
ar
X

iv
:2

01
2.

13
05

5v
1

 [
m

at
h.

N
A

]
 2

4
D

ec
 2

02
0

PERTURBED RUNGE-KUTTA METHODS FOR MIXED PRECISION

APPLICATIONS∗

ZACHARY J. GRANT †

Abstract. In this work we consider a mixed precision approach to accelerate the implemetation
of multi-stage methods. We show that Runge–Kutta methods can be designed so that certain costly
intermediate computations can be performed as a lower-precision computation without adversely
impacting the accuracy of the overall solution. In particular, a properly designed Runge–Kutta
method will damp out the errors committed in the initial stages. This is of particular interest
when we consider implicit Runge–Kutta methods. In such cases, the implicit computation of the
stage values can be considerably faster if the solution can be of lower precision (or, equivalently,
have a lower tolerance). We provide a general theoretical additive framework for designing mixed
precision Runge–Kutta methods, and use this framework to derive order conditions for such methods.
Next, we show how using this approach allows us to leverage low precision computation of the
implicit solver while retaining high precision in the overall method. We present the behavior of
some mixed-precision implicit Runge–Kutta methods through numerical studies, and demonstrate
how the numerical results match with the theoretical framework. This novel mixed-precision implicit
Runge–Kutta framework opens the door to the design of many such methods.

1. Introduction. Consider the ordinary differential equation (ODE)

ut = F (u).

Evolving this equation using a standard Runge Kutta approach we have the s-stage
Runge–Kutta method

y(i) = un +∆t

s∑

j=1

AijF (y(j))

un+1 = un +∆t

s∑

j=1

bjF (y(j)),(1.1)

where Asxs and b1xs are known as the Butcher coefficients of the method.
The computational cost of the function evaluations F (y(j)) can be considerable,

especially in cases where it necessitates an implicit solve. The use of mixed precision
approach has been implemented for other numerical methods [1, 5] seems to be a
promising approach. Lowering the precision on these computations, either by storing
F (y(j)) as a single precision variable rather than a double precision one, or by rais-
ing the tolerance of the implicit solver, can speed up the computation significantly.
However, it generally reduces the precision of the overall numerical solution.

∗Submitted to the editors on December 24, 2020
Funding: This material is based upon work supported by the U.S. Department of Energy,

Office of Science, Office of Advanced Scientific Computing Research, as part of their Applied Math-
ematics Research Program. The work was performed at the Oak Ridge National Laboratory, which
is managed by UT-Battelle, LLC under Contract No. De- AC05-00OR22725. The United States
Government retains and the publisher, by ac- cepting the article for publication, acknowledges that
the United States Government re- tains a non-exclusive, paid-up, irrevocable, world-wide license to
publish or reproduce the published form of this manuscript, or allow others to do so, for the United
States Government purposes. The Department of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE Public Access Plan http://energy.gov/
downloads/doe-public-access-plan

†Department of Computational and Applied Mathematics, Oak Ridge National Laboratory, Oak
Ridge TN 37830. grantzj@ornl.gov

1

http://arxiv.org/abs/2012.13055v1
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
mailto:grantzj@ornl.gov

The aim of this paper is to create a framework for the design of Runge–Kutta
methods that allow lower precision function evaluations for some of the stages, with-
out impacting the overall precision of the solution. This acceleration of multi-stage
methods using a mixed precision approach relies on a design that ensures that errors
committed in the early stages may be damped out by the construction of the update
in later stages.

The structure of this paper is as follows: in Section 2 we provide a numerical ex-
ample of a mixed-precision formulation of the implicit midpoint rule, which motivates
the need to study the effect of lower-precision computations of implicit function eval-
uations. In 3 we provide a general framework for analyzing mixed-precision Runge–
Kutta methods by exploiting the additive Runge–Kutta method formulation. In this
section we also present the order conditions that arise from this formulation and show
how these are a relaxation of the general required order conditions. In Section 4 we
show how the implicit midpoint rule can be written in this additive mixed-precision
Runge–Kutta form, and develop methods in a specific class of implicit Runge–Kutta
methods that exploit the formulation in Section 3.

2. Motivating example: mixed precision implementation of the implicit

midpoint rule. First we consider the implicit midpoint rule defined as

un+1 = un +∆tF

(
un + un+1

2

)

(2.1)

which is equivalently written in its Butcher form as:

y(1) = un +
∆t

2
F
(

y(1)
)

(2.2a)

un+1 = un +∆tF
(

y(1)
)

(2.2b)

The equivalence can be seen by noting that equation (2.2b) can be re-written as
un+1 = 2y(1) − un, and substituting y(1) = 1

2 (u
n + un+1) into equation (2.2a).

In both equations (2.1) and (2.2a), we require an implicit solver in order to com-
pute the update. Let’s consider the case that the implicit solver can only be satisfied
up to some tolerance, O(ǫ), who’s output uǫ

n+1 satisfies the modified equation

uǫ
n+1 = un +∆tF ǫ

(
un + uǫ

n+1

2

)

exactly. We define the perturbation operator

τ(u) =
F (u)− F ǫ(u)

ǫ
(2.3)

so at any given time-step un+1 − uǫ
n+1 = O(ǫ∆t). Over the course of the solution,

the local errors build-up to give an global error contribution of O(ǫ).
However, we can also formulate a method

yǫ
(1) = un +

∆t

2
F ǫ

(

y(1)ǫ

)

(2.4a)

ûn+1 = un +∆tF
(

y(1)ǫ

)

(2.4b)

where we use an inaccurate implicit solve in the first stage, and an accurate explicit

evaluation in the second stage. We obtain y
(1)
ǫ = y(1) + ∆tO(ǫ). The error, un+1 −

ûn+1, between the full precision and mixed precision implementation over one time-
step is now of order O(ǫ∆t2). This results in a global error contribution of O(ǫ∆t).

2

-5 -4 -3 -2 -1 0
Log10(t)

-12

-10

-8

-6

-4

-2

0

Lo
g

10
(E

rr
or

)

Fig. 2.1. The implicit midpoint rule applied to the
van der Pol system (2.5). The half-precision implemen-
tation (ǫ = O(10−4)) is shown as a blue dashed line and
the single-precision implementation ǫ = O(10−8) as a
red dashed line. The mixed precision implementation
with ǫ = O(10−4) is shown with a dotted blue line, and
the mixed precision implementation with ǫ = O(10−8)
is shown with a dotted red line. The double precision
implementation is shown for reference with black cir-
cles.

