Skip to main content

Advertisement

Log in

A Novel Discrete Fractional Grönwall-Type Inequality and Its Application in Pointwise-in-Time Error Estimates

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a family of fully-discrete schemes for numerically solving nonlinear sub-diffusion equations, taking the weak regularity of the exact solutions into account. Using a novel discrete fractional Grönwall inequality, we obtain pointwise-in-time error estimates of the time-stepping methods. It is proved that as \(t\rightarrow 0\), the convergence orders can be \(\sigma _{k}\), where \(\sigma _{k}\) is the regularity parameter. The initial convergence results are sharp. As t is far away from 0, the schemes give a better convergence results. Numerical experiments are given to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gorenflo, R., Mainardi, F., Moretti, D., Paradisi, P.: Time fractional diffusion: a discrete random walk approach. Nonlinear Dyn. 29(1–4), 129–143 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Kou, S.C.: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins. Ann. Appl. Stat. 2(2), 501–535 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Metzler, R., Jeon, J.H., Cherstvy, A.G., Barkai, E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16(44), 24128–24164 (2014)

    Google Scholar 

  4. Liao, H., Tang, T., Zhou, T.: A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen–Cahn equations. J. Comput. Phys. 414, 109473 (2020)

    MathSciNet  MATH  Google Scholar 

  5. Liao, H., Tang, T., Zhou, T.: An energy stable and maximum bound preserving scheme with variable time steps for time fractional Allen–Cahn equation. SIAM J. Sci. Comput. 43(5), A3505–A3526 (2021)

    MathSciNet  MATH  Google Scholar 

  6. Ji, B., Liao, H., Gong, Y., Zhang, L.: Adaptive linear second-order energy stable schemes for time-fractional Allen–Cahn equation with volume constraint. Commun. Nonlinear Sci. Numer. Simul. 90, 105466 (2020)

    MathSciNet  MATH  Google Scholar 

  7. Liu, H., Cheng, A., Wang, H., Zhao, J.: Time-fractional Allen–Cahn and Cahn–Hilliard phase-field models and their numerical investigation. Comput. Math. Appl. 76(8), 1876–1892 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Tang, T., Yu, H., Zhou, T.: On energy dissipation theory and numerical stability for time-fractional phase-field equations. SIAM J. Sci. Comput. 41(6), A3757–A3778 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Zhao, J., Chen, L., Wang, H.: On power law scaling dynamics for time-fractional phase field models during coarsening. Commun. Nolinear Sci. Numer. Simul. 70, 257–270 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Liao, H., Yan, Y., Zhang, J.: Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations. J. Sci. Comput. 80, 1–25 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Zhang, H., Zeng, F., Jiang, X., Karniadakis, G.E.: Convergence analysis of the time-stepping numerical methods for time-fractional nonlinear subdiffusion equations. arXiv:2007.07015v2

  12. Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusion-wave equations. Math. Comput. 75(254), 673–696 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Luchko, Y.: Initial-boundary-value problems for the one-dimensional time-fractional diffusion equations. Fract. Calc. Appl. Anal. 15(1), 141–160 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Zhang, H., Jiang, Y., Zeng, F.: An \(H_1\) convergence of the spectral method for the time-fractional non-linear diffusion equations. Adv. Comput. Math. 47, 63 (2021)

    Google Scholar 

  15. Gracia, J., ÓRiordan, E., Stynes, M.: Convergence in positive time for a finite difference method applied to a fractional convection–diffusion problem. Comput. Methods Appl. Math. 18, 33–42 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Yan, Y., Khan, M., Ford, N.J.: An analysis of the modified \(L1\) scheme for time-fractional partial differential equations with nonsmooth data. SIAM J. Numer. Anal. 56(1), 210–227 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Jin, B., Lazarov, R., Zhou, Z.: An analysis of the \(L1\) scheme for the subdiffusion equation with nonsmooth data. IMA J. Numer. Anal. 36(1), 197–221 (2016)

    MathSciNet  MATH  Google Scholar 

  18. Kopteva, N., Meng, X.: Error analysis for a fractional-derivative parabolic problem on quasi-graded meshes using barrier functions. SIAM J. Numer. Anal. 58(2), 1217–1238 (2020)

    MathSciNet  MATH  Google Scholar 

  19. Kopteva, N.: Error analysis of an L2-type method on graded meshes for a fractional-order parabolic problem. Math. Comput. 90(327), 19–40 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Zeng, F., Zhang, Z., Karniadakis, G.E.: Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions. Comput. Methods Appl. Mech. Eng. 327, 478–502 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Meng, X., Stynes, M.: Barrier function local and global analysis of an L1 finite element method for a multiterm time-fractional initial-boundary value problem. J. Sci. Comput. 84, 16 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Stynes, M., Gracia, J.: Preprocessing schemes for fractional-derivative problems to improve their convergence rates. Appl. Math. Lett. 74, 187–192 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Stynes, M., ÓRiordan, E., Gracia, J.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Jin, B.: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion. IMA J. Numer. Anal. 35(2), 561–582 (2015)

