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Abstract

We introduce a general framework for enforcing local or global maximum principles in high-order space-
time discretizations of a scalar hyperbolic conservation law. We begin with sufficient conditions for a
space discretization to be bound preserving (BP) and satisfy a semi-discrete maximum principle. Next,
we propose a global monolithic convex (GMC) flux limiter which has the structure of a flux-corrected
transport (FCT) algorithm but is applicable to spatial semi-discretizations and ensures the BP property
of the fully discrete scheme for strong stability preserving (SSP) Runge-Kutta time discretizations. To
circumvent the order barrier for SSP time integrators, we constrain the intermediate stages and/or the
final stage of a general high-order RK method using GMC-type limiters. In this work, our theoretical
and numerical studies are restricted to explicit schemes which are provably BP for sufficiently small
time steps. The new GMC limiting framework offers the possibility of relaxing the bounds of inequality
constraints to achieve higher accuracy at the cost of more stringent time step restrictions. The ability of
the presented limiters to preserve global bounds and recognize well-resolved smooth solutions is verified
numerically for three representative RK methods combined with weighted essentially nonoscillatory
(WENO) finite volume space discretizations of linear and nonlinear test problems in 1D.

Keywords: hyperbolic conservation laws; positivity-preserving WENO schemes; SSP Runge-Kutta
time stepping; flux-corrected transport; monolithic convex limiting

1. Introduction

High-resolution numerical schemes for hyperbolic conservation laws are commonly equipped with
mechanisms that guarantee preservation of local and/or global bounds. Bound-preserving (BP) second-
order approximations can be constructed, e.g., using flux-corrected transport (FCT) algorithms [5, 45]

∗Corresponding author
Email addresses: kuzmin@math.uni-dortmund.de (Dmitri Kuzmin), manuel.quezada@kaust.edu.sa (Manuel

Quezada de Luna), david.ketcheson@kaust.edu.sa (David I. Ketcheson), jgruell@mathematik.tu-dortmund.de
(Johanna Grüll)

June 14, 2021

ar
X

iv
:2

00
9.

01
13

3v
2 

 [
m

at
h.

N
A

] 
 1

1 
Ju

n 
20

21



or total variation diminishing (TVD) limiters [21, 22]. If the spatial semi-discretization is BP and time
integration is performed using a strong stability preserving (SSP) Runge-Kutta method [13, 14], the
fully discrete method can be shown to satisfy the corresponding maximum principle.

Discretization methods that use limiters to enforce preservation of local bounds can be at most
second-order accurate [47]. In contrast, the imposition of global bounds does not generally degrade the
rates of convergence to smooth solutions. For example, the use of weighted essentially nonoscillatory
(WENO) reconstructions in the context of finite volume methods or discontinuous Galerkin (DG)
methods both with additional limiting makes it possible to construct positivity-preserving schemes of
very high order in space [47]. However, the requirement that the time integrator be SSP imposes a
fourth-order barrier on the overall accuracy of explicit Runge-Kutta schemes and a sixth-order barrier
on the accuracy of implicit ones. Moreover, only the first-order accurate backward Euler method is
SSP for arbitrarily large time steps [13].

The general framework of spatially partitioned Runge-Kutta (SPRK) methods [24, 27] makes it
possible to combine different time discretizations in an adaptive manner. Following the design of lim-
iters for space discretizations, the weights of a flux-based SPRK method [27] or blending functions
of a partition of unity finite element method (PUFEM) [38] can be chosen to enforce global or lo-
cal bounds. The weights of the SPRK scheme proposed in [1] are defined using a WENO smoothness
indicator which reduces the magnitude of undershoots/overshoots but does not ensure positivity preser-
vation. Examples of BP limiters for high-order time discretizations can be found in [1, 10, 12, 39, 42].
Perhaps the simplest approaches to limiting in time are predictor-corrector algorithms based on the
FCT methodology. They have already proven their worth in the context of multistep methods [39],
Runge-Kutta time discretizations [42], and space-time finite element schemes [12].

The limiting tools proposed in the present paper constrain high-order spatial semi-discretizations
and/or stages of a general Runge-Kutta (RK) method to satisfy discrete maximum principles for cell
averages. As an alternative to FCT algorithms, which are defined at the fully discrete level and inhibit
convergence to steady-state solutions, we design a limiter that exploits the BP property of convex
combinations and is based on less restrictive constraints than the convex limiting method introduced
in [32]. We prove that the new limiter ensures the validity of a semi-discrete maximum principle
for the space discretization. Non-SSP stages of a high-order RK method can be constrained using
the same algorithm. In this work, we incorporate GMC limiters into high-order explicit WENO-RK
discretizations of 1D hyperbolic problems. The same flux correction procedures can be used for other
space discretizations, such as high-order Bernstein finite element approximations [19, 20, 42].

The rest of this paper is organized as follows. In Section 2, we constrain a high-order finite volume
discretization of a scalar conservation law using a new general criterion for convex limiting in space.
In Section 2.1, we prove the BP property of semi-discrete schemes satisfying this criterion. To our
knowledge, this is the first theoretical result of this kind. In Section 2.2, we derive the new convex
limiter for space discretizations. In Section 3, we show how this limiter can be used to constrain the final
stage and intermediate stages of a high-order RK method. We also mention the possibility of slope
limiting for bound-violating high-order reconstructions. We discuss the choice and implementation
of appropriate limiting strategies for three kinds of RK methods in Section 4, perform numerical
experiments in Section 5, and draw preliminary conclusions in Section 6. The details of the algorithms
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that we use in our 1D numerical examples are provided in Appendix A and Appendix B.

2. Flux limiting for spatial semi-discretizations

We consider high-order finite volume approximations to a hyperbolic conservation law of the form

∂u

∂t
+∇ · f(u) = 0 in Ω ⊂ Rd, d ∈ {1, 2, 3}. (1)

For simplicity, we assume that the domain Ω is a hyperrectangle and prescribe periodic boundary
conditions on ∂Ω. The initial condition is given by

u(·, 0) = u0 in Ω. (2)

We discretize Ω using a mesh consisting of Nh computational cellsKi, i = 1, . . . , Nh. The unit outward
normal nij is constant on each face Sij = ∂Ki ∩ ∂Kj of the boundary ∂Ki =

⋃
j∈Ni

Sij . The volume
of Ki and area of Sij are denoted by |Ki| and |Sij |, respectively. The set Ni contains the indices of
von Neumann neighbors of cell i, i.e., the indices of neighbor cells Kj , j 6= i such that |Sij | > 0.
A spatially varying numerical flux across the edge or face Sij is denoted by H(ûi(x), ûj(x),nij), where
ûi(x) and ûj(x) are traces of polynomial reconstructions in Ki and Kj , respectively, evaluated at
x ∈ Sij . Henceforth, for simplicity in the notation, we omit the dependence of û on x.

Using the divergence theorem and approximating the flux f(u) ·nij across Sij by a suitably chosen
numerical flux H(ûi, ûj ,nij), we obtain a system of ordinary differential equations

|Ki|
dui
dt

= −
∑
j∈Ni

∫
Sij

H(ûi, ûj ,nij) ds, i ∈ {1, . . . , Nh} (3)

for the cell averages ui. The general form of the Lax-Friedrichs (LF) flux across Sij is

H(ûi, ûj ,nij) =
f(ûj) + f(ûi)

2
· nij −

λij
2

(ûj − ûi), (4)

where λij is a strictly positive upper bound for the wave speed of the Riemann problem associated
with face Sij . In the local Lax-Friedrichs (LLF) method, λij is a local upper bound. In the classical
LF method, the same global upper bound λij = λ is taken for all faces.

2.1. Bound-preserving schemes
The first-order LLF scheme uses the cell averages ûi = ui and ûj = uj in (4). The numerical flux

H(ui, uj ,nij) can be derived from the conservation law by assuming that the Riemann solution has
the structure shown in Fig. 1, consisting of two traveling discontinuities. The conservation law holds
if the intermediate state (hereafter referred to as the bar state) is given by [40]

ūLij =
uj + ui

2
− f(uj)− f(ui)

2λij
· nij . (5)
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Figure 1: Structure of the Lax-Friedrichs approximate Riemann solution. The left and right states are the cell averages
ui, uj , while the middle state is ūL

ij . The discontinuities separating these states travel at speeds ±λij .

