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A FULLY DISCRETE LOW-REGULARITY INTEGRATOR FOR THE
NONLINEAR SCHRODINGER EQUATION

ALEXANDER OSTERMANN AND FANGYAN YAO

ABSTRACT. For the solution of the one dimensional cubic nonlinear Schrédinger equa-
tion on the torus, we propose and analyse a fully discrete low-regularity integrator.
The considered scheme is explicit. Its implementation relies on the fast Fourier trans-
form with a complexity of O(N log N) operations per time step, where N denotes the
degrees of freedom in the spatial discretisation. We prove that the new scheme pro-
vides an O(737"275 4 N~7) error bound in L? for any initial data in H?, $<y<1,
where 7 denotes the temporal step size. Numerical examples illustrate this conver-
gence behavior.

1. INTRODUCTION

In this paper, we analyze low-regularity integrators for the cubic nonlinear Schrodinger

equation (NLS):
{Z@tu(t,$) +06mu(t,:v) = [u(t, x)Pu(t, z), (1.1)
u(0,z) = u"(z).

We consider this problem on the one dimensional torus T = (0,27). The function
u:RT x T — C is the unknown and u® € H7(T), v > 0 is the given initial data. The
NLS equation ([1.1]) is globally well-posed in HY(T), v > 0; see, e.g., [2].

The construction of efficient numerical schemes for dispersive equations has been
the subject of much research work. In particular, for the NLS equation, substantial
research has been undertaken in numerical analysis. For smooth solutions, many clas-
sical numerical methods have been analyzed for numerical discretisation in space and
time, for example, finite difference methods [13], operator splitting [II, 4, 9], and ex-
ponential integrators [3]. These methods have all their own characteristics. However,
they generally require relatively high regularity of the solution. For example, initial
data in H7*2 are required to obtain first-order convergence in H” for the NLS equation
in [9], and initial data in H7™ for second-order convergence.

As mentioned above, if the exact solution is smooth enough, one can rely on
classical numerical schemes. In practical application, however, nonsmooth initial data
are encountered as well. A typical example is applications in nonlinear optics, where
initial data can be corrupted with noise. Therefore, recent attention has been focused
on lower regularity requirements. In order to achieve convergence with the lowest
possible regularity of the initial data, so-called low-regularity integrator were proposed
recently.
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For the NLS equation, Ostermann and Schratz [10] achieved first-order convergence
in H?(T%), d > 1 with initial data H?*1(T%) by introducing a new exponential-type
numerical scheme under the assumption v > %. Furthermore, the authors obtained
the convergence in H"(T) with initial data H7(T) for the quadratic NLS equation in
one space dimension. Then Wu and Yao [I4] constructed a new first-order scheme for
the cubic NLS equation in one space dimension and obtained first-order convergence
in H7(T) with initial data H7(T) for v > 3. A second-order scheme was proposed by
Knoller, Ostermann and Schratz in [7]. In one space dimension, this scheme requires
two additional derivatives of the solution; in higher dimensions, three additional deriva-
tives are necessary. Later, Ostermann, Rousset and Schratz [11],[12] proved convergence
in L? for initial data in H*(R?) and H*(T) respectively, 0 < s < 1 and obtained frac-
tional orders of convergence in a frame work of discrete Bourgain spaces. All results
discussed above concern time integration only. Recently, Li and Wu [8] considered a
fully discrete low-regularity integrator in one space dimension for the NLS equation
and got first-order convergence (up to a logarithmic factor) in both time and space in
L*(T) for H'(T) initial data.

The purpose of this article is to construct a fully discrete low-regularity integrator
and to prove convergence for initial data u® € H*(T), % < s < 1. For the spatial
discretisation, we use a Fourier ansatz with frequency truncation. For the temporal
discretisation, we employ a careful analysis of the nonlinear dynamics in phase space.
In addition, we use harmonic analysis technique in the proof of some technical lemmas.