To see how this works in prac-
tice, consider the van der Pol system

y′1 = y2(2.5a)

y′2 = y2 (1− y21)− y1(2.5b)

with initial conditions y1(0) = 2 and
y2(0) = 0. We stepped this for-
ward to a final time Tf = 1.0. To
emulate a mixed precision computa-
tion, we let F ǫ in (2.4a) be the trun-
cated output of F , where the trun-
cation is performed to single preci-
sion (ǫ ≈ 10−8) and half precision
(ǫ ≈ 10−4), while the explicit evalu-
ation of F in (2.4b) is performed in
double precision. For comparison,
we emulate a low precision version
of (2.2), where we truncate all com-
putations of F in to the same low
precision. Finally, we compute a full
-precision version of (2.2), where all
F are computed to double precision
and not truncated. (Note that his
truncation approach is advocated in [7] to emulate low precision simulations.)

In Figure 2.1, we show the final time errors in the simulation using the various
implementations. First, we look at the errors from a low-precision implementation
(2.2) in which all the computations of F are truncated to single precision (blue dashed
line) or half precision (red dashed line). Clearly, for a sufficiently refined ∆t, these
errors look like O(ǫ). Next, we look at the errors from the mixed precision computa-
tion, given by Equation (2.4), has a value of F ǫ that results from a single precision
(blue dotted line) truncation or a half-precision truncation (red dotted line), and an
explicit F that is evaluated in full precision. These errors are clearly much better:
they are convergent initially at second order, and the implementation with ǫ ≈ 10−8

remains second order, and matches the full-precision implementation (black circles).
However, the implementation using ǫ ≈ 10−4 reduces to first order for a sufficiently
small ∆t. In the next section we construct a general framework that explains why
this happens and allows us to construct higher order methods that work well in a
mixed precision formulation.

3. A general framework for the analysis of mixed precision Runge–

Kutta methods. We use the B-series analysis for additive Runge Kutta methods to
develop consistency and perturbation conditions for the mixed precision Runge Kutta
method of the form:

y(i) = un +∆t

s∑

j=1

AijF (y(j)) + ∆t

s∑

j=1

Aǫ
ijF

ǫ(y(j))(3.1a)

un+1 = un +∆t

s∑

j=1

bjF (y(j)) + ∆t

s∑

j=1

bǫjF
ǫ(y(j)).(3.1b)

Such methods have been extensively studied, including [3, 4, 12]

3

In [8] a perturbation approach to Runge–Kutta methods was proposed in order
to increase the largest allowable time-step that preserved strong stability. Following
a similar approach we note that the operator F ǫ(y) is an approximation to F (y) such
that for any y we require F ǫ(y)− F (y) = O(ǫ). This allows us to rewrite the scheme
to evolve the operator F and its perturbation τ , defined in (2.3):

y(i) = un +∆t

s∑

j=1

ÃijF (y(j)) + ǫ∆t

s∑

j=1

Aǫ
ijτ(y

(j))(3.2a)

un+1 = un +∆t

s∑

j=1

b̃jF (y(j)) + ǫ∆t

s∑

j=1

bǫjτ(y
(j))(3.2b)

where Ãij = Aij +Aǫ
ij and b̃ = bj + bǫj .

Analyzing the scheme in this form allows us to use an additive B-series repre-
sentation to track the evolution of F as well as its interaction with the perturbation
function τ . For example, a second order expansion is:

un+1 = un +∆tb̃eF (un) + ∆t2b̃c̃Fy(u
n)F (un)

︸ ︷︷ ︸

scheme

(3.3)

+ ǫ∆t
(

bǫeτ(un) + ∆t
(

bǫc̃τy(u
n)F (un) + b̃cǫFy(u

n)τ(un) + ǫbǫcǫτy(u
n)τ(un)

))

︸ ︷︷ ︸

perturbation

+O(∆t3).

This expansion shows two sources of error: those of the scheme and those of the
perturbation, thus the error at one time-step can be written as the sum of the ap-
proximation error of the scheme, Esch, and the perturbation error, Eper . This leads
to two sets of conditions under which a perturbed scheme has an error

E = Esch + Eper = O(∆tp+1) +O(ǫ∆tm+1)

at each time-step. A method with these errors will have a global error of the form

Error = O(∆tp) +O(ǫ∆tm).

We can easily extend (3.3) to higher order. The fourth order expansion related
to the consistency of the scheme has following terms:

Terms involving ∆t Terms involving F scheme
coefficients

∆t F (un) b̃e

∆t2 Fy(u
n)F (un) b̃c̃

∆t3 Fy(u
n)Fy(u

n)F (un) b̃Ãc̃

∆t3 Fyy(u
n)(F (un), F (un)) b̃(c̃ · c̃)

∆t4 Fy(u
n)Fy(u

n)Fy(u
n)F (un) b̃ÃÃc̃

∆t4 Fy(u
n)Fyy(u

n)(F (un), F (un)) b̃Ã(c̃ · c̃)

∆t4 Fyy(u
n)(Fy(u

n)F (un), F (un)) b̃(Ãc̃ · c̃)

∆t4 Fyyy(u
n)(F (un), F (un), F (un)) b̃(c̃ · c̃ · c̃).