By the mean value theorem, the low-order (hence superscript L) bar states ūLij satisfy [32]

min{ui, uj} ≤ ūLij ≤ max{ui, uj}. (6)

Using (5) and the fact that
∑

j∈Ni
|Sij |f(ui) · nij = 0, the first-order LLF scheme can be written as

|Ki|
dui
dt

=
∑
j∈Ni

|Sij |λij(ūLij − ui) = di(ū
L
i − ui), (7)

where
ūLi =

1

di

∑
j∈Ni

|Sij |λij ūLij , di =
∑
j∈Ni

|Sij |λij . (8)

The representation of the right-hand side in terms of the jumps ūLij − ui in the Riemann solution is
known as the fluctuation form of the finite volume scheme [40]. The representation in terms of the
single jump ūLi − ui reveals that an equilibrium state must be a convex combination of ūLij .

Definition 1. [17] We say G ⊂ R is an invariant set for the initial value problem (1) if it holds that

u(x, 0) ∈ G ∀x ∈ Ω̄ =⇒ u(x, t) ∈ G ∀x ∈ Ω̄

for all t > 0.
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Definition 2. We say a semi-discretization of (1) is bound preserving (BP) w.r.t. G = [umin, umax] if

ui(0) ∈ G ∀i =⇒ ui(t) ∈ G ∀i ∀t > 0.

In this case we refer to umin and umax as global bounds. If G is an invariant set of the initial value
problem, the scheme is called invariant domain preserving (IDP) [17, 32] or (in case G is the positive
orthant) positivity preserving [23, 46, 47].

Theorem 1 (Semi-discrete maximum principle). Let

G = {w ∈ RNh : wi ∈ [α, β], i = 1, . . . , Nh}

and consider the initial value problem

u′i(t) = ai(u)(g(u)i − ui), ui(0) = u0i , (9)

where g is such that

u ∈ G =⇒ g(u) ∈ G (10)

and

0 ≤ ai(u) ≤ C ∀u ∈ G. (11)

Furthermore, assume that (9) has a unique solution for all t > 0 for all u0 ∈ G. Then the solution
satisfies

u(t) ∈ G ∀ t ≥ 0. (12)

Proof. If ai is independent of i, then this is a direct application of Nagumo’s lemma (see e.g. [4,
Theorem 4.1] or [3, Theorem 3.1]. For the general case, observe that for u ∈ G and ε < 1/C we have

ui(t) + εu′i(t) = (1− εai(u(t)))ui + εai(u(t))g(u)i ∈ [α, β].

The result then follows from [6, Lemma 2].

The assumption of existence and uniqueness above can be avoided by invoking other assumptions
such as Lipschitz continuity; see [4].

Applying the theorem above to the first-order Lax-Friedrichs scheme (7), we obtain

Corollary 1. Let global bounds umin, umax be given and let

G = {w ∈ RNh : w ∈ [umin, umax], i = 1, . . . , Nh}.

Assume that λij is uniformly bounded onG. Then the scheme (7) is bound preserving w.r.t. [umin, umax].
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Proof. The first-order scheme (7) is of the form (9) with ai = di/|Ki| and g(u)i = ūi. The assumption
on λij ensures that condition (11) holds. The validity of (10) follows from the fact that ūi = ūLi is a
convex combination of the bar states ūLij satisfying (6).

Let G = [umin, umax] be an invariant set of problem (1). Define the range Gi = [umin
i , umax

i ] ⊆ G of
numerically admissible states using (global or local) bounds umin

i and umax
i such that

umin ≤ umin
i ≤ min

j∈Vi
uj ≤ ui ≤ max

j∈Vi
uj ≤ umax

i ≤ umax, (13)

where Vi is the set containing the index i and the indices of all cells that share a vertex with Ki.

Definition 3. A BP scheme of the form (9) is called local extremum diminishing (LED) [25, 26] w.r.t.
Gi(t) = [umin

i (t), umin
i (t)] ⊂ [umin, umax] at t ≥ 0 if

uj ∈ Gi ∀j ∈ Vi =⇒ gi(u) ∈ Gi.

Because of (6), the first-order scheme (7) is LED w.r.t. any Gi = [umin
i , umin

i ] such that ui, uj ∈ Gi.

2.2. Bound-preserving limiters
The accuracy of the low-order approximation can be improved by using anfidiffusive fluxes F ∗ij to

correct the bar states ūLij . The resulting generalization of (7) and (3) is given by

|Ki|
dui
dt

=
∑
j∈Ni

|Sij |λij(ū∗ij − ui) = di(ū
∗
i − ui). (14)

The flux-corrected intermediate states ū∗ij and ū
∗
i are defined as follows:

ū∗ij = ūLij +
F ∗ij
|Sij |λij

, ū∗i =
1

di

∑
j∈Ni

|Sij |λij ū∗ij = ūLi +
1

di

∑
j∈Ni

F ∗ij . (15)

For example, the high-order finite volume scheme (3) is recovered for F ∗ij = Fij , where

Fij =

∫
Sij

[H(ui, uj ,nij)−H(ûi, ûj ,nij)] ds. (16)

Introducing a free parameter γ > 0, we limit the fluxes Fij in a manner which guarantees that

(1 + γ)(umin
i − ui) ≤ ū∗i − ui ≤ (1 + γ)(umax

i − ui). (17)

The resulting scheme is BP for any γ > 0. Indeed, (14) can be written in the form (9) with

ai = (1 + γ)
di
|Ki|

, gi(u) = ui +
ū∗i − ui
1 + γ

∈ [umin
i , umax

i ]. (18)
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Let us now discuss the way to calculate the limited counterparts F ∗ij of the fluxes Fij . Recalling
the definition (15) of ū∗i , we find that the inequality constraints (17) hold if and only if

Q−i ≤
∑
j∈Ni

F ∗ij ≤ Q+
i , (19)

where
Q−i = di[(u

min
i − ūLi ) + γ(umin

i − ui)], Q+
i = di[(u

max
i − ūLi ) + γ(umax

i − ui)]. (20)

The use of γ > 0 in (20) relaxes the bounds Q±i in a way that makes the flux constraints (19) less
restrictive. As a result, higher accuracy can be achieved using larger values of γ. However, the CFL
condition for explicit schemes becomes more restrictive, as we show in Section 3 below.

By definition of di and ūLi , the bounds Q±i of the flux constraints (19) can be decomposed into

Q−ij = |Sij |λij [(umin
i − ūLij) + γ(umin

i − ui)], Q+
ij = |Sij |λij [(umax

i − ūLij) + γ(umax
i − ui)]. (21)

Localized flux limiting algorithms [9, 15, 32, 42] use such decompositions to replace inequality con-
straints for sums of fluxes by sufficient conditions that make it possible to constrain each flux indepen-
dently. The local monolithic convex (LMC) limiting algorithm proposed in [32] yields

F ∗ij =

min {Q+
ij , Fij ,−Q−ji} if Fij > 0,

max {Q−ij , Fij ,−Q+
ji} otherwise,

(22)

where Fij is the antidiffusive flux defined by (16). The LMC limiter is designed to guarantee that

Q−ij ≤ F ∗ij ≤ Q+
ij , F ∗ji = −F ∗ij , Q−ji ≤ F ∗ji ≤ Q−ji. (23)

Hence, the flux-corrected scheme is conservative and satisfies conditions (19) for i = 1, . . . , Nh.
To avoid a potential loss of accuracy due to localization of the flux constraints, we introduce a

global monolithic convex (GMC) limiter that enforces (19) using the following algorithm:

1. Calculate the sums of positive and negative antidiffusive fluxes

P+
i =

∑
j∈Ni

max{0, Fij}, P−i =
∑
j∈Ni

min{0, Fij}. (24)

2. Use the sums P±i and the bounds Q±i defined by (20) to calculate

R+
i = min

{
1,
Q+
i

P+
i

}
, R−i = min

{
1,
Q−i
P−i

}
. (25)

3. Calculate the limited antidiffusive fluxes F ∗ij = αijFij , where

αij =


min{R+

i , R
−
j } if Fij > 0,

1 if Fij = 0,

min{R−i , R+
j } if Fij < 0.

(26)
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This limiting strategy is based on Zalesak’s FCT algorithm [45] but the GMC bounds (20) are inde-
pendent of the time step, and the validity of a discrete maximum principle is guaranteed for any strong
stability preserving (SSP) Runge-Kutta time integrator [13, 14]. In Section 3, we verify this claim for
a single forward Euler step and discuss flux limiting for general Runge-Kutta stages.

