Skip to main content
Log in

A Modified TENO Scheme with Improved Efficiency

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Fu et al. (J Comput Phys 374:724–751, 2018), a class of adaptive targeted ENO (TENO) schemes have been proposed. Excellent resolution and robustness of the TENO scheme were validated by benchmark problems, but the computational cost is high. In order to improve the computational efficiency, a modified TENO scheme is proposed in this article. First, using the weighting strategy of the fifth-order TENO as an explicit discontinuity detector, locations of discontinuities are detected on the five-point stencil, and the initial target stencil with maximum support on the five-point stencil is obtained. Then, with a simple discontinuity detection strategy, the initial target stencil is enlarged point by point in the direction where no discontinuity is detected. In this manner, final target stencil with maximum support, not crossed by discontinuities, on the full six- or eight-point stencil is formed. Unlike TENO using candidate stencils with incrementally increased width, all stencils are three-point in the new framework. Due to the simplified determination of final target stencil and avoiding expensive calculation of smoothness indicator of large stencil, the computational cost of TENO-M is significantly lower than that of TENO. Several benchmark problems are conducted to validate the performance of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Pirozzoli, S.: Numerical methods for high-speed flows. Annu. Rev. Fluid Mech. 43, 163–194 (2011). https://doi.org/10.1146/annurev-fluid-122109-160718

    Article  MathSciNet  MATH  Google Scholar 

  2. Jameson, A.: Analysis and design of numerical schemes for gas dynamics 1: artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence. Int. J. Comput. Fluid Dyn. 4, 171–218 (1995). https://doi.org/10.1080/10618569508904524

    Article  Google Scholar 

  3. Harten, A.: A high resolution scheme for the computation of weak solutions of hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)

    Article  MathSciNet  Google Scholar 

  4. Harten, A., Engquist, B., Osher, S., Chakravarthy, S.R.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987). https://doi.org/10.1016/0021-9991(87)90031-3

    Article  MathSciNet  MATH  Google Scholar 

  5. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)

    Article  MathSciNet  Google Scholar 

  6. Fu, L., Hu, X.Y., Adams, N.A.: A family of high-order targeted ENO schemes for compressible-fluid simulations. J. Comput. Phys. 305, 333–359 (2016). https://doi.org/10.1016/j.jcp.2015.10.037

    Article  MathSciNet  MATH  Google Scholar 

  7. Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996). https://doi.org/10.1006/jcph.1996.0130

    Article  MathSciNet  MATH  Google Scholar 

  8. Henrick, A.K., Aslam, T.D., Powers, J.M.: Mapped weighted essentially non-oscillatory schemes: Achieving optimal order near critical points. J. Comput. Phys. 207, 542–567 (2005). https://doi.org/10.1016/j.jcp.2005.01.023

    Article  MATH  Google Scholar 

  9. Borges, R., Carmona, M., Costa, B., Don, W.S.: An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J. Comput. Phys. 227, 3191–3211 (2008). https://doi.org/10.1016/j.jcp.2007.11.038

    Article  MathSciNet  MATH  Google Scholar 

  10. Don, W.S., Borges, R.: Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes. J. Comput. Phys. 250, 347–372 (2013). https://doi.org/10.1016/j.jcp.2013.05.018

    Article  MathSciNet  MATH  Google Scholar 

  11. Zhao, S., Lardjane, N., Fedioun, I.: Comparison of improved finite-difference WENO schemes for the implicit large eddy simulation of turbulent non-reacting and reacting high-speed shear flows. Comput. Fluids 95, 74–87 (2014). https://doi.org/10.1016/j.compfluid.2014.02.017

    Article  MathSciNet  MATH  Google Scholar 

  12. Martín, M.P., Taylor, E.M., Wu, M., Weirs, V.G.: A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 220, 270–289 (2006). https://doi.org/10.1016/j.jcp.2006.05.009

    Article  MATH  Google Scholar 

  13. Hu, X.Y., Wang, Q., Adams, N.A.: An adaptive central-upwind weighted essentially non-oscillatory scheme. J. Comput. Phys. 229, 8952–8965 (2010). https://doi.org/10.1016/j.jcp.2010.08.019

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu, X.Y., V.K. Tritschler, Pirozzoli, S., Adams, N.A.: Dispersion-dissipation condition for finite difference schemes

  15. Suresh, A., Huynh, H.T.: Accurate monotonicity-preserving schemes with Runge–Kutta time stepping. J. Comput. Phys. 136, 83–99 (1997). https://doi.org/10.1006/jcph.1997.5745

    Article  MathSciNet  MATH  Google Scholar 

  16. Gerolymos, G.A., Sénéchal, D., Vallet, I.: Very-high-order weno schemes. J. Comput. Phys. 228, 8481–8524 (2009). https://doi.org/10.1016/j.jcp.2009.07.039