4

Expanding the terms related to the perturbation error to third order in ∆t and
third order in ǫ we obtain:

Terms involving Terms involving scheme
ǫ and ∆t F and τ coefficients

ǫ∆t τ(un) bǫe

ǫ∆t2 τy(u
n)F (un) bǫc̃

ǫ∆t2 Fy(u
n)τ(un) b̃cǫ

ǫ2∆t2 τy(u
n)τ(un) bǫcǫ

ǫ∆t3 τy(u
n)Fy(u

n)τ(un) bǫÃc̃

ǫ∆t3 Fy(u
n)τy(u

n)F (un) b̃Aǫc̃

ǫ∆t3 Fy(u
n)Fy(u

n)τ(un) b̃Ãcǫ

ǫ∆t3 τyy(u
n)(F (un), F (un)) bǫ(c̃ · c̃)

ǫ∆t3 Fyy(u
n)(F (un), τ(un)) b̃(c̃ · cǫ)

ǫ2∆t3 τy(u
n)τy(u

n)F (un) bǫAǫc̃

ǫ2∆t3 τy(u
n)F (un)τ(un) bǫÃcǫ

ǫ2∆t3 Fy(u
n)τy(u

n)τ(un) b̃Aǫcǫ

ǫ2∆t3 τyy(u
n)(τ(un), F (un)) bǫ(cǫ · c̃)

ǫ3∆t3 τy(u
n)τy(u

n)τ(un) bǫAǫcǫ

ǫ3∆t3 τyy(u
n)(τ(un), τ(un)) bǫ(cǫ · cǫ)

From these terms, the consistency conditions for the scheme and the perturbation
conditions can be easily defined, and are given in the next section. We consider two
possible scenarios: In the standard scenario, we assume that both F and F ǫ are well-
behaved functions, and all of their derivatives exist and are bounded. In this case,
for the perturbation terms in the table above to be zeroed out, we simply impose
the condition that the corresponding coefficient are zero. In the mixed precision
scenario which motivated this formulation, we consider that τ comes from a precision
error that is defined by ”chopping” the values at the desired precision. In this case,
F ǫ = Chop(F), so that the operator F ǫ is bounded but not Lipshitz continuous, and

so τy =
Fy−F ǫ

y

ǫ
is also not Lipshitz continuous, i.e ∂(k)τ

∂y(k) does not exist. In this case,

we must ensure that all terms containing τy are multiplied by zero coefficients in the
expansion, without assuming cancellation errors. In other words, we requires more
stringent conditions to ensure that terms of the form τy, τyy etc. do not appear in
the final stage. This means that whereas when τ is a well-behaved function, it is
sufficient to require that bǫc = 0, instead we must require that not only the sum is
zero, but every term: bǫjcj = 0. We denote conditions of this form with absolute values
(e.g. |bǫ||c| = 0). These stringent conditions apply to each coefficient matrix/vector
which appears in conditions corresponding to derivatives of tau. These conditions are
presented in the next subsection.

3.1. Consistency Conditions and Perturbation Conditions. The consis-
tency and perturbation conditions can be derived from the additive B-series analysis
of the scheme defined by equations (3.2a-3.2b). Terms that involve only F yield the
classical consistency conditions of the unperturbed scheme. The cross terms are the
perturbation errors. A perturbed Runge-Kutta method is of consistency order p if

5

the following conditions are satisfied:

For p ≥ 1 : b̃e = 1

For p ≥ 2 : b̃c̃ = 1
2

For p ≥ 3 : b̃(c̃ · c̃) = 1
3 and b̃Ãc̃ = 1

6

For p ≥ 4 : b̃(c̃ · c̃ · c̃) = 1
4 , b̃(Ãc̃ · c̃) = 1

8 , b̃Ã(c̃ · c̃) = 1
12 , and b̃ÃÃc̃ = 1

24 .

The perturbation errors are determined by both ∆t and ǫ. For a scheme to achieve
order O(ǫ∆tm+1) we require :

• For m ≥ 1 we require

for n ≥ 1 : bǫe = 0(3.5a)

• For m ≥ 2 we require

for n ≥ 1 : |bǫ||c̃| = 0 and b̃cǫ = 0(3.5b)

for n ≥ 2 : |bǫ||cǫ| = 0(3.5c)

• For m ≥ 3 we require

for n ≥ 1 : |bǫ||Ã||c̃| = 0, |b̃||Aǫ||c̃| = 0, b̃Ãcǫ = 0,(3.5d)

|bǫ| |(c̃ · c̃)| = 0, b̃(c̃ · cǫ) = 0,

for n ≥ 2 : |bǫ||Aǫ||c̃| = 0, |bǫ||Ã||cǫ| = 0, |b̃||Aǫ||cǫ| = 0,(3.5e)

|bǫ| |(cǫ · c̃)| = 0, b̃(cǫ · cǫ) = 0,

for n ≥ 3 : |bǫ||Aǫ||cǫ| = 0, |bǫ| |(cǫ · cǫ)| = 0.(3.5f)

Note that the coefficients that are not attached to a derivative (see table above), do
not require the absolute value.

In the Subsection 3.2 we will show how these conditions can explain the behavior
of the mixed-precision implementation of the implicit midpoint rule. In Section 4 we
will use these conditions to derive mixed-precision methods.

3.1.1. Perturbation conditions when τ is well behaved. If τ is a well-
behaved function, we can assume that terms with similar terms will cancel. In this
case, the perturbation conditions simplify. For a scheme to achieve order O(ǫ∆tm+1)
we require:

• For m ≥ 1 we require

for n ≥ 1 : bǫe = 0(3.6a)

• For m ≥ 2 we require

for n ≥ 1 : bǫc̃ = 0 and b̃cǫ = 0(3.6b)

for n ≥ 2 : bǫcǫ = 0(3.6c)

• For m ≥ 3 we require

for n ≥ 1 : bǫÃc̃ = 0, b̃Aǫc̃ = 0, b̃Ãcǫ = 0,(3.6d)

bǫ(c̃ · c̃) = 0, b̃(c̃ · cǫ) = 0,

for n ≥ 2 : bǫAǫc̃ = 0, bǫÃcǫ = 0, b̃Aǫcǫ = 0,(3.6e)

bǫ(cǫ · c̃) = 0, b̃(cǫ · cǫ) = 0,

for n ≥ 3 : bǫAǫcǫ = 0, bǫ(cǫ · cǫ) = 0.(3.6f)

6

3.2. Understanding the mixed precision implicit midpoint rule using

the additive framework. Returning to the implicit midpoint rule example in Sec-
tion 2, we can use the framework developed above to study the numerical behavior
of the different implementations of the implicit midpoint rule. First, we consider the
high precision form (2.2):

y(1) = un +
∆t

2
F
(

y(1)
)

un+1 = un +∆tF
(

y(1)
)

and note that it is exactly equivalent to (2.1). The low precision form of (2.2) and
(2.1) is

y(1) = un +
∆t

2
F ǫ

(

y(1)
)

(3.8a)

un+1 = un +∆tF ǫ
(

y(1)
)

(3.8b)

while the mixed precision form is

y(1) = un +
∆t

2
F ǫ

(

y(1)
)

(3.9a)

un+1 = un +∆tF
(

y(1)
)

.(3.9b)

Now let’s look at the coefficients of each of these schemes. The full-precision method
(2.2) has coefficients:

b =

(
1
0

)

, c =

(
1
2
1

)

bǫ =

(
0
0

)

, cǫ =

(
0
0

)

which satisfy the order conditions

b̃e = be+ bǫe = 1, b̃c̃ = bc+ bcǫ + bǫc+ bǫcǫ =
1

2
.