3. Flux limiting for Runge-Kutta methods

Given a BP space discretization of the form (9) and a time step ∆t > 0, the first-order accurate
forward Euler (FE) method advances the cell averages ui, i = 1, . . . , Nh in time as follows:

un+1 = uni + νi(ū
n
i − uni ) = (1− νi)uni + νiū

n
i , (27)

where νi = ∆tai > 0 is a generalized ‘CFL’ number. If νi ≤ 1 then un+1
i is a convex combination of uni

and ūni . It follows that un+1
i ∈ [umin

i , umax
i ] if uni , ū

n
i ∈ [umin

i , umax
i ]. In view of (18), the fully discrete

version of the semi-discrete scheme (14) equipped with the LMC or GMC flux limiter is BP if

(1 + γ)
∆tdi
|Ki|

≤ 1. (28)

The low-order LLF scheme (7) and Zalesak’s FCT method are BP for time steps satisfying (28) with
γ = 0. The FCT fluxes F ∗ij are calculated using algorithm (24)–(26) with global bounds

Q−i =
|Ki|
∆t

(umin
i − uFEi ), Q+

i =
|Ki|
∆t

(umax
i − uFEi ) (29)

depending on uFEi = uni + ∆t
|Ki|di(ū

L
i − uni ). A localized version of FCT is defined by (22) with [34]

Q−ij =
|Ki| |Sij |
∆t|∂Ki|

(umin
i − uFEi ), Q+

ij =
|Ki| |Sij |
∆t|∂Ki|

(umax
i − uFEi ). (30)

Flux limiting techniques of this kind were considered, e.g., in [15, 32, 34]. The main advantage of
localized convex limiting lies in its applicability to systems. Since the main focus of the present paper
is on scalar conservation laws, we restrict further discussion to global MC and FCT limiters.

Remark 4. Since the FCT bounds (29) and (30) depend on the time step and on the low-order
predictor uFEi , the resulting nonlinear schemes have no semi-discrete or steady-state counterparts.

3.1. High-order Runge-Kutta methods
Let us rewrite (14) as

|Ki|
dui
dt

= −
∑
j∈Ni

|Sij |H∗ij(û), H∗ij (û) = H(ui, uj ,nij)−
F ∗ij(û)

|Sij |
, (31)

where û is a high-order piecewise-polynomial reconstruction from the cell averages u1, . . . , uNh
.
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We now discretize (14) in time using an explicit M -stage Runge-Kutta (RK) method with coeffi-
cients denoted by the vectors c, b and matrix A. The RK stage approximations y(m)

i ≈ ui(t
n + cm∆t)

to the cell averages are given by

y
(1)
i = uni , (32a)

y
(m)
i = uni −

∆t

|Ki|
∑
j∈Ni

|Sij |
m−1∑
s=1

amsH
∗
ij

(
ŷ(s)
)
, m = 2, . . . ,M. (32b)

The RK solution uRK
i ≈ ui(tn +∆t) is defined as

uRK
i = uni −

∆t

|Ki|
∑
j∈Ni

|Sij |HRK
ij , HRK

ij =
M∑
m=1

bmH
∗
ij

(
ŷ(m)

)
. (33)

Note that the intermediate cell averages y(2)i , . . . , y
(M)
i are generally not BP even for the low-order

LLF scheme, i.e., in the case ŷ(m)
i ≡ y

(m)
i . However, if a RK stage can be written as a convex

combination of forward Euler steps (27), then it inherits their BP properties. It is therefore useful to
distinguish between three classes of RK methods. To facilitate their definition, let

X(µ) = (I + µA)−1 , (34)

where µ > 0 is a stability parameter and I is the identity matrix. Furthermore, let e denote the vector
of length M with all entries equal to unity.

3.1.1. Strong stability preserving (SSP) methods
An explicit Runge-Kutta method is strong stability preserving (SSP) if it is possible to write the

stage approximations y(2)i , . . . , y
(M)
i and the final solutions uRK

i as convex combinations of forward

Euler predictors u(1)i , . . . , u
(M̃)
i . For M̃ ∈ {1, 2, 3, 5}, the optimal explicit SSP-RK methods use

u
(1)
i = un, (35a)

u
(m)
i = u

(m−1)
i − ∆t

|Ki|
∑
j∈Ni

|Sij |H∗ij(u(m−1)i ), m = 2, . . . , M̃ . (35b)

If the space discretization (31) is BP, then so is the resulting full discretization. The maximum order of
such SSP-RK time integrators is 4 in the explicit case and 6 in the implicit case [13]. For comparison
with the next class of methods, we note that SSP methods satisfy the entrywise inequalities

AX(µ) ≥ 0, AX(µ)e ≤ e, (36)

as well as

bTX(µ) ≥ 0, bTX(µ)e ≤ 1, (37)

with an SSP coefficient µ > 0 such that the fully discrete scheme is BP for ∆t ≤ µ∆tFE if the forward
Euler method is BP for ∆t ≤ ∆tFE; see [13] for details.
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3.1.2. Internal SSP methods
A larger class of RK methods satisfy (36) for some µ > 0 but may violate (37). That is, all

intermediate approximations u(1)i , . . . , u
(M̃)
i are BP for ∆t ≤ µ∆tFE but the weights of the final linear

combination uRK
i =

∑M̃
m=1 βmu

(m)
i are not necessarily positive. The family of such internal SSP

methods includes all SSP schemes, but also many other methods, such as extrapolation methods based
on the explicit Euler method (see, e.g., [18, Section II.9]), whose implementation details are presented
in Algorithm 1 and Table 1. We use these methods in some numerical experiments in Section 5. They
have an advantage over SSP methods in that they can be constructed to have any desired order of
accuracy. Since the final stage of these methods is not BP, we constrain it using a flux limiter as
described in Section 3.2.

3.1.3. General RK methods
A high-order Runge-Kutta method with Butcher stages of the form (32a)–(32b) and (33) is generally

not BP. Hence, flux limiting may be required in intermediate stages and/or in the final stage.

Algorithm 1 Explicit Euler extrapolation (Ex-Euler) for du
dt = F (u)

y(1) := un

m := 1
for s = 1→ S do

m := m+ 1
y(m) := un + ∆t

s F (un)
for k = 2→ s− 1 do

m := m+ 1
y(m) := y(m−1) + ∆t

s F (y(m−1))
end for

end for
M := m
un+1 := un +∆t

∑M
m=1 bmF (y(m))

Order Weights [b1, . . . , bM ]

2 [0, 1]
3 [0,−2, 3/2, 3/2]
4 [0, 2,−9/2,−9/2, 8/3, 8/3, 8/3]
5 [0,−4/3, 27/4, 27/4,−32/3,−32/3,−32/3, 125/24, 125/24, 125/24, 125/24]

Table 1: Weights for extrapolation methods, to be used in Algorithm 1.
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3.2. Flux limiting for the final RK stage
If the employed time-stepping method is not SSP and/or the space discretization (31) uses the

unlimited antidiffusive fluxes F ∗ij = Fij , the bound-preserving low-order FE-LLF scheme

uFEi = uni −
∆t

|Ki|
∑
j∈Ni

|Sij |HFE
ij , HFE

ij = H(uni , u
n
j ,nij) (38)

can be combined with the final stage (33) of the high-order RK-LLF method

uRK
i = uni −

∆t

|Ki|
∑
j∈Ni

|Sij |HRK
ij = uFEi +

∆t

|Ki|
∑
j∈Ni

FRK
ij , FRK

ij = |Sij |(HFE
ij −HRK

ij ) (39)

to produce a nonlinear flux-limited approximation of the form

un+1
i = uni −

∆t

|Ki|
∑
j∈Ni

|Sij |
[
αijH

RK
ij + (1− αij)HFE

ij

]
= uFEi +

∆t

|Ki|
∑
j∈Ni

αijF
RK
ij . (40)

This fully discrete scheme reduces to (38) for αij = 0 and to (33) for αij = 1. It is BP w.r.t. the
admissible set Gi = [umin

i , umax
i ] if the definition of the correction factors αij guarantees that

umin
i ≤ un+1

i ≤ umax
i . (41)

Zalesak’s FCT method [45] preserves the BP property of uFEi using algorithm (24)–(26) to calculate
correction factors αij such that the limited fluxes F ∗ij = αijF

RK
ij satisfy

Q−i =
|Ki|
∆t

(
umin
i − uFEi

)
≤
∑
j∈Ni

F ∗ij ≤
|Ki|
∆t

(
umax
i − uFEi

)
= Q+

i . (42)

We remark that the temporal accuracy of classical FCT schemes is restricted to second order. To our
knowledge, the first combination of FCT with high-order RK methods was considered in [42].

As an alternative to FCT, we propose a flux limiter that calculates F ∗ij using the GMC bounds (20)
in algorithm (24)–(26). Invoking (18), the flux-corrected scheme can again be written as

un+1
i = uni + (1 + γ)

∆tdi
|Ki|

(ūni − uni ) ,

where ūni ∈ [umin
i , umax

i ]. This proves that the fully discrete scheme is BP for time steps satisfying (28).