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhang, X., Shu, C.W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231, 2245–2258 (2012). https://doi.org/10.1016/j.jcp.2011.11.020

    Article  MathSciNet  MATH  Google Scholar 

  18. Fu, L., Hu, X.Y., Adams, N.A.: Targeted ENO schemes with tailored resolution property for hyperbolic conservation laws. J. Comput. Phys. 349, 97–121 (2017). https://doi.org/10.1016/j.jcp.2017.07.054

    Article  MathSciNet  MATH  Google Scholar 

  19. Fu, L.: A very-high-order TENO scheme for all-speed gas dynamics and turbulence. Comput. Phys. Commun. 244, 117–131 (2019). https://doi.org/10.1016/j.cpc.2019.06.013

    Article  MathSciNet  Google Scholar 

  20. Fu, L., Hu, X.Y., Adams, N.A.: A new class of adaptive high-order targeted ENO schemes for hyperbolic conservation laws. J. Comput. Phys. 374, 724–751 (2018). https://doi.org/10.1016/j.jcp.2018.07.043

    Article  MathSciNet  MATH  Google Scholar 

  21. Fu, L.: A hybrid method with teno based discontinuity indicator for hyperbolic conservation laws. Commun. Comput. Phys. 26, 973–1007 (2019). https://doi.org/10.4208/cicp.OA-2018-0176

    Article  MathSciNet  MATH  Google Scholar 

  22. Pirozzoli, S.: On the spectral properties of shock-capturing schemes. J. Comput. Phys. 219, 489–497 (2006). https://doi.org/10.1016/j.jcp.2006.07.009

    Article  MATH  Google Scholar 

  23. Balsara, D.S., Shu, C.W.: Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy. J. Comput. Phys. (2000). https://doi.org/10.1006/jcph.2000.6443

    Article  MathSciNet  MATH  Google Scholar 

  24. Roe, P.L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372 (1981). https://doi.org/10.1006/jcph.1997.5705

    Article  MathSciNet  MATH  Google Scholar 

  25. Yamaleev, N.K., Carpenter, M.H.: A systematic methodology for constructing high-order energy stable WENO schemes. J. Comput. Phys. 228, 4248–4272 (2009). https://doi.org/10.1016/j.jcp.2009.03.002

    Article  MathSciNet  MATH  Google Scholar 

  26. Sod, G.A.: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comput. Phys. 27, 1–31 (1978). https://doi.org/10.1016/0021-9991(78)90023-2

    Article  MathSciNet  MATH  Google Scholar 

  27. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun. Pure Appl. Math. 7, 159–193 (1954). https://doi.org/10.1002/cpa.3160070112

    Article  MathSciNet  MATH  Google Scholar 

  28. Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54, 115–173 (1984). https://doi.org/10.1016/0021-9991(84)90142-6

    Article  MathSciNet  MATH  Google Scholar 

  29. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory schemes II. J. Comput. Phys. 83, 32–78 (1989)

    Article  MathSciNet  Google Scholar 

  30. Xu, Z., Shu, C.W.: Anti-diffusive flux corrections for high order finite difference WENO schemes. J. Comput. Phys. 205, 458–485 (2005). https://doi.org/10.1016/j.jcp.2004.11.014

    Article  MathSciNet  MATH  Google Scholar 

  31. van Leer, B.: Upwind and High-Resolution Schemes. Springer, Berlin (1997)

    MATH  Google Scholar 

  32. Lax, P.D., Liu, X.D.: Solution of two-dimensional Riemann problems of gas dynamics by positive schemes. SIAM J. Sci. Comput. 19, 319–340 (1998). https://doi.org/10.1137/S1064827595291819

    Article  MathSciNet  MATH  Google Scholar 

  33. Hong, Z., Ye, Z., Ye, K.: An optimised five-point-stencil weighted compact nonlinear scheme for hyperbolic conservation laws. Int. J. Comput. Fluid Dyn. 35, 179–196 (2021). https://doi.org/10.1080/10618562.2021.1906419

    Article  MathSciNet  MATH  Google Scholar 

  34. Samtaney, R., Pullin, D.I., Kosović, B.: Direct numerical simulation of decaying compressible turbulence and shocklet statistics. Phys. Fluids 13, 1415–1430 (2001). https://doi.org/10.1063/1.1355682

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the funding support of this research by National Natural Science Foundation of China (No. 11732013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyin Ye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Z., Ye, Z. & Ye, K. A Modified TENO Scheme with Improved Efficiency. J Sci Comput 91, 37 (2022). https://doi.org/10.1007/s10915-022-01809-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01809-8

Keywords

Navigation