The errors from the reduced precision operator are all zero:

bǫe = 0, bcǫ = bǫc = bǫcǫ = 0,

so that, as expected, there is no low precision contribution. This high precision
method will produce second order global errors: Error = O(∆t2).

Next, we look at the low-precision method (3.8)

b =

(
0
0

)

, c =

(
0
0

)

, bǫ =

(
1
0

)

, cǫ =

(
1
2
1

)

.

Once again the O(∆t2) consistency conditions are satisfied

b̃e = be+ bǫe = 1, b̃c̃ = bc+ bcǫ + bǫc+ bǫcǫ =
1

2
.

However, the errors introduced by the reduced precision operator are given by the
perturbation condition

bǫe = 1,

7

so that at each time-step we have a perturbation error of the form

Eper = ǫ∆tbǫeτ(un) = ∆tO(ǫ).

Putting this together, we expect to see errors of the form

E = O(∆t3) +O(∆tǫ)

at each time-step, and an overall error of

Error = O(∆t2) +O(ǫ).

This explains the reduced accuracy we see in Figure 2.1, where initially the errors of
O(∆t2) dominate, but as ∆t gets small enough, the O(ǫ) terms dominate.

Finally, we look at the mixed-precision method (3.9)

b =

(
1
0

)

, c =

(
0
1

)

, bǫ =

(
0
0

)

, cǫ =

(
1
2
0

)

.

We observe that, as before, the O(∆t2) consistency conditions are satisfied

b̃e = be+ bǫe = 1, b̃c̃ = bc+ bcǫ + bǫc+ bǫcǫ = 0 +
1

2
+ 0 + 0 =

1

2
,

so that Esch = ∆t3. The perturbation errors from the reduced precision operator are

bǫe = 0, bcǫ =
1

2
, bǫc = 0, bǫcǫ = 0,

so that at each step we will see perturbation errors of the form

Eper = ǫ ∆t2bcǫ F ′(un)τ(un) =
1

2
ǫ∆t2 F ′(un) τ(un) = O(ǫ∆t2).

Putting this together, we have a one-step error

E = Esch + Eper = O(∆t3) +O(ǫ∆t2),

so that over the course of the simulation we expect to see error of the form

Error = O(∆t2) +O(ǫ∆t),

so that we expect to see second order results as long as ǫ∆t is small enough, and after
that will produce results that look like ǫ∆t. This explains the excellent convergence
we observe in Figure 2.1.

4. Efficient mixed-precision Runge–Kutta methods. In this section we
exploit the framework in Section 3 to develop a mixed precision approach to Runge–
Kutta methods. We first show how we can add correction steps into a naive implemen-
tation of a mixed-precision methods to raise the perturbation order of the method,
as computed by the conditions in Section 3.1. Next we use the order and perturba-
tion conditions to develop novel efficient methods that have high consistency order
and high perturbation order using an appropriate optimization code similar to those
described in [9].

8

4.1. Mixed precision implementation and corrections to known Runge–

Kutta methods. In this section, we show that often, low-precision computation of
the implicit function yields naive mixed-precision methods that have perturbation
errors that may degrade the accuracy of the solution for sufficiently small ∆t. It
is possible to correct this by adding high order explicit steps; this approach yields
methods that can be shown to satisfy both the consistency (3.4) and perturbation
conditions (3.5).

4.1.1. Implicit Midpoint rule with correction. The mixed precision implicit
midpoint rule we described above (3.9)

y(1) = un +
∆t

2
F ǫ

(

y(1)
)

un+1 = un +∆tF
(

y(1)
)

.

has global error
Error = O(∆t2) +O(ǫ∆t)

so that it gives second order (O(∆t2)) results as long as ǫ∆t is small enough; once ∆t

gets small compared to ǫ we observe degraded convergence. To eliminate this error, we
wish to modify the method (3.9) so that the O(ǫ∆t2) term in the expansion (3.3) is set
to zero. The framework above suggests how this can be done. To improve the order
of convergence, when ∆t is small we add correction terms into the mixed-precision
method:

y
(1)
[0] = un +

1

2
∆tF ǫ(y

(1)
[0])(4.1a)

y
(1)
[k] = un +

1

2
∆tF (y

(1)
[k−1]) for k = 1, ..., p− 1(4.1b)

un+1 = un +∆tF
(

y
(1)
[p−1])

)

.(4.1c)

so that

A =

(
0 0
1
2 0

)

, c =

(
0
1
2

)

, b =

(
0
1

)

,

Aǫ =

(
1
2 0
0 0

)

, cǫ =

(
1
2
0

)

, bǫ =

(
0
0

)

,

Ã = A+Aǫ =

(
1
2 0
1
2 0

)

, c̃ = c+ cǫ =

(
1
2
1
2

)

, b̃ = b+ bǫ =

(
0
1

)

.

We observe that to zero out the O(ǫ∆t2) term we require

bǫc̃ = 0, b̃cǫ = 0.

The method (4.1) satisfies these equations, and so we obtain global error:

Error = O(∆t2) +O(ǫ∆t2).

Note that this approach to reduce precision errors is reminiscent of that in [10];
the framework we developed allows us to understand this correction approach as a
new method.
Numerical Results: In the following we demonstrate how this method performs in
practice. As before, we use the van der Pol system, Equation (2.5) with a = 1 and

9

initial conditions y1(0) = 2 and y2(0) = 0. We stepped this forward using the implicit
midpoint rule (4.1) to a final time Tf = 1.0. We show how using a mixed precision
implementation and then a correction step (4.1b) improves the error. In Figure 4.1 we
show the results for ǫ = O(1) (zero precision, left), ǫ = O(10−4) (half precision), and
ǫ = O(10−8) (single precision, right). The low precision (3.8) is shown in a dashed
line, the mixed precision method (4.1) with no correction (p = 1) in a dotted line,
and the mixed precision method (4.1) with one correction (p = 2) in a dash-dot line.
The reference solution computed in double precision is shown in black circle markers.