Remark 5. Update (40) is mass conservative in the sense that
∑Nh

i=1 |Ki|un+1
i =

∑Nh
i=1 |Ki|uni because

the correction factors satisfy the symmetry condition αij = αji and the fluxes sum to zero.

Remark 6. Unlike FCT-like predictor-corrector approaches, the GMC limiter produces correction
factors αij that do not depend on ∆t. Consequently, this flux limiting strategy leads to well-defined
nonlinear discrete problems and does not inhibit convergence to steady-state solutions.
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3.3. Flux limiting for intermediate RK stages
If the BP property needs to be enforced not only at the final stage (33) but also at intermediate

stages (32b) of the Runge-Kutta method, flux-corrected approximations of the form

y
∗,(m)
i = uni −

∆t

|Ki|
∑
j∈Ni

[
cm|Sij |HFE

ij − F ∗,(m)
ij

]
= y

FE,(m)
i +

∆t

|Ki|
∑
j∈Ni

F
∗,(m)
ij (43)

can be calculated using

y
FE,(m)
i = uni −

cm∆t

|Ki|
∑
j∈Ni

|Sij |HFE
ij , F

∗,(m)
ij = α

(m)
ij F

(m)
ij , (44)

where

F
(m)
ij = cm|Sij |HFE

ij −
m−1∑
s=1

ams

∫
Sij

Hij

(
ŷ(s)
)

ds, (45)

is the antidiffusive flux. Here we used the simplified notation

Hij(z) := H(zi(x), zj(x),nij). (46)

The correction factors α(m)
ij can be calculated as in Section 3.2. In the GMC version of the flux limiting

procedure, the bounds Q±i should be multiplied by cm.

3.4. Slope limiting for high-order reconstructions

Stagewise limiting guarantees the BP property of the cell averages y(s)i . If the calculation of
Hij

(
ŷ(s)
)
requires the BP property of the high-order reconstructions ŷ(s)i : Ki → R, it can be enforced

using slope limiting to blend a reconstructed polynomial ŷ(s)i and a BP cell average as follows:

• If an intermediate cell average yi is BP w.r.t. [umin
i , umax

i ], then there exists θi ∈ [0, 1] such that

ŷ∗i (xp) := yi + θi (ŷi(xp)− yi) ∈ [umin
i , umax

i ] (47)

at each quadrature point xp ∈ ∂Ki at which the value of ŷ∗i (xp) is required for calculation of Hij .
Adapting the Barth-Jespersen formula [2] to this setting, we define the correction factor

θi = min
p


min

{
1,

umax
i −yi

ŷi(xp)−yi

}
if ŷi(xp) > umax

i ,

1 if ŷi(xp) ∈ [umin
i , umax

i ],

min
{

1,
umin
i −yi

ŷi(xp)−yi

}
if ŷi(xp) < umin

i .

(48)

We remark that slope limiters of this kind were used, e.g., by Zhang and Shu [46, 47] in the context
of positivity-preserving WENO-DG schemes combined with SSP-RK time discretizations.
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• If the intermediate cell averages are not BP because the RK method does not satisfy (36) or the
flux limiter for F (m)

ij is deactivated, limited reconstructions of the form

ŷ∗i (xp) := uni + θi(ŷi(xp)− uni ) ∈ [umin
i , umax

i ] (49)

may be employed. The conservation properties of the limited scheme are not affected by using a
convex combination of ŷi and uni for calculation of the high-order LLF fluxes Hij(ŷ

∗
i ).

4. Case study: flux-limited WENO-RK schemes

As mentioned in the introduction, the presented flux limiters can be applied to different kinds
of high-order discretizations in space and time. In the numerical experiments of Section 5, we use a
fifth-order WENO spatial discretization combined with explicit high-order Runge-Kutta methods. The
corresponding sequence of solution updates is defined by the Butcher tableau

0
c2 a21
c3 a31 a32
...

...
. . .

cM aM1 aM2 . . . aMM−1
b1 b2 . . . bMM−1 bM .

(50)

To illustrate the use of limiting techniques for antidiffusive fluxes depending on time and/or space
discretizations, we now detail specific combinations of high-order RK methods with GMC-type flux
limiters. A numerical study of the following RK methods is performed in Section 5:

• SSP54: a fourth-order strong stability preserving method.

• ExE-RK5: a fifth-order extrapolated Euler Runge-Kutta method.

• RK76: a sixth-order Runge-Kutta method.

The details of these time integration methods can be found in Appendix A. The algorithms presented in
Appendix B define WENO-GMC discretizations for uniform grids in 1D. Since SSP time discretizations
preserve the BP properties of flux-corrected semi-discrete schemes, we equip the SSP54 method with
the spatial GMC limiter derived in Section 2.2. For extrapolation methods, the application of this
limiter is sufficient to guarantee that intermediate solutions are BP but the final stage needs to be
constrained using (40). For general RK methods, the space-time limiting techniques of Sections 3.2
and 3.3 can be used to enforce the BP property. In this context, a flux limiter can be invoked in each
stage or only in the final stage (allowing bound-violating approximations in the intermediate stages).
We therefore test the following limiting strategies for the RK methods under investigation:
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• SSP54-GMC: SSP54 with GMC space limiting for F (m)
ij in each intermediate stage.

• ExE-RK5-GMC: ExE-RK5 with GMC space limiting for F (m)
ij in each intermediate stage and

GMC space-time limiting for FRK
ij in the final stage.

• RK76-GMC: RK76 with GMC space-time limiting for FRK
ij only in the final stage.

• Sw-RK76-GMC: RK76 with GMC space-time limiting for F (m)
ij in each intermediate stage and

for FRK
ij in the final stage.

The SSP54-GMC and RK76-GMC methods are tested in all numerical experiments of Section 5. To
demonstrate that stagewise BP limiting does not degrade the high-order accuracy of the baseline
scheme, at least if the bounds are global, we include the results of ExE-RK5-GMC and Sw-RK76-
GMC convergence studies for test problems with smooth exact solutions. In the rest of the numerical
experiments, the stagewise BP schemes perform similarly to SSP54-GMC and RK76-GMC. Therefore,
no further ExE-RK5-GMC and Sw-RK76-GMC results are reported in Section 5.

4.1. Summary of the fully discrete BP schemes
For the reader’s convenience, we now summarize the main steps of the fully discrete BP algorithms.

4.1.1. Implementation of SSP54-GMC
The formulas for the stage approximations y(1)i , . . . , y

(5)
i are presented in Appendix A.1. The final

stage result is given by un+1
i = y

(5)
i . For k = 1, . . . , 4, we need to evaluate the time derivatives

Fi(y
(k)) :=

1

|Ki|
∑
j∈Ni

|Sij |λij
(
y(k)

)(
ū∗ij
(
y(k)

)
− y(k)i

)
, (51)

where λij is an upper bound for the wave speed of the Riemann problem associated with face Sij .
In Section 5, we specify the values of λij that we use for the different numerical experiments. For
u ∈ {y(1)i , . . . , y

(5)
i }, we calculate the bar states ū∗ij(u) as follows:

i. Compute the low-order bar states ūLij using (5).
ii. Compute the antidiffusive fluxes Fij using (16).
iii. Compute the GMC bounds Q±i defined by (20).
iv. Compute the correction factors αij using (24)-(26).
v. Compute the limited antidiffusive fluxes F ∗ij = αijFij .
vi. Compute the flux-corrected bar states ū∗ij using (15).
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4.1.2. Implementation of ExE-RK5-GMC
The ExE-RK5 method that we use is defined in Appendix A.2. The BP stage approximations

y
(1)
i , . . . , y

(11)
i are calculated as in Section 4.1.1. In the final stage, we update u = un as follows:

i. Compute the low-order bar states ūLij using (5).
ii. Compute the high-order fluxes HRK

ij using (33).
iii. Compute the low-order fluxes HFE

ij = H(uni , u
n
j ,nij).

iv. Compute the antidiffusive fluxes FRK
ij = |Sij |(HFE

ij −HRK
ij ).

v. Compute the low-order predictor uFEi using (38).
vi. Compute the GMC bounds Q±i defined by (20).
vii. Compute the correction factors αij using (24)-(26).
viii. Use F ∗ij = αijF

RK
ij to compute un+1

i defined by (40).

4.1.3. Implementation of RK76-GMC
The Butcher tableau of the RK76 method is presented in Appendix A.3. The stage approximations

y
(1)
i , . . . , y

(7)
i are calculated using (32) without applying any flux limiter. The final RK update is

constrained using the GMC space-time limiter, i.e., the algorithm presented in Section 4.1.2.