The rest of this paper is structured as follows. We present the fully discrete low-
regularity integrator in section 2. We state the main convergence result and explain
the employed notations. In section 3, we derive the considered scheme and give some
technical lemmas, which will be used in the convergence proof. In section 4, we show
the H?Y error bound before the poof of the theorem. Finally we prove stability and
the error bound of the fully discrete scheme. In sections 5 and 6, we report numerical

experiments that illustrate our theoretical analysis and we draw some conclusions.

2. NOTATIONS AND MAIN RESULT

2.1. Some notations. We denote by (-,-) the L? inner product on T, that is
(r9)= [ f@a@ds, 1 g€ ATC)
T
The Fourier transform ( fk) kez of a function f: T — C is defined by

~ 1 )
Je = %/Te““”f(x) dx.
The Fourier inversion formula is given by
fle) =" fre™.
keZ
We recall the following properties:
||f‘|%2(1r) =2m ) ‘fk
kEZ

. feLXT);
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—

(fg)k;: Z fk1gk2a f7 gEL2(T)
k=k1+k2
For our convergence analysis, we equip the Sobolev space H*(T), s > 0 with the norm

1 ey = 17 F ey = 27 D4R IAP, T = (1= 0u)?

kEZ

This norm is equivalent with the standard norm of H*(T).
Further, we denote by 9, ' the operator defined in Fourier space as
_ {(m—lﬁ if k #0,

01k =9 cho (2.1)

For convenience, we introduce some additional notations. First, we define the
zero-mode operator by

Pof_fo_%/jrf(x)dﬂ

Furthermore, for any positive integer N, we define the projection operators Py and
Py by

(2.2)

—— fo ifJE| <N, = fo i |k >N,
Prf)i = P -
S {o if [k| > N; Boxfle=10 i k| < N.

Let Sy be the space consisting of all functions f € L(T) such that f, = 0 for |k| > N.
Then, for f and g € Sy, the cost of computing the Fourier coefficients of Py(fg) € Sy
is O(Nlog N). This can be seen as follows.

Let Ion be the (4N + 1)-point trigonometric interpolation operator

2N
Lyf(x)= Y &*f, (2.3)
k=—2N
where
1 2N 2mn
r —ikx
— "), T = : = —2N,--- 2N.
I 4N+1k;Ne flan), o=y

Consequently, if the Fourier coefficient fk of the function f satisfies fk = 0 for |k| > 2N,

then lon f = f and fx = f. Furthermore, if f and g € Sy, then (fg), = 0for |[k| > 2N.
Hence we get fg = Ion(fg) from the definition of Iry. Further, the cost of computing
the Fourier coefficients of PyIon(fg) € Sy is O(N log N).

2.2. Numerical method and main result. Let 7 denote the temporal step size
and t,, = n7 the corresponding sequence of discretisation points in the time interval
[0,T]. In section 3.1 below, we construct the fully discrete low-regularity integrator for

equation (1.1 as

ul = @l y) (2.4)
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with u%N = PyIonug. The numerical flow @,y maps a function f € Sy to @, n(f) €
Sy. It is defined in the following way:

O, n(f) = eiragf i %ax—le[(e—in‘)ga;lf) T2 p (fQ)} _ 7,7'828 1PN[ a1 - PN(fQ):|
—irBo| [ Py (f)| =i [T P () - <fﬂfuﬁ

+ %eiTﬁgPN [f . e—ir@%PN (eiragaw—lf) 2] ; iTO2 PN |:f PN( C;1]43)2:|

+ire™i py [f Py f2)} — 2irei™% Py, [f . Py f] - Py(f)
+ire ™= Py f - (By(f))? (2.5)

From the discussion in section , we infer that the initial data u% ~ = PnIanug can be
computed with FFT with computational cost of O(N log N). Furthermore, the terms
eiTo: f and Py(fg) also can be computed with FFT for given functions f,g € Sy. We
note that only consists of the above expressions. Therefore, can be computed
with FFT.

Now, we state the main result of this paper. We show convergence of the fully
discrete low-regularity integrator given in ([2.4]).