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5
Log10(t)

-12

-10

-8

-6

-4

-2

0

Lo
g

10
(E

rr
or

)

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5
Log10(t)

-12

-10

-8

-6

-4

-2

0

Lo
g

10
(E

rr
or

)

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5
Log10(t)

-12

-10

-8

-6

-4

-2

0

Lo
g

10
(E

rr
or

)

Fig. 4.1. The implicit midpoint rule applied to the van der Pol system (2.5) with correction
steps. Left: Zero precision ǫ = O(1), Middle: half precision ǫ = O(10−4), Right: single precision
ǫ = O(10−8).

Figure 4.1 shows that each progressive correction, which involves explicit compu-
tation of the function, produces a more accurate method. Looking at the perturbation
conditions, we showed in Section 3.2 that the low precision method (3.8) has errors
ErrorLP = O(∆t2) + O(ǫ). As expected, dashed line solutions shown in Figure 4.1
all have flat line errors at the level of their respective ǫ values.

The mixed precision method (4.1) with p = 1 (this is the same method give by
Equation (3.9)), has errors Errorp=1 = O(∆t2) + O(ǫ∆t), which is reflected in the
fact that the dotted line solutions for the zero precision case in Figure 4.1 has slope
σ = 1. For the half precision case the dotted line solution starts off with a slope
σ = 2, but once the time-step gets sufficiently small we see the line changes and now
has slope σ = 1: this shows clearly that once ∆t is small enough compared to ǫ, the
O(ǫ∆t) term dominates and we see first order convergence. For the single precision,
we don’t observe this phenomenon in this example because ∆t is not small enough
compared to ǫ.

Finally, the mixed precision method with one correction step (Equation (4.1) with
p = 2) has errorsErrorp=2 = O(∆t2)+O(ǫ∆t2). For the half and single precision, two
corrections steps produce a second order solution, and this line has σ = 2. The order
of the same accuracy as a complete computation in double precision (shown in black
circles). This would be worth-while in all cases where two explicit steps take much
less computational time than the savings realized from replacing a double-precision
implicit solve with one that has single or half precision. The case of zero precision,
ǫ = O(1), has a larger error, but the correction step clearly gives an error with slope
σ = 2.

10

4.1.2. A mixed precision implementation of a two stage third order

SDIRK. We take the two stage third order singly diagonally implicit method [2]

y(1) = un + γ∆tF (y(1))(4.2a)

y(2) = un + (1− 2γ)∆tF (y(1)) + γ∆tF (y(2))(4.2b)

un+1 = un +
1

2
∆tF (y(1)) +

1

2
∆tF (y(2))(4.2c)

with γ =
√
3+3
6 . A low-precision implementation is given by

y(1) = un + γ∆tF ǫ(y(1))(4.3a)

y(2) = un + (1− 2γ)∆tF ǫ(y(1)) + γ∆tF ǫ(y(2))(4.3b)

un+1 = un +
1

2
∆tF (y(1)) +

1

2
∆tF ǫ(y(2)).(4.3c)

Using a low-precision computation only of the implicit function yields the mixed-
precision method:

y(1) = un + γ∆tF ǫ(y(1))(4.4a)

y(2) = un + (1− 2γ)∆tF (y(1)) + γ∆tF ǫ(y(2))(4.4b)

un+1 = un +
1

2
∆tF (y(1)) +

1

2
∆tF (y(2)).(4.4c)

The consistency conditions are satisfied to order three. The highest order non-zero
perturbation term is b̃cǫ = γ so we have a perturbation error Eper = O(∆t2ǫ) at each
time step, or a global error

Error = O(∆t3) +O(ǫ∆t).

When ∆t2 < ǫ, the perturbation error will dominate. In this case, we can correct the
method by adding explicit stages:

y
(1)
[0] = un + γ∆tF ǫ(y

(1)
[0])(4.5a)

y
(1)
[k] = un + γ∆tF (y

(1)
[k−1]) for k = 1, ..., p− 1(4.5b)

y
(2)
[0] = un + (1− 2γ)∆tF (y

(1)
[p−1]) + γ∆tF (y

(2)
[0])(4.5c)

y
(2)
[k] = un + (1− 2γ)∆tF (y

(1)
[p−1]) + γ∆tF (y

(2)
[k−1]) for k = 1, ..., p− 1(4.5d)

un+1 = un +
1

2
∆tF (y

(1)
[p−1])) +

1

2
∆tF (y

(2)
[p−1])).(4.5e)

This corrected method with p = 3 has coefficients:

A =

0 0 0 0 0 0
γ 0 0 0 0 0
0 γ 0 0 0 0
0 0 (1− 2γ) 0 0 0
0 0 (1− 2γ) γ 0 0
0 0 (1− 2γ) 0 γ 0

, Aǫ =

γ 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 γ 0 0
0 0 0 0 0 0
0 0 0 0 0 0

b =
(
0 0 1

2 0 0 1
2

)
, bǫ =

(
0 0 0 0 0 0

)
.

11

The order conditions are, as before, satisfied to third order, and the perturbation
terms contribute to the errors terms of the form O(ǫ∆t4), so the overall global error
from the method with three corrections for each implicit solve is

Errorp=3 = O(∆t3) +O(ǫ∆t3).

Numerical Results: To demonstrate the performance of this method in practice,
we apply its various implementations to the van der Pol system, Equation (2.5), with
a = 1 and initial conditions y1(0) = 2 and y2(0) = 0. We step this forward to a
final time Tf = 1.0, using low precision, mixed precision, and mixed precision with
successive corrections.

-4 -3 -2 -1 0
Log10(t)

-12

-10

-8

-6

-4

-2

0

Lo
g

10
(E

rr
or

)

Fig. 4.2. The SDIRK method with succes-
sive corrections applied to the van der Pol system
(2.5). The half-precision implementation (4.3))
shown as a dashed line. The mixed precision im-
plementation (4.4)) with ǫ = O(10−4) is shown
with a dotted line. The mixed precision implemen-
tation (4.5) with ǫ = O(10−4) and one (p = 2)
correction steps is shown with dash-dot, and with
two (p = 3) correction steps with a solid line. The
double precision implementation of (4.2) is shown
for reference with black dots.

