Skip to main content
Log in

Energy Stability of BDF Methods up to Fifth-Order for the Molecular Beam Epitaxial Model Without Slope Selection

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The backward differential formulas of order \(\mathrm {k}\) (BDF-\(\mathrm {k}\)) for \(3\le \mathrm {k}\le 5\) are analyzed for the molecular beam epitaxial (MBE) model without slope selection. We show that the fully implicit uniform BDF-\(\mathrm {k}\) schemes are convex and uniquely solvable under a weak time-step constraint. Then the BDF methods are proved to preserve the modified discrete energy dissipation laws by using the discrete gradient structures of BDF-\(\mathrm {k}\) \((3\le \mathrm {k}\le 5)\) formulas. Furthermore, with the help of discrete orthogonal convolution kernels and the corresponding convolution Young inequalities, the \(L^2\) norm stability and convergence analysis of the BDF-\(\mathrm {k}\) \((3\le \mathrm {k}\le 5)\) schemes for the MBE model are established by the recent discrete energy technique. To the best of our knowledge, it is the first time to present a unified approach to establish the discrete energy dissipation laws and \(L^2\) norm convergence of non-A-stable BDF-\(\mathrm {k}\) methods for the MBE model. Numercial simulations are presented to demonstrate the accuracy and efficiency of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availibility Statement

All data generated or analysed during this study are included in this published article.

References

  1. Akrivis, G.: Stability of implicit-explicit backward difference formulas for nonlinear parabolic equations. SIAM J. Numer. Anal. 53, 464–484 (2015)

    Article  MathSciNet  Google Scholar 

  2. Akrivis, G., Katsoprinakis, E.: Backward difference formulae: new multipliers and stability properties for parabolic equations. Math. Comput. 85, 2195–2216 (2016)

    Article  MathSciNet  Google Scholar 

  3. Akrivis, G., Lubich, C.: Fully implicit, linearly implicit and implicit-explicit backward difference formulae for quasi-linear parabolic equations. Numer. Math. 131, 713–735 (2015)

    Article  MathSciNet  Google Scholar 

  4. Chen, W., Conde, S., Wang, C., Wang, X., Wise, S.M.: A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52, 546–562 (2012)

    Article  MathSciNet  Google Scholar 

  5. Chen, W., Li, W., Luo, Z., Wang, C., Wang, X.: A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. Math. Model. Anal. 54(3), 727–750 (2020)

    Article  MathSciNet  Google Scholar 

  6. Chen, W., Li, W., Wang, C., Wang, S., Wang, X.: Energy stable higher order linear ETD multi-step methods for gradient flows: application to thin film epitaxy. Res. Math. Sci. (2020). https://doi.org/10.1007/s40687-020-00212-9

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, W., Zhang, Y., Li, W., Wang, Y., Yan, Y.: Optimal convergence analysis of a second order scheme for a thin film model without slope selection. J. Sci. Comput. 80(3), 1716–1730 (2019)

    Article  MathSciNet  Google Scholar 

  8. Cheng, K., Qiao, Z., Wang, C.: A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability. J. Sci. Comput. 81, 154–185 (2019)

    Article  MathSciNet  Google Scholar 

  9. Gyure, M.F., Ratsch, C., Merriman, B., Caflisch, R.E., Osher, S., Zinck, J.J., Vvedensky, D.D.: Level-set methods for the simulation of epitaxial phenomena. Phys. Rev. E 58, 6927–6930 (1998)

    Article  Google Scholar 

  10. Hao, Y., Huang, Q., Wang, C.: A third order BDF energy stable linear scheme for the no-slope-selection thin film model. Comput. Phys. Commun. 29, 905–929 (2021)