4.1.4. Implementation of Sw-RK76-GMC
To constrain the intermediate Butcher stages of the RK76 method, we proceed as follows:

i. Compute the low-order predictor yFE,(m)
i using (44).

ii. Compute the antidiffusive flux F (m)
ij using (45).

iii. Compute the GMC bounds Q±i defined by (20).
iv. Compute the correction factors α(m)

ij using (24)-(26).

v. Use F ∗,(m)
ij = α

(m)
ij F

(m)
ij to compute y∗,(m)

i defined by (43).

To guarantee that the final RK update is BP, we again use the algorithm presented in Section 4.1.2.

5. Numerical examples

In this section, we perform a series of numerical experiments to study the properties of the methods
selected in Section 4. We begin with an accuracy test for WENO and WENO-GMC space discretiza-
tions. Then we test the flux-limited WENO-RK methods for time-dependent problems.

Unless mentioned otherwise, we use a fifth-order WENO [43] spatial discretization on a uniform
mesh of Nh one-dimensional cells Ki = [xi−1/2, xi+1/2] with |Ki| = ∆x. For time-dependent problems,
the default choice of the time step is ∆t = 0.4∆x/(1 +γ), where γ ≥ 0 is the parameter of the limiting
constraints (17). In all experiments, we enforce the global bounds of the initial data u(x, 0), i.e., use

umin
i = umin := min

x
u(x, 0),

umax
i = umax := max

x
u(x, 0)
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for i = 1, . . . , Nh. To quantify the magnitude of undershoots and overshoots (if any), we report

δ = min{δ−, δ+}, (52)

where

δ− = min
t

min
i=1,...,Nh

ui(t)− umin, δ+ = min
t

min
i=1,...,Nh

umax − ui(t).

Note that δ ≥ 0 for any BP numerical solution. In practice, the low-order and flux-limited methods are
positivity preserving to machine precision. Therefore, a numerical value of δ may be a small negative
number. Since conservation laws are also satisfied to machine precision, it is acceptable to simply clip
the solution. If the exact solution is available, we calculate the discrete L1 error

E1(t) = ∆x

Nh∑
i=1

|ũi(t)− uexact(xi, t)|

and the corresponding Experimental Order of Convergence (EOC) using the following fifth-order poly-
nomial reconstruction of the numerical solution at the center xi of the cell:

ũi =
1

1920
(9ui−2 − 116ui−1 + 2134ui − 116ui+1 + 9ui+2) .

5.1. Convergence of a WENO-GMC semi-discretization
In this section, we test the convergence properties of the spatial semi-discretization using the GMC

limiters from Section 2. To this end, we consider the one-dimensional conservation law

∂u

∂t
+
∂f(u)

∂x
= 0 in Ω = (0, 1), (53)

where f(u) is the flux function. The time derivative of the exact cell average is given by

dui
dt

= − 1

∆x

∫ xi+1/2

xi−1/2

∂f(u)

∂x
dx = −

f(u(xi+1/2))− f(u(xi−1/2))

∆x
. (54)

We discretize (53) in space using a fifth-order WENO scheme which approximates (54) by

duWENO
i

dt
= −H

(
û+i , û

−
i+1, 1

)
−H

(
û+i−1, û

−
i , 1

)
∆x

. (55)

The Lax-Friedrichs flux H(·, ·, ·) is defined using λi+1/2 = max{ui, ui+1, û
+
i , û

−
i+1} in this test. The

interface values û−i = ûi(xi−1/2) and û+i = ûi(xi+1/2) are determined by evaluating the WENO poly-
nomial reconstruction ûi ∈ P5(Ki) at the cell interfaces xi±1/2.

Applying the GMC flux limiter to (55), we obtain the WENO-GMC semi-discretization

duGMC
i

dt
= (λi+1/2 + λi−1/2)

ū∗i − ui
∆x

. (56)
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To assess its spatial accuracy, we consider u(x) = exp
(
−100(x− 0.5)2

)
and the nonlinear flux

function f(u) = u2/2. In Table 2, we report the discrete L1 errors

EWENO
1 = ∆x

Nh∑
i=1

∣∣∣∣duidt
− duWENO

i

dt

∣∣∣∣ ,
EGMC

1 = ∆x

Nh∑
i=1

∣∣∣∣duidt
− duGMC

i

dt

∣∣∣∣ ,
as well as the EOCs of the WENO and WENO-GMC semi-discretizations. We consider multiple values
of the GMC parameter γ ≥ 0 and achieve optimal convergence rates with γ ≥ 0.5.

Nh EWENO
1 EOC EGMC

1 , γ = 0 EOC EGMC
1 , γ = 0.5 EOC EGMC

1 , γ = 1 EOC
25 1.35e-03 – 1.35e-03 – 1.35e-03 – 1.35e-03 –
50 6.82e-05 4.30 5.12e-04 1.40 6.82e-05 4.30 6.82e-05 4.30
100 1.04e-06 6.04 6.60e-05 2.95 1.04e-06 6.04 1.04e-06 6.04
200 1.53e-08 6.08 8.30e-06 2.99 1.53e-08 6.08 1.53e-08 6.08
400 2.29e-10 6.06 1.04e-06 3.00 2.29e-10 6.06 2.29e-10 6.06
800 3.48e-12 6.04 1.30e-07 3.00 3.48e-12 6.04 3.48e-12 6.04
1600 5.36e-14 6.02 1.63e-08 3.00 5.36e-14 6.02 5.36e-14 6.02

Table 2: Grid convergence study for the 5th-order WENO and WENO-GMC discretizations of ∂
∂x

(u2/2).

5.2. Linear advection
The first test problem for our numerical study of the flux-limited space-time discretizations defined

in Section 4 is the one-dimensional linear advection equation

∂u

∂t
+ a

∂u

∂x
= 0 in Ω = (0, 1) (57)

with constant velocity a = 1. The initial condition is given by the smooth function

u(x, 0) = exp(−100(x− 0.5)2). (58)

We solve (57) up to the final time t = 1 using λi+1/2 = 1 for all i. The results of a grid convergence
study for SSP54-GMC, ExE-RK5-GMC, RK76-GMC, Sw-RK76-GMC, and the underlying WENO-RK
discretizations are shown in Table 3. The negative values of δ indicate that the high-order baseline
schemes may, indeed, produce undershoots or overshoots on coarse meshes.

In this test, all GMC-constrained schemes deliver optimal convergence rates for γ = 1. The only
scheme that preserves the full accuracy for γ = 0 is RK76-GMC, the method which performs flux
limiting just once per time step. We remark that even this least dissipative method requires the use
of γ > 0 to achieve optimal EOCs for other test problems that we consider below.
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baseline GMC, γ = 0 GMC, γ = 1
Nh E1 EOC δ E1 EOC δ E1 EOC δ
25 2.43e-02 – -2.00e-05 2.43e-02 – 1.28e-10 2.43e-02 – 7.58e-11
50 2.30e-03 3.40 -3.26e-08 2.41e-03 3.34 2.03e-11 2.29e-03 3.40 4.95e-12
100 1.22e-04 4.24 -6.45e-11 1.37e-04 4.13 5.64e-12 1.22e-04 4.23 1.07e-12
200 4.22e-06 4.85 1.65e-11 1.35e-05 3.34 1.65e-11 4.22e-06 4.85 1.65e-11
400 1.35e-07 4.97 1.51e-11 1.89e-06 2.84 1.51e-11 1.35e-07 4.97 1.51e-11
800 4.24e-09 4.99 1.45e-11 2.89e-07 2.71 1.45e-11 4.24e-09 4.99 1.45e-11
1600 2.17e-10 4.29 1.42e-11 4.48e-08 2.69 1.42e-11 2.15e-10 4.30 1.42e-11

(a) SSP54 and SSP54-GMC

baseline GMC, γ = 0 GMC, γ = 1
Nh E1 EOC δ E1 EOC δ E1 EOC δ
25 2.43e-02 – -2.00e-05 2.43e-02 – 1.23e-10 2.43e-02 – 1.51e-11
50 2.29e-03 3.40 -3.26e-08 2.37e-03 3.35 1.95e-11 2.29e-03 3.40 4.91e-12
100 1.22e-04 4.23 -6.47e-11 1.33e-04 4.16 5.51e-12 1.22e-04 4.23 6.82e-13
200 4.22e-06 4.85 1.65e-11 1.05e-05 3.66 1.65e-11 4.22e-06 4.85 1.65e-11
400 1.35e-07 4.97 1.51e-11 1.50e-06 2.80 1.51e-11 1.35e-07 4.97 1.51e-11
800 4.23e-09 4.99 1.45e-11 2.41e-07 2.64 1.45e-11 4.24e-09 4.99 1.45e-11
1600 1.33e-10 5.00 1.42e-11 3.83e-08 2.66 1.42e-11 1.33e-10 5.00 1.42e-11