In Figure 4.2 we show the half-
precision results of the various imple-
mentations of the SDIRK method. First,
we use a half-precision implementation
of the SDIRK method, as given in Equa-
tion (4.3)) with ǫ = O(10−4). The errors
resulting from this implementation are
shown by a dashed line. This line is hor-
izontal at the level of O(ǫ), as expected
from the error given by this implemen-
tation: ErrorLP = O(∆t3) + O(ǫ). Us-
ing the naive mixed precision imple-
mentation (4.5) we expect an error of
Errorp=1 = O(∆t3) + O(ǫ∆t). In Fig-
ure 4.2, the dotted line shows that error
initially has slope σ = 2: this happens
when ǫ is small compared to ∆t and so
the O(ǫ∆t) looks like O(∆t2). However,
as ∆t gets smaller, we see the error line
become first order. Adding one correc-
tion step to the mixed precision imple-
mentation (4.5), we obtain an error shown as the dash-dot line, which initially looks
third order (slope σ = 3) but then, as ∆t becomes small compared to ǫ, begins
to look like it is second order (slope σ = 3). This matches the expected order
Errorp=2 = O(∆t3) + O(ǫ∆t2). Finally, when we add two correction steps to the
mixed precision implementation, the error (shown as a solid line) has slope σ = 3,
as expected from the predicted order Errorp=3 = O(∆t3) + O(ǫ∆t3). This solution
matches the double precision reference solution shown in black circle markers.

4.1.3. Mixed precision implementation of a two stage L-stable scheme.

Consider the L-stable fully implicit Lobatto IIIC scheme [11]:

y(1) = un +
1

2
∆tF (y(1))−

1

2
∆tF (y(2))(4.6a)

y(2) = un +
1

2
∆tF (y(1)) +

1

2
∆tF (y(2))(4.6b)

un+1 = y(2).(4.6c)

12

A naive mixed precision implementation of this method is given by:

y(1) = un +
1

2
∆tF ǫ(y(1))−

1

2
∆tF ǫ(y(2))(4.7a)

y(2) = un +
1

2
∆tF ǫ(y(1)) +

1

2
∆tF ǫ(y(2))(4.7b)

un+1 = un +
1

2
∆tF (y(1)) +

1

2
∆tF (y(2))(4.7c)

This implementation has Butcher coefficients

Aǫ =

(
1
2 − 1

2
1
2

1
2

)

, A =

(
0 0
0 0

)

,

bǫ =
(
0 0

)
, b =

(
1
2

1
2

)
.

The error coming from this implementation is, according to the analysis in Section 3,

Error = O(∆t2) +O(ǫ∆t).

A corrected mixed precision implementation is given by

y
(1)
[0] = un +

1

2
∆tF ǫ(y(1))−

1

2
∆tF ǫ(y(2))(4.8a)

y
(2)
[0] = un +

1

2
∆tF ǫ(y(1)) +

1

2
∆tF ǫ(y(2))(4.8b)

y
(1)
[1] = un +

1

2
∆tF (y

(1)
[0])−

1

2
∆tF (y

(2)
[0])(4.8c)

y
(2)
[1] = un +

1

2
∆tF (y

(1)
[0]) +

1

2
∆tF (y

(2)
[0])(4.8d)

un+1 = un +
1

2
∆tF (y

(1)
[1]) +

1

2
∆tF (y

(2)
[1])(4.8e)

Aǫ =

1
2 − 1

2 0 0
1
2

1
2 0 0

0 0 0 0
0 0 0 0

, A =

0 0 0 0
0 0 0 0
1
2 − 1

2 0 0
1
2

1
2 0 0

,

bǫ =
(
0 0 0 0

)
, b =

(
0 0 1

2
1
2

)
.

Using the analysis in Section 3 we see that the error coming from this implementation
is expected to be

Error = O(∆t2) +O(ǫ∆t3).

Numerical Results: As before, we apply the different possible implementations to
evolve the van der Pol system, Equation (2.5), (with a = 1 and initial conditions
y1(0) = 2 and y2(0) = 0) to a final time Tf = 1.0.

13

-5 -4 -3 -2 -1 0
Log10(t)

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

Lo
g

10
(E

rr
or

)

-5 -4 -3 -2 -1 0
Log10(t)

-11

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

Lo
g

10
(E

rr
or

)

Fig. 4.3. The Lobatto method with various implementations. The dashed line is a low-precision
implementation, the dotted line is the naive mixed precision implementation (4.7), and the dash-dot
line is the corrected mixed precision implementation (4.8). Left: half precision ǫ = O(10−4), Right:
single precision ǫ = O(10−8).

In Figure 4.3 we show the half-precision (left) and single-precision (right) results
of the various implementations of the Lobatto IIIC method. The errors from the
low precision implementation are shown by a dashed line which starts off with slope
σ = 2 and very quickly becomes horizontal, as expected from the error analysis
which predicts ErrorLP = O(∆t2) +O(ǫ). The errors from the naive mixed-precision
implementation (4.7) are shown by a dotted line which has slope σ = 2 for ǫ =
O(10−8), but has slope σ = 1 for ǫ = O(10−4), which matches the predicted error
ErrorMP = O(∆t2) + O(ǫ∆t). What is happening here is that for the half precision
implementation the term O(ǫ∆t) dominates early on, whereas for the single precision
implementation we observe the O(∆t2) convergence because ∆t is large compared to
ǫ. (For the single precision implementation the dotted line is hidden by the dash-
dot line). Finally, the corrected mixed-precision method (4.8) has errors (shown in a
dash-dot line) that are second order and that match the full-precision implementation
(black circles).

4.2. Third order novel methods. The framework presented in Section 3 can
not only be used to analyze naive mixed-precision implementations of existing methods
and corrections to such methods, but to devise new methods. In this section we
present examples of two methods that were developed to satisfy the order (3.4) and
perturbation conditions (3.5) in Section 3.1 to high order. Both methods are four-
stage third order methods. The first method, presented in Subsection 4.2.1, is not
A-stable, and is third order with high order perturbation errors:

Error = O(∆t3) +O(ǫ∆t3).