Theorem 2.1. Let ul! v be the numerical solution (2.4) of equation (1.1) up to some
fived time T > 0. Under the assumption that u®° € HY(T) for some % <~v <1, for
arbitrary given € > 0, there exist constants 19, C' > 0 such that for any step size

O<t<mand all0<nr<T
lu(tn, ) —ul yllp2 < CT377275 £ CN7, (2.6)

where the constant 19 depends only on T and ||u| pe (o)1), and the constant C' de-
pends only on T, ||ul| e (o,r);mv) and €.

We write A < B or B 2 A to express that A < C'B for some positive constant C'
which may be different at each constant but is independent of 7, N and n. Further,
we write A ~ B for A < B S A. We write O(Y) to denote a quantity X that satisfied
XIS V]

Henceforth, we denote by T,,,(M;v) the class of functions f € L*(T) such that

1l S D Mk, k)| [0y | - [0, ], for all E, (2.7)
k=ki+-+km

where v}, is the kth Fourier coefficient of v.

3. THE CONSTRUCTION OF THE SCHEME AND SOME TECHNICAL LEMMAS

In this section, we construct the fully discrete low-regularity exponential integra-
tor by frequency truncation and harmonic analysis techniques. Then, we state some
lemmas that will be used frequently in section 4.
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3.1. The construction of the scheme. It is known that if u® € H7(T), v > 0, then
the NLS equation (1.1)) has a unique solution u € C([0,T]; H"(T)); see [2]. Recalling
Duhamel’s formula, we write

W(tnyr) = ™5u(t,) — i/T el tre1 =t D% [y (t,, + s)|*ult, + 5)] ds.
0
With the twisted variable v(t) = e #%y(t), the above formula becomes
V(tni1) = v(t,) — i/T e 0| lnt)%ig) (1, 4 5) |2 Bt (1, + 5)] ds. (3.1)
0
Applying the Fourier transform, can be expressed as

O (bngr) = Op(tn) — i / > TG ( + 8) ks (b + 8) Bk, (b + 5) ds,
0 k=ki+ko+ks

where 0 (t) denotes the kth Fourier coefficient of v(t). We also use the phase function

(K, Ky, ko k) = k* + k? — k3 — k2. (3.2)
In order to obtain a first-order approximation, by , we have for any s € [0, 7],
v(t, +8) — v(ty) € TT5(1;v). (3.3)
This implies that
O (tngr) = O(tn) + I + Rox(v), (3.4)

where
Lyp=—i Y / et 4s Ty by, 0y, and  Ri(v) € 72 Tx(150).
k=k1-+ka+ks * 0
Henceforth, we denote vy (t,) by ) and the kth Fourier coefficient of R,;(v) for j > 1
by R;x(v) for short.

For further approximation, we consider a decomposition into low and high fre-
quencies. In particular, we consider the following two cases: |k| < N and |k| > N.

Case 1: |k| < N. We consider only the first term I, ;, in (3.4) and truncate I ; to
the frequency domain |ky + k3| < N,

L = Ki(v) + Rax(v), (3.5)
where KCr(v) is defined by

-
}Ck(’U) = —1 Z / el(t"—i_s)(b ds %J\kl’lA)ka}k:s.
k=k1+ka+ks O
|k2+k3| <N
The remainder Ry ;(v) is given by
.
R27k(v) = —1 Z / glltnt9)9 g 5k1@k2@k3. (36)
0

k=k1+kao+ks3
|ko+k3|>N

Furthermore, from the definition of T,,(M;v) in (2.7)), the function R, satisfies
RQ(U) S T3(1|k2+k3|>N; U)'
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Next we consider the term Ky(v). Note that if k = k; + ko + k3, then from (3.2)), the
following equality holds

¢<k, k’l, k‘g, k’g) = Qk‘k’l + 2]€2k‘3.