(b) ExE-RK5 and ExE-RK5-GMC

baseline GMC, γ = 0 GMC, γ = 1
Nh E1 EOC δ E1 EOC δ E1 EOC δ
25 2.43e-02 – -2.00e-05 2.43e-02 – 3.37e-11 2.43e-02 – 6.73e-12
50 2.29e-03 3.40 -3.26e-08 2.29e-03 3.40 4.73e-12 2.29e-03 3.40 4.04e-13
100 1.22e-04 4.23 -6.48e-11 1.22e-04 4.23 7.03e-13 1.22e-04 4.23 1.00e-13
200 4.22e-06 4.85 1.65e-11 4.22e-06 4.85 1.65e-11 4.22e-06 4.85 1.65e-11
400 1.35e-07 4.97 1.51e-11 1.35e-07 4.97 1.51e-11 1.35e-07 4.97 1.51e-11
800 4.23e-09 4.99 1.45e-11 4.23e-09 4.99 1.45e-11 4.24e-09 4.99 1.45e-11
1600 1.32e-10 5.00 1.42e-11 1.32e-10 5.00 1.42e-11 1.33e-10 5.00 1.42e-11

(c) RK76 and RK76-GMC

GMC, γ = 0 GMC, γ = 1
Nh E1 EOC δ E1 EOC δ
25 2.43e-02 – 3.37e-11 2.43e-02 – 6.73e-12
50 2.30e-03 3.40 4.79e-12 2.29e-03 3.40 4.28e-13
100 1.22e-04 4.24 6.25e-13 1.22e-04 4.23 1.24e-13
200 5.40e-06 4.50 1.65e-11 4.22e-06 4.85 1.65e-11
400 5.86e-07 3.20 1.51e-11 1.35e-07 4.97 1.51e-11
800 8.37e-08 2.81 1.45e-11 4.24e-09 4.99 1.45e-11
1600 1.29e-08 2.70 1.42e-11 1.33e-10 5.00 1.42e-11

(d) Sw-RK76-GMC

Table 3: Grid convergence study for the linear advection problem (57) with smooth initial data (58).

To check how well a given scheme can preserve smooth peaks and capture discontinuities, we run
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the linear advection test with the initial data [16]

u(x, 0) =


exp (−300(2x− 0.3)2) if |2x− 0.3| ≤ 0.25,

1 if |2x− 0.9| ≤ 0.2,√
1−

(
2x−1.6
0.2

)2 if |2x− 1.6| ≤ 0.2,

0 otherwise.

(59)

Figure 2 shows the results produced by SSP54-GMC, RK76-GMC, and the corresponding baseline
schemes at t = 1 and t = 100. Both GMC schemes use γ = 1 and preserve the global bounds without
changing the high-order WENO-RK approximation in smooth regions. The deactivation of GMC
limiters leads to visible violations of the bounds in proximity to steep gradients. The values of δ listed
above the diagrams quantify the amount of undershooting/overshooting for each scheme.

5.3. Burgers equation
To study the numerical behavior of the methods under investigation in the context of nonlinear

hyperbolic problems, we consider the one-dimensional inviscid Burgers equation

∂u

∂t
+

∂

∂x

(
u2

2

)
= 0 in Ω = (0, 2π). (60)

Following Kurganov and Tadmor [31], we use the smooth initial condition

u(x, 0) = 0.5 + sinx. (61)

The entropy solution of the initial value problem develops a shock at the critical time Tc = 1. For
t < Tc, the smooth exact solution is defined by the nonlinear equation u(x, t) = 0.5 + sin(x− u(x, t)t),
which can be derived using the method of characteristics.

For this problem, we define the Lax-Friedrichs fluxes using λi+1/2 = max{ui, ui+1, û
+
i , û

−
i+1}. The

results of a grid convergence study are summarized in Table 4. The errors and convergence rates
correspond to the pre-shock time T = 0.5. None of the flux-limited schemes converges optimally for
γ = 0. Using γ = 1, we recover full accuracy with SSP54-GMC, RK76-GMC, and Sw-RK76-GMC.
The ExE-RK5-GMC version delivers optimal convergence rates for γ ≥ 2.

To study the ability of our schemes to capture the shock that forms at t = Tc, we ran simulations up
to the post-shock time T = 2. As shown in Fig. 3, the SSP54-GMC and RK76-GMC results coincide
with the globally BP solutions produced by the corresponding baseline schemes.

5.4. One-dimensional KPP problem
In the last test, we solve the one-dimensional KPP problem [30]. It equips the conservation law

∂u

∂t
+
∂f(u)

∂x
= 0 in Ω = (0, 1) (62a)
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baseline: δ = −4.97× 10−6

GMC: δ = −1.11× 10−15

(a) SSP54 and SSP54-GMC at t = 1

baseline: δ = −1.32× 10−2

GMC: δ = −4.44× 10−16

(b) SSP54 and SSP54-GMC at t = 100

baseline: δ = −4.97× 10−6

GMC: δ = −1.11× 10−15

(c) RK76 and RK76-GMC at t = 1

baseline: δ = −1.32× 10−2

GMC: δ = −1.11× 10−15

(d) RK76 and RK76-GMC at t = 100

Figure 2: Numerical solutions to the linear advection problem (57) with initial data (59). Computations are performed
using Nh = 200 cells. The SSP54-GMC and RK76-GMC results are shown as dashed red lines. The results obtained
with the baseline SSP54 and RK76 schemes are shown as solid blue lines.

with the nonlinear and nonconvex flux function

f(u) =

{
1
4u(1− u) if u < 1

2 ,
1
2u(u− 1) + 3

16 if 1
2 ≤ u.

(62b)

The initial condition is given by [11]

u(x, 0) =

{
0 if x ∈ [0, 0.35],

1 if x ∈ (0.35, 1].
(63)

We define the Lax-Friedrichs fluxes using λi+1/2 = 1 for all i. As remarked in [30], many second- and
higher-order schemes produce solutions that do not converge to the entropy solution. To show this, we
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baseline GMC, γ = 0 GMC, γ = 1
Nh E1 EOC δ E1 EOC δ E1 EOC δ
25 2.01e-03 – 2.72e-03 5.90e-03 0.00 3.17e-03 2.08e-03 0.00 2.70e-03
50 1.12e-04 4.16 6.62e-04 7.51e-04 2.97 9.67e-04 1.16e-04 4.17 6.62e-04
100 4.70e-06 4.58 1.84e-04 1.13e-04 2.73 2.75e-04 4.81e-06 4.59 1.64e-04
200 2.12e-07 4.47 4.60e-05 1.62e-05 2.80 6.89e-05 2.16e-07 4.48 4.11e-05
400 1.05e-08 4.34 1.15e-05 2.40e-06 2.76 1.72e-05 1.07e-08 4.34 1.03e-05
800 6.29e-10 4.06 2.58e-06 3.68e-07 2.70 4.31e-06 6.16e-10 4.11 2.57e-06

(a) SSP54 and SSP54-GMC

baseline GMC, γ = 0 GMC, γ = 1 GMC, γ = 2
Nh E1 EOC δ E1 EOC δ E1 EOC δ E1 EOC δ
25 2.04e-03 – 2.72e-03 6.66e-03 – 6.76e-04 2.08e-03 – 2.70e-03 2.10e-03 – 2.65e-03
50 1.14e-04 4.16 6.62e-04 5.69e-04 3.55 9.68e-04 1.14e-04 4.20 6.62e-04 1.16e-04 4.17 6.59e-04
100 4.79e-06 4.57 1.84e-04 1.22e-04 2.22 6.73e-05 4.26e-06 4.74 1.64e-04 4.82e-06 4.59 1.67e-04
200 2.16e-07 4.47 4.60e-05 1.81e-05 2.75 1.51e-05 3.42e-07 3.64 4.01e-05 2.16e-07 4.48 4.17e-05
400 1.06e-08 4.34 1.15e-05 2.57e-06 2.82 3.67e-06 3.47e-08 3.30 1.00e-05 1.06e-08 4.35 1.04e-05
800 5.62e-10 4.24 2.58e-06 3.63e-07 2.83 9.11e-07 5.33e-09 2.70 2.43e-06 5.62e-10 4.24 2.58e-06