The second method, presented in Subsection 4.2.2, is a perturbation of the four-stage
third order L-stable method in [6], and so is A-stable. However, its perturbation
errors are not as high order:

Error = O(∆t3) +O(ǫ∆t2).

The difference between these methods is evident in Figure 4.4. The errors for the
mixed precision implementation of Method 4s3pA (Figure 4.4, left) are shown in
dotted lines (blue for for half precision, and red for single precision). The mixed
precision errors match the corresponding low-precision errors initially, but as ∆t gets

14

smaller, the mixed precision errors match with the double-precision errors. For the
A-stable Method 4s3pB (Figure 4.4, right) this is also true when considering the
mixed precision method with ǫ = O(10−8). However, the mixed precision method
with ǫ = O(10−4) does not match the double precision errors, even as ∆t gets small.

4.2.1. A four-stage third order mixed-precision method. This method,
referred to as Method 4s3pA is given by the following coefficients:

The matrix A is

a21 = 0.211324865405187, a31 = 0.709495523817170, a32 = −0.865314250619423,

a41 = 0.705123240545107, a42 = 0.943370088535775, a43 = −0.859818194486069,

Aǫ has coefficients

aǫ11 = 0.788675134594813, aǫ31 = 0.051944240459852, aǫ33 = 0.788675134594813,

and the vectors are given by

b = (0,
1

2
, 0,

1

2
), bǫ = (0, 0, 0, 0).

4.2.2. A four-stage third order A-stable mixed-precision method. This
A-stable method, referred to as Method 4s3pB is given by the following coefficients:
For this A-stable method, A is given by

a21 = 2.543016042796356 a31 = 2.451484396921318, a32 = 0.024108961241221,

a41 = 2.073861819468268 a42 = 2.367724727682735 a43 = 1.711868223075524,

Aǫ is
a
ǫ

11 = a
ǫ

22 = a
ǫ

33 = a
ǫ

44 = 0.5,

a
ǫ

21 = −2.376349376129689, a
ǫ

31 = −2.951484396921318, a
ǫ

32 = 0.475891038758779,

a
ǫ

41 = −0.573861819468268, a
ǫ

42 = −3.867724727682735, a
ǫ

43 = −1.211868223075524,

and

b =

(
3

2
,−

3

2
,
1

2
,
1

2

)

, bǫ = (0, 0, 0, 0) .

This method is a perturbation the four-stage third order L-stable method in [6].

-3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
Log10(t)

-12

-10

-8

-6

-4

-2

0

Lo
g

10
(E

rr
or

)

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
-14

-12

-10

-8

-6

-4

-2

0

Fig. 4.4. The four stage third order method given in Sections 4.2.1 (Method 4s3pA, left)
and 4.2.2 (Method 4s3pB, right). The half-precision implementation (ǫ = O(10−4)) is shown as a
blue dashed line and the single-precision implementation ǫ = O(10−8) as a red dashed line. The
mixed precision implementation with ǫ = O(10−4) is shown with a dotted blue line, and the mixed
precision implementation with ǫ = O(10−8) is shown with a dotted red line. The double precision
implementation is shown for reference with black dots.

15

4.3. A method that satisfies the simplified order conditions. In all of
the above we considered methods that satisfied the perturbation conditions 3.5, that
apply even when τ is not a well-behaved function. In this section, we devise a method
that satisfies the less restrictive order conditions 3.6, that apply only when τ is well-
behaved. This method, Method 4s3pC is given by the coefficients

a21 = −0.050470366527530, a31 = 0.368613367355336, a32 = 0.273504374252976,

a41 = 1.803794668975043, a42 = 0.097485042980759, a43 = −1.895660952342050.

a
ǫ

11 = 0.511243008730995, a
ǫ

21 = −1.999347282862640, a
ǫ

22 = 1.957161067302390,

a
ǫ

31 = 0.443312893511937, a
ǫ

32 = −0.573131033672219, a
ǫ

33 = 0.128283796414019,

a
ǫ

42 = −0.160330320741428, a
ǫ

43 = 0.579597314161362, a
ǫ

44 = 1.484688928981990,

a
ǫ

41 = −2, b
ǫ = (0, 0, 0, 0),

b = (0.002837446974069, 0.336264433650450, 0.806376720267787, −0.145478600892306).

When we have a well-behaved τ , this method gives errors of the form

Error = O(∆t3) +O(ǫ∆t3).

However, τ is not well-behaved, this method gives error of the form

Error = O(∆t3) +O(ǫ∆t2).

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
Log10(t)

-12

-10

-8

-6

-4

-2

0

Lo
g

10
(E

rr
or

)

Fig. 4.5. Methods 4s3pC and 4s3pA for time
evolution of the diffusion equation. The magenta
dashed line is Method 4s3pC with F resulting from a
Fourier spectral method approximation to uxx, and F ǫ

resulting from a second order centered difference ap-
proximation to uxx. The dashed blue line is Method

4s3pC with F resulting from a double precision imple-
mentation of a Fourier spectral method approximation
to uxx, and F ǫ resulting from a half precision ”chop-
ping” of the Fourier spectral method approximation.
The dotted blue line is Method 4s3pA for this same
scenario. The double precision implementation with a
Fourier spectral method approximation is shown for ref-
erence with black circles.

We test this problem on the dif-
fusion equation

ut = uxx

on x ∈ (0, 2π) with initial condi-
tions u(x, 0) = sin(x) and periodic
boundaries.

To discretize the spatial deriva-
tive we use a high resolution Fourier
spectral method for F . For the
F ǫ, we consider two different ap-
proaches. In the first approach, we
use the low resolution centered dif-
ference scheme for uxx to evaluate
F ǫ. This is a highly sensitive pro-
cess, and a careful stability anal-
ysis must be carried out with the
two different operators, so we do
not recommend trying this approach
in general without rigorous justifi-
cation. We use it here only to il-
lustrate the effect of using different
resolution methods in our perturbed
Runge–Kutta framework. We show
in Figure 4.5, that using Method

4s3pC on the method where F ǫ is given by a centered difference approximation (i.e.