In order to get a first-order scheme, we need to find an appropriate approximation to
the exponential e®*?. Using the formula

ezsqﬁ — e27,skk:1 e225k2k3 — estkkl + (estkgkg . 1) + (e27,skk:1 o 1) (e2zsk2k‘3 o 1)’

we decompose i (v) into two terms

le(?)) - Z / ztnqb 2zskk1 + ( 2iskaks 1)} ds /T;kl{)kzﬁk’:; + 7%37]6(1]),

k=ki+ko+k3
|ko+ks| <N

where R ;(v) is defined by
Rar(v)=—i Y / i (2iskkr 1) (2h2hs — 1) ds O, Dy Oy - (3.8)

k=K1 +ko+ks
|ka+ks|<N

We find that the integral in i (v) can be computed easily. Integrating with respect
to s, we have for any |k| < N,

Ki(v)
1 . . 2_12_ 12
. it 2iTkk = A A . zt ki—k5—k
=—1 g me ”¢(e - 1) Uky Uty Uty — 4T g n (ki 2 Vkey Uty Uk
k=F1 +ka+ks ! 0=F1 +ho+s
|ka+ks[<N |ka+ks[<N
|k]7£0,|k1]7£0
. : 2_1.2_ 1.2y . ~ ~ . . _ L2 1.2\ A ~ ~
—aT g eitn (K —ka=k3) &\ Oy Do + 47 E et (k2 =k3) 4 Dk Do
k=ko+ks3 0=ko+k3
|k2+k3|<N
1 ‘ . .
: ity 2iTkok: = A A . itnd = N A
—1 E me ‘b(e 25— 1) Uy Ukg Uky + 1T E eltn® Uk, Uky Uk
k=ky+hothy 20 k=ky +ha-+ks
|k2+k3|<N |k2+k3| <N
k2|70, | k3|70
. 2,12 1.2 ~
— 2T g gitn K-+ —k3) 75 Vg, Opy 00 + ireitnk® 5 ( ) + R k(v). (3.9)
k=ki1+ka
|k2| <N

For specific details of the above formula, we refer to the literature [7, [§].
Case 2: |k| > N. Let R4(v) be the function with Fourier coefficients

.

> . i(tn+s = A A

Ryp(v) = —i E / ¢/t ts)e g Uy Oy Vs -
0

k=k1+ko+k3
|k|>N

Then, for |k| > N, we get
[l,k = R4,k(v). (310)

Furthermore, from the definition of 7,,,, we find

R4(U) cT Tg(l‘kb]\/; U).
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Hence, putting together (3.4)), (3.5)), (3.9) and (3.10]) yields
U(tn—i-l) :CI)?N (U(tn)) + Rl(U) + RQ(U) + Rg(v) + R4(U), (311)
where @7\ is given by
1 : 2 2 ; 2
(I):-iN(f) — f + §efztn+16x8;1PN |:( 7ztn+18wa lf) ez'ra (ezt"a”‘f)Q]
1 . . ,
_ 56_”"850;1]3]\/ [(e—ztnagaajlf) . Py (eztnagf) 2]
—irPy [(efitnagf) . Py (eitnag f)2]

~itnd; p; e”t"82 ) )+’L7'P0( itn0; f) Po(

)

( )
_ztn82 N[ e ztna f) —’L’T@ZP ( ztn+18£8z—1f)2]
—ztn ”'CPN|: e—ztn82.ﬂ P ( ztnaia;lf)2i|

1 jreitn xPN[(e—ztna f) Py ( ztnagf)Q]

— iTe” itn0Z N|:(e—ztn6 f) P ( ztnazf)} . PO(f)

+ire 2% Py F o (Py(f))% (3.12)
Accordingly, for given v € Sy, we compute v"*1 € Sy by
" =97 (v"), n>0; v'=u’ (3.13)

This finishes the construction of the numerical scheme ([2.4)).

3.2. Some technical estimates. We will frequently apply the following inequality,
see [6].

Lemma 3.1. (Kato-Ponce inequality, [6]) The following estimates hold:
(i) Let f,g € H? for some v > 5. Then we have

1T F ez S [l gl
(i) Let f € H™™, g€ HY for somey >0, v; > 3. Then we have

177z S W e [l gl e

Next we present two specific estimates, which are used in section 4.