(b) ExE-RK5 and ExE-RK5-GMC

baseline GMC, γ = 0 GMC, γ = 1
Nh E1 EOC δ E1 EOC δ E1 EOC δ
25 2.04e-03 – 2.72e-03 2.63e-03 – 2.77e-03 2.08e-03 – 2.70e-03
50 1.14e-04 4.16 6.62e-04 2.05e-04 3.68 6.69e-04 1.16e-04 4.17 6.62e-04
100 4.79e-06 4.57 1.84e-04 1.95e-05 3.40 1.84e-04 4.82e-06 4.59 1.64e-04
200 2.16e-07 4.47 4.60e-05 2.48e-06 2.98 4.60e-05 2.16e-07 4.48 4.11e-05
400 1.06e-08 4.34 1.15e-05 3.66e-07 2.76 1.15e-05 1.06e-08 4.35 1.03e-05
800 5.62e-10 4.24 2.58e-06 5.61e-08 2.71 2.58e-06 5.62e-10 4.24 2.57e-06

(c) RK76 and RK76-GMC

GMC, γ = 0 GMC, γ = 1
Nh E1 EOC δ E1 EOC δ
25 2.64e-03 – 2.68e-03 2.08e-03 – 2.70e-03
50 2.39e-04 3.47 6.43e-04 1.16e-04 4.17 6.62e-04
100 2.58e-05 3.21 1.75e-04 4.82e-06 4.59 1.64e-04
200 3.81e-06 2.76 4.37e-05 2.16e-07 4.48 4.11e-05
400 5.91e-07 2.69 1.09e-05 1.06e-08 4.35 1.03e-05
800 8.91e-08 2.73 2.73e-06 5.62e-10 4.24 2.57e-06

(d) Sw-RK76-GMC

Table 4: Grid convergence study for the Burgers equation (60) with smooth initial data (61).

test a fifth-order polynomial reconstruction which yields the interface values

û+i =
1

60
(−3ui−2 + 27ui−1 + 47ui − 13ui+1 + 2ui+2), (64a)

û−i+1 =
1

60
(2ui−2 − 13ui−1 + 47ui + 27ui+1 − 3ui+2). (64b)

The corresponding non-WENO semi-discretization is combined with the RK76 time integrator. The
numerical solutions obtained with the resulting method on different mesh refinement levels are shown
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baseline: δ = 1.64× 10−4

GMC: δ = 1.64× 10−4

(a) SSP54 and SSP54-GMC

baseline: δ = 1.64× 10−4

GMC: δ = 1.64× 10−4

(b) RK76 and RK76-GMC

Figure 3: Nonlinear Burgers problem (60) with smooth initial data (61). The dashed gray lines depict the exact solution
at t = 2. The WENO-RK solutions calculated on a uniform mesh of Nh = 100 cells without and with GMC limiting are
shown as dashed red and solid blue lines, respectively.

in Fig. 4a. Additionally, we perform a grid convergence study and summarize the results in Table 5a.
It can be seen that the non-WENO method based on (64) fails to converge to the entropy solution.
None of the limiters presented in this work can fix this problem as long as the bounds are global
and the baseline scheme is highly oscillatory. However, the combination of the fifth-order WENO
space discretization with the RK76 time discretization does converge to the entropy solution even if no
limiting is performed; see Fig. 4b and Table 5b. The application of GMC flux limiters removes the small
overshoots and undershoots generated by the baseline schemes. The bound-preserving SSP54-GMC
and RK76-GMC solutions are shown in Figs 4c and 4d, respectively. Tables 5c and 5d summarize the
results of our grid convergence studies for SSP54-GMC and RK76-GMC, respectively.

6. Conclusions

The convex limiting approaches explored in this work are applicable to a wide range of space
discretizations combined with high-order Runge-Kutta time-stepping methods. Although only explicit
finite volume schemes were considered in our numerical study, the same flux correction tools can
be used to constrain high-order finite element discretizations and implicit RK methods. As shown
in [33, 36, 37], convex limiting in space makes it possible to enforce semi-discrete entropy stability
conditions in addition to maximum principles. Moreover, the new GMC limiter and its localized
prototype proposed in [32] belong to the family of monolithic algebraic flux correction (AFC) schemes
which lead to well-posed nonlinear problems and are backed by theoretical analysis [41].
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(a) RK76 (non-WENO) (b) RK76 (WENO)

(c) SSP54-GMC (d) RK76-GMC

Figure 4: Nonlinear problem (62) with non-smooth initial data (63). The exact solution at t = 1 is shown as a dashed
gray line. The remaining curves are numerical solutions obtained on different mesh refinement levels.
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Appendix A. High-order baseline RK methods

In this appendix, we provide details of the three high-order explicit baseline RK methods for solving

dui
dt

= Fi(û) := − 1

|Ki|
∑
j∈Ni

|Sij |Hij(û). (A.1)

Appendix A.1. Fourth-order strong stability preserving (SSP54) RK method
The SSP-RK time integrator that we consider in this work is the 4th-order method proposed in

[29] and [44]. The Butcher form of its intermediate stages is as follows:

y(1) = un + 0.391752226571890∆tF (un),

y(2) = 0.444370493651235un + 0.555629506348765y(1) + 0.368410593050371∆tF (y(1)),

y(3) = 0.620101851488403un + 0.379898148511597y(2) + 0.251891774271694∆tF (y(2)),

y(4) = 0.178079954393132un + 0.821920045606868y(3) + 0.544974750228521∆tF (y(3)),

y(5) = 0.517231671970585y(2) + 0.096059710526147y(3) + 0.063692468666290∆tF (y(3))

+ 0.386708617503269y(4) + 0.226007483236906∆tF (y(4)).

Note that each stage is a convex combination of Euler steps. Therefore, if F (·) is a BP spatial
discretization and un is BP, then each stage is BP under appropriate time step restrictions. The RK
update is given by un+1 = y(5). Hence, if the stages are BP, un+1 is BP and no extra limiting is needed.

Appendix A.2. Fifth-order extrapolated Euler (ExE-RK5) RK method
The Butcher tableau of the 5th-order extrapolated Euler RK method is given by

0 0
1/2 1/2 0
1/3 1/3 0 0
2/3 1/3 0 1/3 0
1/4 1/4 0 0 0 0
1/2 1/4 0 0 0 1/4 0
3/4 1/4 0 0 0 1/4 1/4 0
1/5 1/5 0 0 0 0 0 0 0
2/5 1/5 0 0 0 0 0 0 1/5 0
3/5 1/5 0 0 0 0 0 0 1/5 1/5 0
4/5 1/5 0 0 0 0 0 0 1/5 1/5 1/5 0

0 -4/3 27/4 27/4 -32/3 -32/3 -32/3 125/24 125/24 125/24 125/24.

(A.2)
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The intermediate stages (written in Shu-Osher and Butcher form) are as follows:

y(1) = un ≈u(tn),

y(2) = y(1) +
1

2
∆tF (y(1)) ≈u(tn +∆t/2),

y(3) = y(1) +
1

3
∆tF (y(1)) ≈u(tn +∆t/3),

y(4) = y(3) +
1

3
∆tF (y(3)) = y(1) +

∆t

3
[F (y(1)) + F (y(3))] ≈u(tn + 2∆t/3),

y(5) = y(1) +
1

4
∆tF (y(1)) ≈u(tn +∆t/4),

y(6) = y(5) +
1

4
∆tF (y(5)) = y(1) +

∆t

4
[F (y(1)) + F (y(5))] ≈u(tn +∆t/2),

y(7) = y(6) +
1

4
∆tF (y(6)) = y(1) +

∆t

4
[F (y(1)) + F (y(5)) + F (y(6))] ≈u(tn + 3∆t/4),

y(8) = y(1) +
1

5
∆tF (y(1)) ≈u(tn +∆t/5),

y(9) = y(8) +
1

5
∆tF (y(8)) = y(1) +

∆t

5
[F (y(1)) + F (y(8))] ≈u(tn + 2∆t/5),

y(10) = y(9) +
1

5
∆tF (y(9)) = y(1) +

∆t

5
[F (y(1)) + F (y(8)) + F (y(9))] ≈u(tn + 3∆t/5),

y(11) = y(10) +
1

5
∆tF (y(10)) = y(1) +

∆t

5
[F (y(1)) + F (y(8)) + F (y(9)) + F (y(10))] ≈u(tn + 4∆t/5).