16

a well-behaved τ) results, as expected, in an error of Error = O(∆t3) + O(ǫ∆t3)
(magenta dashed line).

For comparison, we show a low precision (using the chop command) approxima-
tion of the Fourier spectral method for F ǫ. Recall that Method 4s3pC was designed
to work with a well behaved τ . In the case where we approximate uxx with the Fourier
spectral method for F and with the centered difference scheme for F ǫ, we can show
that the difference between these is a well-behaved function. Using Method 4s3pC

with the mixed precision approach with ǫ = 10−4 (dashed blue line) results in an
error that is initially third order and reduces to second order as ∆t gets smaller. This
matches our expected error Error = O(∆t3) + O(ǫ∆t2) when τ is not well-behaved.
Compare this with the performance of Method 4s3pA, which was designed to work
with badly behaved τ ; we see that these errors start at higher than third order, and
settle down to third order behavior. The convergence of this mixed precision method
is of the same order as the low/high resolution method, and of the high resolution
method, but it has a larger error constant.

5. Conclusions. In this work we presented a framework for the error analysis of
perturbations of Runge–Kutta methods. In particular, we investigate the case where
perturbations arise from a mixed precision implementation of Runge–Kutta meth-
ods. This is particularly useful for implicit methods, where is implicit evaluation is
computationally costly. Using this framework, we investigate mixed precision imple-
mentations of existing methods and a correction approach that improves the errors,
and devised new methods that have favorable scheme error and perturbation error
properties. Numerical demonstrations illustrate the performance of these methods as
described by the theory. Although this mixed precision approach was designed for
implicit Runge–Kutta schemes, it can also be applied when repeated explicit function
evaluation is expensive, and storage of the computed values is not possible due to the
size of the problem.

In the case where we use a chopping routine to emulate a low precision opera-
tor, we developed more stringent conditions on the method to handle the unbounded
behavior of the truncation operator. The framework developed holds for more gen-
eral perturbations than mixed precision calculations: we also presented simplified or-
der conditions that are applicable when the perturbation function τ is well-behaved.
These methods can thus be extended to many types of perturbations. While in this
work we treat epsilon as a single constant upper bound, in future work we will gener-
alize this approach to design methods with varying orders of epsilon.

REFERENCES

[1] A. Abdelfattah, H. Anzt, E.G. Boman, E. Carson, T. Cojean, J. Dongarra, M. Gates, T.
Grutzmacher, N.J. Higham, S. Li, N. Lindquist, Y. Liu, J. Loe, P. Luszczek, P. Nayak, S.
Pranesh, S. Rajamanickam, T. Ribizel, B. Smith, K. Swirydowicz, S. Thomas, S. Tomov,
Y.M. Tsai, I. Yamazaki, U.M. Yang, “A Survey of Numerical Methods Utilizing Mixed
Precision Arithmetic,” arXiv:2007.06674,2020.

[2] R. Alexander, Diagonally implicit Runge-Kutta methods for stiff O.D.E.s, SIAM Journal on
Numerical Analysis (1977) 14(6) pp. 1006-1021.

[3] U. Ascher, S. Ruuth, and B. Wetton, Implicit-explicit methods for time-dependent partial dif-
ferential equations, SIAM Journal on Numerical Analysis (1995) 32, p. 797–823.

[4] C. A. Kennedy and M. H. Carpenter, Additive Runge–Kutta schemes for convec-
tion–diffusion–reaction equations, Applied Numerical Mathematics (2003) 44:1-2, pp. 139-
181.

[5] S. E. Field, S. Gottlieb, Z. J. Grant, L. F. Isherwood, G. Khanna, A GPU-accelerated mixed-
precision WENO method for extremal black hole and gravitational wave physics computa-

17

arXiv:2007.06674, 2020.

tions, https://arxiv.org/abs/2010.04760.
[6] E. Hairer and G. Wanner, Solving Ordinary Differential Equations II, Stiff and Differential-

Algebraic Problems. Springer, 1991.
[7] N. J. Higham and S. Pranesh, Simulating low precision floating-point arithmetic, SIAM Journal

on Scientific Computing (2019), 41:5, pp. C585-C602.
[8] I. Higueras, D.I. Ketcheson, and T.A. Kocsis, Optimal Monotonicity-Preserving Perturbations

of a Given Runge–Kutta Method, Journal of Scientific Computing (2018) 76, 1337–1369 .
[9] D. I. Ketcheson, M. Parsani , Z. J. Grant , A. J. Ahmadia, and H. Ranocha RK-Opt: A package

for the design of numerical ODE solvers, Journal of Open Source Software (2020), 5(54),
2514, https://doi.org/10.21105/joss.02514

[10] T. Kouya, Practical Implementation of High-Order Multiple Precision Fully Implicit Runge-
Kutta Methods with Step Size Control Using Embedded Formula, https://arxiv.org/abs/
1306.2392

[11] S. P. Norsett, G. Wanner (1981) Perturbed collocation and Runge-Kutta methods, Numerische
Mathematik (1981) 38:193-208.

[12] A. Sandu and M. Gunther, A Generalized-Structure Approach to Additive Runge–Kutta Meth-
ods, SIAM Journal on Numerical Analysis (2015) 53(1), pp. 17–42.

18

 https://arxiv.org/abs/2010.04760.
https://arxiv.org/abs/1306.2392
https://arxiv.org/abs/1306.2392

	1 Introduction
	2 Motivating example: mixed precision implementation of the implicit midpoint rule
	3 A general framework for the analysis of mixed precision Runge–Kutta methods
	3.1 Consistency Conditions and Perturbation Conditions
	3.1.1 Perturbation conditions when is well behaved

	3.2 Understanding the mixed precision implicit midpoint rule using the additive framework

	4 Efficient mixed-precision Runge–Kutta methods
	4.1 Mixed precision implementation and corrections to known Runge–Kutta methods
	4.1.1 Implicit Midpoint rule with correction
	4.1.2 A mixed precision implementation of a two stage third order SDIRK
	4.1.3 Mixed precision implementation of a two stage L-stable scheme

	4.2 Third order novel methods
	4.2.1 A four-stage third order mixed-precision method
	4.2.2 A four-stage third order A-stable mixed-precision method

	4.3 A method that satisfies the simplified order conditions

	5 Conclusions
	References

