the solution of parabolic problems, with and without phase change. Int. J. Numer. Methods Eng. 17(1), 81–96 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  47. Machenhauer, B., Olk, M.: The implementation of the semi-implicit scheme in cell-integrated semi-Lagrangian models. Atmos. Ocean 35(sup1), 103–126 (1997)

    Article  Google Scholar 

  48. Markos, M., Ajaev, V.S., Homsy, G.M.: Steady flow and evaporation of a volatile liquid in a wedge. Phys. Fluids 18(9), 092102 (2006)

    Article  Google Scholar 

  49. Maydanik, Y.F.: Loop heat pipes. Appl. Therm. Eng. 25(5–6), 635–657 (2005)

    Article  Google Scholar 

  50. Meirmanov, A.M.: The Stefan Problem, vol. 3. Walter de Gruyter, Berlin (2011)

    MATH  Google Scholar 

  51. Milcent, T., Lemoine, A.: Moment-of-fluid analytic reconstruction on 3d rectangular hexahedrons. J. Comput. Phys. 409, 109346 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  52. Mittal, R., Ni, R., Seo, J.-H.: The flow physics of Covid-19. J. Fluid Mech. (2020). https://doi.org/10.1017/jfm.2020.330

  53. Mullins, W.W., Sekerka, R.F.: Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35(2), 444–451 (1964)

    Article  Google Scholar 

  54. Mullins, W.W., Sekerka, R.F.: Morphological stability of a particle growing by diffusion or heat flow. J. Appl. Phys. 34(2), 323–329 (1963)

    Article  Google Scholar 

  55. Nair, R.D., Machenhauer, B.: The mass-conservative cell-integrated semi-Lagrangian advection scheme on the sphere. Mon. Weather Rev. 130(3), 649–667 (2002)

    Article  Google Scholar 

  56. Nielsen, A.S.: Feasibility Study of the Parareal Algorithm. Ph.D. dissertation (2012)

  57. Palmore, J., Desjardins, O.: A volume of fluid framework for interface-resolved simulations of vaporizing liquid–gas flows. J. Comput. Phys. 399, 108954 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  58. Panchamgam, S.S., Chatterjee, A., Plawsky, J.L., Wayner, P.C., Jr.: Comprehensive experimental and theoretical study of fluid flow and heat transfer in a microscopic evaporating meniscus in a miniature heat exchanger. Int. J. Heat Mass Transf. 51(21–22), 5368–5379 (2008)

    Article  MATH  Google Scholar 

  59. Papac, J., Helgadottir, A., Ratsch, C., Gibou, F.: A level set approach for diffusion and Stefan-type problems with robin boundary conditions on quadtree/octree adaptive cartesian grids. J. Comput. Phys. 233, 241–261 (2013)

    Article  MathSciNet  Google Scholar 

  60. Pawlowski, L.: The Science and Engineering of Thermal Spray Coatings. Wiley, New York (2008)

    Book  Google Scholar 

  61. Pei, C., Sussman, M., Hussaini, M.Y.: A space-time discontinuous Galerkin spectral element method for the Stefan problem. Discrete Contin. Dyn. Syst. Ser. B 23(9), 3595–3622 (2018)

    MathSciNet  MATH  Google Scholar 

  62. Pei, C., Vahab, M., Sussman, M., Yousuff Hussaini, M.: A hierarchical space-time spectral element and moment-of-fluid method for improved capturing of vortical structures in incompressible multi-phase/multi-material flows. J. Sci. Comput. 81(3), 1527–1566 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  63. Prasad, V., Chatterjee, A.: A full 3-dimensional adaptive finite volume scheme for transport and phase-change processes, part I: formulation and validation. Numer. Heat Transf. Part A Appl. 37(8), 801–821 (2000)

    Article  Google Scholar 

  64. Pruss, J., Saal, J., Simonett, G.: Existence of analytic solutions for the classical Stefan problem. Math. Ann. 338(3), 703–756 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  65. Reutzsch, J., Kieffer-Roth, C., Weigand, B.: A consistent method for direct numerical simulation of droplet evaporation. J. Comput. Phys. 413, 109455 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  66. Rodgers, T., Madison, J.D., Mitchell, J.A., Tikare, V.: Numerical simulation of microstructural evolution during additive manufacturing of metals. Technical report, Sandia National Laboratory (SNL-NM), Albuquerque, NM (United States) (2017)

  67. Ronquist, E.M., Patera, A.T.: A Legendre spectral element method for the Stefan problem. Int. J. Numer. Methods Eng. 24(12), 2273–2299 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  68. Roth, H., Gavaises, M., Arcoumanis, C.: Cavitation initiation, its development and link with flow turbulence in diesel injector nozzles. Int. J. Engines 111(3), 561–580 (2002)

    Google Scholar 

  69. Sato, Y., Ničeno, B.: A sharp-interface phase change model for a mass-conservative interface tracking method. J. Comput. Phys. 249, 127–161 (2013)

    Article  Google Scholar 

  70. Sauter, E.J., Muyakshin, S.I., Charlou, J.-L., Schlüter, M., Boetius, A., Jerosch, K., Damm, E., Foucher, J.-P., Klages, M.: Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth Planet. Sci. Lett. 243(3), 354–365 (2006)