Note that if F (·) is a BP spatial discretization and un is BP, then each stage of this ExE-RK method
is BP under appropriate time step restrictions. The approximations y(1), y(2), y(3), y(5), and y(8) are
BP because they correspond to forward Euler updates of un. The remaining stages are BP since y(m)

is a forward Euler update of a BP approximation y(r) for some r ∈ {1, . . . ,m− 1}.
The Aitken-Neville interpolation yields the temporally 5th-order approximation

uRK =
1

24

[
y(1) +∆tF (y(1))

]
− 8

3

[
y(2) +

1

2
∆tF (y(2))

]
+

81

4

[
y(4) +

1

3
∆tF (y(4))

]
− 128

3

[
y(7) +

1

4
∆tF (y(7))

]
+

625

24

[
y(11) +

1

5
∆tF (y(11))

]
.

Note that this Euler extrapolation method combines S = 5 first-order approximations of un+1. Since
this combination is not convex, uRK is not necessarily BP even if y(1), . . . , y(11) are BP. To enforce the
BP property of the final solution, we perform flux limiting using the Butcher form representation

uRK = un +∆t
[
− 4

3
F (y(2)) +

27

4
F (y(3)) +

27

4
F (y(4))− 32

3
F (y(5))− 32

3
F (y(6))− 32

3
F (y(7))

+
125

24
F (y(8)) +

125

24
F (y(9)) +

125

24
F (y(10) +

125

24
F (y(11))

]
. (A.3)
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Appendix A.3. Sixth-order (RK76) RK method
This 6th-order RK method, proposed in [8], consists of seven stages and has the Butcher tableau

0 0
1/3 1/3 0
2/3 0 2/3 0
1/3 1/12 1/3 -1/12 0
1/2 -1/16 9/8 -3/16 -3/8 0
1/2 0 9/8 -3/8 -3/4 1/2 0
1 9/44 -9/11 63/44 18/11 0 -16/11 0

11/120 0 27/40 27/40 -4/15 -4/15 11/120.

(A.4)

The intermediate stages of this method are not Euler steps. If we require them to be BP, the numerical
fluxes Hij should be constrained using the limiters from Section 3.3 in each stage. The BP property
of the final solution uRK can be enforced similarly using the limiter from Section 3.2.

Appendix B. Flux-limited WENO discretization in 1D

In this appendix, we provide details of flux-corrected RK methods for one-dimensional hyperbolic
conservation laws of the form ∂u

∂t + ∂f(u)
∂x = 0. Although the underlying low-order and high-order

approximations are of little interest per se, we present their one-dimensional formulations as well. We
assume the mesh is uniform and, therefore, the mesh size |Ki| = ∆x is constant.

Appendix B.1. The low-order method
In one space dimension, the common interface Sij of control volumes with indices i and j = i + 1

is the point xi+1/2 = 1
2(xi + xi+1). The 1D version of the FE-LLF approximation (38) is given by

uFEi = uni −
∆t

∆x
[HFE

i+1/2 −HFE
i−1/2], (B.1)

where

HFE
i+1/2 =

f(uni ) + f(uni+1)

2
− λi+1/2

uni+1 − uni
2

is the first-order numerical flux and λi+1/2 is an upper bound for the wave speed of the Riemann
problem associated with the states uni and uni+1. The bar state form of (B.1) is given by

uFEi = uni +
∆t

∆x
[λi+1/2(ū

L
i+1/2 − uni ) + λi−1/2(ū

L
i−1/2 − uni )] = uni +

∆t

∆x
di(ū

L
i − uni ),

where

ūLi+1/2 =
uni+1 + uni

2
− f(uni+1)− f(uni )

2λi+1/2
, ūLi−1/2 =

uni + uni−1
2

+
f(uni−1)− f(uni )

2λi−1/2
,

ūLi =
1

di
[λi+1/2ū

L
i+1/2 + λi−1/2ū

L
i−1/2], di = λi+1/2 + λi−1/2.
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This representation proves that the method is bound-preserving (BP) with respect to the local
bounds umax

i = max{uni−1, uni , uni+1} and umin
i = min{uni−1, uni , uni+1}, provided

∆t ≤ ∆x

λi+1/2 + λi−1/2
. (B.2)

However, the method is only first-order accurate in space and time.

Appendix B.2. The baseline high-order method
The unlimited form of an explicit Runge-Kutta method (with a WENO discretization) is given by

uRK
i = uni −

∆t

∆x
[HRK

i+1/2 −HRK
i−1/2], HRK

i+1/2 =
M∑
m=1

bmH
(m)
i+1/2, (B.3)

where M is the number of stages of the RK method and bm are the Butcher weights of the final
RK update. The Lax-Friedrichs flux H(m)

i+1/2 = H
(
ŷ
(m)
i (xi+1/2), ŷ

(m)
i+1(xi+1/2), 1

)
is calculated using the

interface values of the high-order WENO reconstructions ŷ(m)
i (x) and ŷ

(m)
i+1(x) in cells Ki and Ki+1,

respectively. These WENO reconstructions are obtained from the m-th stage cell averages

y
(m)
i = uni −

∆t

∆x

m−1∑
s=1

ams
[
H

(s)
i+1/2 −H

(s)
i−1/2

]
, (B.4)

where ams, s = 1, . . . ,m− 1 are the coefficients of the m-th row in the Butcher tableau (50). Method
(B.3) is high-order in space and time. In particular, we combine a fifth-order WENO spatial discretiza-
tion with the three explicit RK methods in Appendix A. The use of WENO numerical fluxes produces
a solution which is typically (almost) non-oscillatory. However, this solution is not BP in general.

Appendix B.3. Spatial GMC limiting in 1D
Let us now apply the GMC space limiters from Section 2 to the high-order semi-discretization

∆x
dui
dt

= −[HWENO
i+1/2 −HWENO

i−1/2 ], (B.5)

where HWENO
i+1/2 = H(ûi(xi+1/2), ûi+1(xi+1/2), 1) is the high-order WENO flux. Using the corresponding

low-order flux HLLF
i+1/2 = H(ui, ui+1, 1), the baseline scheme (B.5) can be written as

∆x
dui
dt

= −
[(
HLLF
i+1/2 − Fi+1/2

)
−
(
HLLF
i−1/2 − Fi−1/2

)]
. (B.6)
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The one-dimensional GMC limiter replaces the antidiffusive flux Fi+1/2 = HLLF
i+1/2 − HWENO

i+1/2 by its
limited counterpart F ∗i+1/2 = αi+1/2Fi+1/2. The correction factor αi+1/2 is calculated as follows:

P+
i = max{0, Fi+1/2}+ max{0,−Fi−1/2}, P−i = min{0, Fi+1/2}+ min{0,−Fi−1/2}, (B.7a)

Q+
i = di(u

max
i − ūLi ) + γ(umax

i − uni ), Q−i = di(u
min
i − ūLi ) + γdi(u

min
i − uni ), (B.7b)

R±i =

1 if P±i = 0,

min
{

1,
Q±

i

P±
i

}
if |P±i | > 0,

αi+1/2 =

{
min{R+

i , R
−
i+1} if Fi+1/2 > 0,

min{R−i , R+
i+1} if Fi+1/2 ≤ 0.

(B.7c)

An SSP-RK time discretization of the flux-corrected WENO scheme

∆x
dui
dt

= −
[(
HLLF
i+1/2 − F ∗i+1/2

)
−
(
HLLF
i−1/2 − F ∗i−1/2

)]
(B.8)

is BP under the time step restriction

∆t ≤ µ(1 + γ)∆x

λi+1/2 + λi−1/2
, (B.9)

where µ ∈ (0, 1] is the SSP coefficient of the RK method and γ ≥ 0 is the GMC relaxation parameter.

Appendix B.4. Space-time GMC limiting in 1D
The final stage (B.3) of a baseline high-order WENO-RK scheme can be written as

uRK
i = uni −

∆t

∆x

[
HRK
i+1/2 −HRK

i−1/2
]

= uni −
∆t

∆x

[
(HFE

i+1/2 − FRK
i+1/2)− (HFE

i−1/2 − FRK
i−1/2

)]
,

where FRK
i+1/2 = HFE

i+1/2 − HRK
i+1/2 is the raw antidiffusive flux. Using this representation, space-time

GMC limiting can be performed as in Appendix B.3 using HFE
i+1/2 in place of HLLF

i+1/2 and FRK
i+1/2 in

place of Fi+1/2. The implementation of GMC for intermediate RK stages is similar.

Remark 7. The FCT version of the space-time limiter uses uFEi defined by (B.1) to construct

Q+
i =

∆x

∆t
(umax
i − uFEi ), Q−i =

∆x

∆t
(umin
i − uFEi )

for calculation of the correction factors R±i and αij in (B.7c).
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