    MathSciNet  MATH  Google Scholar 

  25. Jin, B., Lazarov, R., Zhou, Z.: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data. SIAM J. Sci. Comput. 38(1), A146–A170 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976–A3000 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Jin, B., Li, B., Zhou, Z.: Correction of high-order BDF convolution quadrature for fractional evolution equations. SIAM J. Sci. Comput. 39(6), A3129–A3152 (2017)

    MathSciNet  MATH  Google Scholar 

  28. Kopteva, N.: Error analysis for time fractional semilinear parabolic equations using upper and lower solutions. SIAM J. Numer. Anal. 58(4), 2212–2234 (2020)

    MathSciNet  MATH  Google Scholar 

  29. Cen, D., Wang, Z.: Time two-grid technique combined with temporal second order difference method for two-dimensional semilinear fractional sub-diffusion equations. Appl. Math. Lett. 129, 107919 (2022)

    MathSciNet  Google Scholar 

  30. Cen, D., Wang, Z., Mo, Y.: Second order difference schemes for time-fractional KdV–Burger’s equation with initial singularity. Appl. Math. Lett. 112, 106829 (2021)

    MathSciNet  MATH  Google Scholar 

  31. Maskari, M., Karaa, S.: Numerical approximation of semilinear subdiffusion equations with nonsmooth initial data. SIAM J. Numer. Anal. 57(3), 1524–1544 (2019)

    MathSciNet  MATH  Google Scholar 

  32. Du, Q., Yang, J., Zhou, Z.: Time-fractional Allen–Cahn equations: analysis and numerical methods. J. Sci. Comput. 85, 2 (2020). https://doi.org/10.1007/s10915-020-01351-5

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, D., Qin, H., Zhang, C.: Sharp pointwise-in-time error estimate of \(L1\) scheme for nonlinear subdiffusion equations. arXiv:2101.04554

  34. Li, D., Liao, H., Sun, W., Wang, J., Zhang, J.: Analysis of \(L1\)-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun. Comput. Phys. 24(1), 86–103 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Liao, H., Mclean, W., Zhang, J.: A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems. SIAM J. Numer. Anal. 57(1), 218–237 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Lubich, C.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    MathSciNet  MATH  Google Scholar 

  37. Lubich, C.: Convolution quadrature and discretized operational calculus. I. Numer. Math. 52, 129–145 (1988)

    MathSciNet  MATH  Google Scholar 

  38. Jin, B., Li, B., Zhou, Z.: Numerical analysis of nonlinear subdiffusion equations. SIAM J. Numer. Anal. 56(1), 1–23 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego, CA (1999)

    MATH  Google Scholar 

  40. Shen, J., Tang, T., Wang, L.L.: Spectral Methods: Algorithms, Analysis and Applications. Springer, Berlin (2011)

    MATH  Google Scholar 

  41. Dixon, J., McKee, S.: Weakly singular discrete Gronwall inequalities. Z. Angew. Math. Mech. 66, 535–544 (1986)

    MathSciNet  MATH  Google Scholar 

  42. Beesack, P.R.: More generalised discrete Grönwall inequalities. Z. Angew. Math. Mech. 65, 589–595 (1985)

    MATH  Google Scholar 

  43. McKee, S.: Generalised discrete Grönwall lemmas. Z. Angew. Math. Mech. 62, 429–434 (1982)

    MathSciNet  MATH  Google Scholar 

  44. Li, D., Wang, J., Zhang, J.: Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39(6), A3067–A3088 (2017)

    MATH  Google Scholar 

  45. Li, D., Wu, C., Zhang, Z.: Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions in time direction. J. Sci. Comput. 80(1), 403–419 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Li, D., Zhang, J., Zhang, Z.: Unconditionally optimal error estimates of a linearized Galerkin method for nonlinear time fractional reaction-subdiffusion equations. J. Sci. Comput. 76(2), 848–866 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Yan.

Ethics declarations

Competing interest

The authors have not disclosed any competing interests.

Data availability

Enquiries about data availability should be directed to the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported in part by NSFC (No. 11771162), research grants of the Science and Technology Development Fund, Macau SAR (File No. 0122/2020/A3), and MYRG2020-00224-FST from University of Macau, the Fundamental Research Funds for the Central Universities (HUST: 2021JYCXJJ012) and the science and technology innovation Program of Hunan Province (No.2020RC2039).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., She, M., Sun, Hw. et al. A Novel Discrete Fractional Grönwall-Type Inequality and Its Application in Pointwise-in-Time Error Estimates. J Sci Comput 91, 27 (2022). https://doi.org/10.1007/s10915-022-01803-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01803-0

Keywords

Mathematics Subject Classification

Navigation