    Article  MathSciNet  Google Scholar 

  11. Ju, L., Li, X., Qiao, Z., Zhang, H.: Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. 87, 1859–1885 (2018)

    Article  MathSciNet  Google Scholar 

  12. Krug, J.: Origins of scale invariance in growth processes. Adv. Phys. 46, 139–282 (1997)

    Article  Google Scholar 

  13. Li, D., Quan, C., Yang, W.: The BDF3/EP3 scheme for MBE with no slope selection is stable. J. Sci. Comput. (2021). https://doi.org/10.1007/s10915-021-01642-5

    Article  MathSciNet  MATH  Google Scholar 

  14. Liao, H.-L., Ji, B., Zhang, Z.: An adaptive BDF2 implicit time-stepping method for the phase field crystal model. IMA J. Numer. Anal. 42, 649–679 (2022)

    Article  MathSciNet  Google Scholar 

  15. Liao, H.-L., Kang, Y., Han, W.: Discrete gradient structures of BDF methods up to fifth-order for the phase field crystal model (2022). arXiv:2201.00609v1

  16. Liao, H.-L., Song, X., Tang, T., Zhou, T.: Analysis of the second order BDF scheme with variable steps for the molecular beam epitaxial model without slope selection. Sci. China Math. 64, 887–902 (2021)

    Article  MathSciNet  Google Scholar 

  17. Liao, H.-L., Tang, T., Zhou, T.: A new discrete energy technique for multi-step backward difference formulas. CSIAM Trans. Appl. Math. (2021). arXiv:2102.04644v1

  18. Lubich, C.: On the convergence of multistep methods for nonlinear stiff differential equations. Numer. Math. 58, 839–853 (1991)

    Article  MathSciNet  Google Scholar 

  19. Lubich, C., Mansour, D., Venkataraman, C.: Backward difference time discretization of parabolic differential equations on evolving surfaces. IMA J. Numer. Anal. 33, 1365–1385 (2013)

    Article  MathSciNet  Google Scholar 

  20. Nevanlinna, O., Odeh, F.: Multiplier techniques for linear multistep methods. Numer. Funct. Anal. Optim. 3, 377–423 (1981)

    Article  MathSciNet  Google Scholar 

  21. Qiao, Z., Tang, T., Xie, H.: Error analysis of a mixed finite element method for the molecular beam epitaxy model. SIAM J. Numer. Anal. 53, 184–205 (2015)

    Article  MathSciNet  Google Scholar 

  22. Qiao, Z., Zhang, Z., Tang, T.: An adaptive time-stepping strategy for the molecular beam epitaxy models. SIAM J. Sci. Comput. 33, 1395–1414 (2011)

    Article  MathSciNet  Google Scholar 

  23. Schneider, M., Schuller, I.K., Rahman, A.: Epitaxial growth of silicon: a molecular-dynamics simulation. Phys. Rev. B 36, 1340–1343 (1987)

    Article  Google Scholar 

  24. Schwoebel, R.: Step motion on crystal surfaces. J. Appl. Phys. II(40), 614–618 (1969)

    Article  Google Scholar 

  25. Shen, J., Tang, T., Wang, L.: Spectral Methods: Algorithms. Analysis and Applications. Springer, Berlin (2011)

    Book  Google Scholar 

  26. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50(1), 105–125 (2012)

    Article  MathSciNet  Google Scholar 

  27. Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis. Cambridge University Press, New York (1998)

    MATH  Google Scholar 

  28. Villain, J.: Continuum models of critical growth from atomic beams with and without desorption. J. Phys. I(1), 19–42 (1991)

    Google Scholar 

  29. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth model. SIAM J. Numer. Anal. 44(4), 1759–1779 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by NSF of China under Grant Number 12071216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-lin Liao.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (nb 30 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Liao, Hl. Energy Stability of BDF Methods up to Fifth-Order for the Molecular Beam Epitaxial Model Without Slope Selection. J Sci Comput 91, 47 (2022). https://doi.org/10.1007/s10915-022-01830-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01830-x

Keywords

Mathematics Subject Classification

Navigation