Lemma 3.2. The following bounds hold:
(i) Let v e L=((0,T); HY) for some v > 3, and g € T3(1jy>n;v). Then

gllze < NﬂHUHLw((OI);Hv)-

(i) Let v € L>((0,T); H") for some v > 3, and g € T5(1jyqhy>n;v). Then
lgllz> < N_’YHUH%OO((O,T);HW)'

(iii) Let v € L*=((0,T); HY) for some v > 3, and g € T, (1;v), m > 1. Then

lgllz S HU||L°°((O,T);H7)-
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Proof. We employ the notation ij = |, (t)].
(i) If g € T3(1x>n;v), using the definition of 75, (M;v) in (2.7), we have

Vlek2%3 for ‘k“ > N,
|Gk| S F=hbaths (3.14)
0 for |k| < N.

By Parseval’s identity, we get

lgllZe =27 > 1ge*

keZ
From the above identity and (3.14]), the following estimates hold

1
HgHL2 N ( Z < Z Vklvkzvks)Q)

|[k|>N  k=ki+kot+ks
1
N A A 2\ 2
SJN 7( E ( E |k|ﬂ{V;€1Vk‘2Vk3>) )
|k|>N  k=ki+ko+k3

where the last estimate holds true because the frequency is limited to |k| > N.
For convenience, we employ the notation

f/ = Z Gikmvk.

keZ

Then, we have that V;, = Vj, = |(¢)| and thus

IVIE =27 Y A+ k) VifP =21 ) (1+ k)|

keZ kel
=27 > (1 + k2|0 (1) 2 = ||l (3.15)
kEZ

Using Parseval’s identity once more we obtain
lgllze S NNV e o,y S NIV Iz (0,187
Therefore, from (3.15) and the above inequality, we have
lgllze S N_7‘|U||?i°°((0,T);HW)'
(ii) We use the same argument as in (i) and Parseval’s identity to get

lgllr: < <Z ( Z Vklvkgvk;;)Q)é

keZ  k=ki+kot+ks
|k‘2+k‘3|>N

S Hf/ ' P>N(V2)HL°°((O7T);L2)’

where the operator P. is defined in ({2.2]).
Then, by Holder’s inequality, we have

lgllz> < HVHLOO((O,T);LOO)HP>N(‘72>HLOO((0,T);L2)'
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Note that ~
Pon(V?) € Ta(Ljgsn;v),
hence we use the result of (i) and (3.15]) to obtain

1P (V2]

Now, we can use Sobolev’s inequality to finally obtain

Lo ((0,T);L2) S NﬂH”Hioo((oy);my

_ 3
gl S N 7HUHLoo((o,T);Hv)'
(iii) Using the explicit form of T,,(M;v) given in (2.7)), we have
ol S > ViV
By Parseval’s identity, Lemma and (3.15)) again, we obtain that

ol v S WV ™ Loy S N0l Eeeo.ryam-

This concludes the proof. U
Furthermore, from Lemma , we have for any v > %,
[R1(0)|| 2 < [[R1)]| gy S 720N T 0 (0,757 (3.16)
[R2(0)|| 2 S TN 0lliweomyimrys 1R S Tl0liw oy, (3:17)
HR4(U)||L2 S TNﬂHUHioo((o,T);Hv)a HR4(U)HHV S THUH%‘X’((O,T);H’Y)' (3.18)

Lemma 3.3. The following estimates hold:

(i) Let v e L>((0,T); H") for some 1 >~ > 1. Then for any small enough ¢ > 0,

3,41
HRS(U)HLz NEEAAE E||U||%oo((o,:r);m)'
(i) Let v € L>=((0,T); H") for some v > 1. Then,
||R3(U)||Hv S T||U||?ioo((o,T);Hv)-
Proof. (i) As employed in Lemma 3.2, we use the notation ij = |k, (t)|. Note that for
s € [0, 7],
e B L R e et L L