    Article  Google Scholar 

  71. Savino, R., Paterna, D.: Marangoni effect and heat pipe dry-out. Phys. Fluids 18(11), 118103 (2006)

    Article  MATH  Google Scholar 

  72. Saye, R.: Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: part I. J. Comput. Phys. 344, 647–682 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  73. Srinivas Shastri, S., Allen, R.M.: Method of lines and enthalpy method for solving moving boundary problems. Int. Commun. Heat Mass Transf 25(4), 531–540 (1998)

    Article  Google Scholar 

  74. Son, G., Dhir, V.K., Ramanujapu, N.: Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface. J. Heat Transf. 121(3), 623–631 (1999)

    Article  Google Scholar 

  75. Stephan, P.C., Busse, C.A.: Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls. Int. J. Heat Mass Transf. 35(2), 383–391 (1992)

    Article  Google Scholar 

  76. Sussman, M.: A second order coupled levelset and volume of fluid method for computing growth and collapse of vapor bubbles. J. Comput. Phys. 187, 110–136 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  77. Tanguy, S., Sagan, M., Lalanne, B., Couderc, F., Colin, C.: Benchmarks and numerical methods for the simulation of boiling flows. J. Comput. Phys. 264, 1–22 (2014)

    Article  MATH  Google Scholar 

  78. Tanguy, S., Menard, T., Berlemont, A.: A level set method for vaporizing two-phase flows. J. Comput. Phys. 221(2), 837–853 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  79. Touil, H., Yousuff Hussaini, M., Sussman, M.: Tracking discontinuities in hyperbolic conservation laws with spectral accuracy. J. Comput. Phys. 225(2), 1810–1826 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  80. Tryggvason, G., Jiacai, L.: Direct numerical simulations of flows with phase change. Proc. IUTAM 15, 2–13 (2015)

    Article  Google Scholar 

  81. Vahab, M., Sussman, M., Shoele, K.: Fluid–structure interaction of thin flexible bodies in multi-material multi-phase systems. J. Comput. Phys. 429, 110008 (2021)

    Article  MathSciNet  Google Scholar 

  82. Voller, V.R.: An enthalpy method for modeling dendritic growth in a binary alloy. Int. J. Heat Mass Transf. 51(3–4), 823–834 (2008)

    Article  MATH  Google Scholar 

  83. Voller, V.R., Cross, M., Markatos, N.C.: An enthalpy method for convection/diffusion phase change. Int. J. Numer. Methods Eng. 24(1), 271–284 (1987)

    Article  MATH  Google Scholar 

  84. Vuik, C.: Some historical notes about the Stefan problem. Technische Universiteit Delft Delft University of Technology Report 93-07 (1993)

  85. Wang, G., Senocak, I., Shyy, W., Ikohagi, T., Cao, S.: Dynamics of attached turbulent cavitating flows. Progr. Aerosp. Sci. 37(6), 551–581 (2001)

    Article  Google Scholar 

  86. Wang, Z., Zheng, X., Chryssostomidis, C., Karniadakis, G.E.: A phase-field method for boiling heat transfer. J. Comput. Phys. 435, 110239 (2021)

    Article  MathSciNet  Google Scholar 

  87. Warrier, G.R., Dhir, V.K., Chao, D.F.: Nucleate pool boiling experiment (NPBX) in microgravity: international space station. Int. J. Heat Mass Transf. 83(Supplement C), 781–798 (2015)

    Article  Google Scholar 

  88. Warzinski, R.P., Lynn, R., Haljasmaa, I., Leifer, I., Shaffer, F., Anderson, B.J., Levine, J.S.: Dynamic morphology of gas hydrate on a methane bubble in water: observations and new insights for hydrate film models. Geophys. Res. Lett. 41(19), 6841–6847 (2014)

    Article  Google Scholar 

  89. Xiong, Q., Robson, J.D., Chang, L., Fellowes, J.W., Smith, M.C.: Numerical simulation of grain boundary carbides evolution in 316h stainless steel. J. Nucl. Mater. 508, 299–309 (2018)

    Article  Google Scholar 

  90. Yang, L., Homsy, G.M.: Steady three-dimensional thermocapillary flows and dryout inside a v-shaped wedge. Phys. Fluids 18(4), 042107 (2006)

    Article  Google Scholar 

  91. Yazdani, M., Soteriou, M.C., Sun, F., Chaudhry, Z.: Prediction of the thermo-fluids of gearbox systems. Int. J. Heat Mass Transf. 81, 337–346 (2015)

    Article  Google Scholar 

  92. Zhang, W., Almgren, A., Day, M., Nguyen, T., Shalf, J., Unat, D.: Boxlib with tiling: an adaptive mesh refinement software framework. SIAM J. Sci. Comput. 38(5), S156–S172 (2016)

    Article  MathSciNet  Google Scholar 

  93. Zou, A., Chanana, A., Agrawal, A., Wayner, P.C., Jr., Maroo, S.C.: Steady state vapor bubble in pool boiling. Sci. Rep. 6, 20240 (2016)

    Article  Google Scholar 

Download references

Funding

This material is based upon work supported by National Aeronautics and Space Administration under the Grant Nos. NNX16AQ65G S003, 80NSSC20K0352.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Sussman.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Sussman, M., Lian, Y. et al. A Novel Supermesh Method for Computing Solutions to the Multi-material Stefan Problem with Complex Deforming Interfaces and Microstructure. J Sci Comput 91, 19 (2022). https://doi.org/10.1007/s10915-022-01783-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01783-1

Keywords

Navigation