Therefore, we obtain from (3.8) that

Raw()| S 727275 3" (R k|3 [l 72 ks 720 Vi, Vi V-

k=k1+ko+k3
|ko+ks| <N

Based on the relation between the frequencies, we consider three cases.
Case 1: |k| < |k1|. From the above estimate, we have
[Ras()| S7375575 37 [kl el ™3 ksl 3 7 Vi Vi Vi

k=k1+ko+k3
|ko+k3| <N

‘7 = Z eikka.

kEZ

We denote as before
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Then from (3.15)), we have |V s+ = ||v||zz+. Therefore, by Parseval’s identity, we obtain
that, for any v > %,

[Rs(v)]) . S22

|3x|wf/ . (|8x|7—§—5‘~/)2‘

L2
Sravtae HU”%‘”((O,T);HW)'

Case 2: |k| < |k2|. In this case, we have

Ron(@)] S 727575 3 (k| F kol 275 ka2 Vi, Vi Vi,
k=k1+kao+k3
|kot+ks|<N

Therefore, we use Parseval’s identity to obtain

[Ra(@)] 2 S 757%27

|ax|%7‘~/ ’ |ax|%7_%_€‘7 ’ |am|’y_%_€‘~/’

2

If v # 1, we employ the Holder and Sobolev inequalities to get

SV S 1. 3_1_.7 _1l_-
[Ra()ll £ 727 = (l10el V| 2 - fl10el =727V 2 - 10727V

~Y

341
NEEIAE aHUHiOO((O,T);H“/)'

If v =1, we write

IRs ()| - < 77102 V] 102 V| e

~J

Rl (P17 s
S TQ_SH”H%OO((O,T);HW)'

Hence, for any % < v <1 we conclude that

IR3(0) |2 S 7272201 0y

Case 3: |k| < |ks|. It is same as case 2.
(ii) We have the following inequality

’(e2iskk1 _ 1) (ezisk2k3 _ 1)‘ <1

Plugging the above inequality into (3.8)), we obtain

Rax@)| ST DY Vi Vi Vi (3.19)
k=k1+kao+ks3
|ka+ks| <N

Then, from the definition of T,,,(M;v) in (2.7)), we observe that
Rg(’U) € TT3(1; U).

Finally, from Lemma (iil), we get the result (ii). O
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4. PROOF OF THEOREM 2.1

Note that the L? stability estimate depends on bounds of the numerical solution
in H7, % < v < 1. Therefore we first show the H” bound before we give the proof of
Theorem This strategy was first used in [9]. In particular, the bound of the H?
norm of the numerical solution is independent of the degrees of freedom in the spatial
discretisation, N. It only depends on 7" and the bound |||z ((0,r);sv). We are now in
a position to show the bound in H”.

Proposition 4.1. Let u? y be the numerical solution given in (2.4). Under the as-

sumption that u® € HY(T) for some % < v <1, there exists a positive constant C', such
that for any integer N > 1

|ur nllgr < C, forall 0<nt<T, (4.1)
where the constant C' only depends on T and the bound ||u|| ro((o,r):m7)-

Proof. Let v" = u]! n. From (3.13), we have
U(tni1) = 0" = 0(tg) = 7y (v(tn)) + @7y (v(ta)) — 7 (V")
=L+ 07 v (v(ty) — @7 (v"),
where £ = v(t,41) — 7y (v(tn)).
Furthermore, from we get

L' =TRi(v) + Ra(v) + R3(v) + Ra(v).

Then, from (3.16)), (3.17), (3.18) and Lemma [3.3] (ii), we have
1L < Cr. (4.4)

Note that the constant C' only depends on ||w||ze((0,1);m7)-
Recall that ®7 \(f) defined in (3.12) can be written the following integral form:

Ba(N0) = fo-i 3 [ ety @R 0] ds Ty fufi (49
k=k1+ko+ks V0

|k2+k3|<N
|k|<N

Further, note that

oitnd |:e2iskk1 I (62isk2k3 _ 1)] ’ <1
Then, by Lemma (i), we obtain
[0y (v(20)) — 2 (") 2 <1+ C) " = (bl + Crlle” = v(ta) . (4.6)
A combination of the above estimates allows that
|v(tnsr) — 0" H gy < (14 CT)||[0" — v(ty) || gy + CT||v™ — v(ta)||3 + OT.
By iteration and Gronwall’s lemma, we get
Joltasn) - o7, < C.
That means
o+, < .
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This finishes the proof on the boundness in H”. U

Now we start to prove Theorem [2.1]
From (3.16), (3.17), (3-18) and Lemma[3.3) (i), we have

1L 2 < CT27H2~s £ Cr N7, (4.7)

where the constant C' only depends on the bound ||u|| g (0,7);17)-
From (4.5)), we have

127 x5 (v(tn)) — @7 5 (0") |22
< o = wv(ta)llzz + Crllo™ = v(ta) |2 (10" 7 + o) ll7)-
By Proposition 4.1, we have
127 x (v(tn)) = % n (") 22 < (L4 CT) " = v(ta)l| 2.

Combining (4.2)) with (4.7) and the above estimate, we get

[0(tir) — 0™ <1+ C7) 0" = 0(ta) ||+ + CT37375 4 CTN .
By iteration and Gronwall’s lemma, we finally get

|v(tns1) — v”HHm <Cr?TiE 4 ON7Y.

This concludes the proof.

5. NUMERICAL EXPERIMENTS

In this section we carry out numerical experiments to support our theoretical
analysis. We consider the nonlinear Schrodinger equation (|1.1)) with initial data

w(x) =D (14 [k]) 27 gee™, (5.1)

kEZ

where v and (g )rez are used to set the regularity of the data. The complex coefficients
gr are chosen as uniformly distributed random variables in [—1, 1] +i[—1, 1]. They are
generated with the matlab routine rand. This choice guarantees that u® € H7. however,
as a consequence of the Paley-Zygmund Theorem (see, e.g., [3]), the initial data (5.1
satisfies the stronger regularity condition 9Ju’ € LP, 2 < p < oo. This will be a slight
issue when we study the temporal discretisation error. See the discussion below.

We start our numerical experiments with the spatial discretisation errors. On the
left-hand side of Fig. 1, we present our results for a sufficiently small time step size 7.
This allows us to ignore the errors caused by temporal discretisation. We choose three
different values of v € [%, 1] to illustrate the spatial convergence rate of our scheme. In
order to measure the spatial discretization error u(t,,, ) — u'y for fixed time t,,, we
use the discrete L? norm

N-1 .
2
iz, = 5 ; (@)l oz =5 (5.2)

The results of our numerical experiments agree well with the corresponding results of
the theoretical analysis, see Theorem [2.1]
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The temporal discretisation errors are displayed on the right-hand side of Fig. 1
for a sufficiently large N. This allows us to ignore the errors caused by spatial discreti-
sation. In order to illustrate the time convergence rate, we present results for three
different values of v € [%, 1]. We use again the norm specified in (5.2). Note that
the observed rates of convergence are slightly better than predicted by Theorem [2.1]
The reasons for this is the additional regularity, guaranteed by the Paley-Zygmund

Theorem [5].

spatial discretization error temporal discretization error
T

10°

—o— =112 —o— =12

10t

——— OB —*—o(12)
=314 =304
T o

10°F 101k

o) o) e ST

101F i%w”'"""’*—fﬁ,,,,,,%%’ 3 102 ’C T *

10%F E 10 ¢

104 . . 10° " ’
102 108 10 10

FIGURE 1. Spatial discretisation error at 7 = 271° T = 1 for various
values of N and v (left) and temporal discretisation error for N = 214 at
T =1 for various values of 7 and ~y (right).

6. CONCLUSION

We have constructed a fully discrete low-regularity integrator for the cubic NLS
equation with nonsmooth initial data in one space dimension. The scheme can be
computed with FFT with O(N log N) operations per time step. We have proved con-
vergence in L?(T) for initial data in H?(T), 3 < v < 1. Numerical results illustrate
our convergence result.
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