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An immersed Raviart-Thomas mixed finite element method

for elliptic interface problems on unfitted meshes
Haifeng Ji*

Abstract

This paper presents a lowest-order immersed Raviart-Thomas mixed triangular finite element
method for solving elliptic interface problems on unfitted meshes independent of the interface.
In order to achieve the optimal convergence rates on unfitted meshes, an immersed finite ele-
ment finite (IFE) is constructed by modifying the traditional Raviart-Thomas element. Some
important properties are derived including the unisolvence of IFE basis functions, the optimal
approximation capabilities of the IFE space and the corresponding commuting digram. Optimal
error estimates are rigorously proved for the mixed IFE method and some numerical examples
are also provided to validate the theoretical analysis.
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1 Introduction

Let © C R? be a convex polygonal domain and I' be a C?-smooth interface immersed in . Without
loss of generality, we assume that I' divides € into two disjoint sub-domains Q7 and Q~ such that
T =00, see Figure [I] for an illustration. We consider the following second-order elliptic interface

problem
-V (B(z)Vu(x)) = f(x) in O\T, (1.1)
[u]lr(x) =0 onT, (1.2)
[BVu-n]r(x) =0 on T, (1.3)
u(x) =0 on 09, (1.4)

where n(z) is the unit normal vector of the interface I at point 2 € " pointing toward 27, and the
notation [v]r is defined as

[lp(x) :=vT|r —v7|r  with v* =v|gs, s =+, —.

The coefficient B(x) can be discontinuous across the interface I' and is assumed to be piecewise
smooth

Bx)=p(x) ifzeQt and Bx)=p (x) ifzecQ, (1.5)

with 3%(z) € C1(0F), s = 4+, —. We also assume that there exist two positive constants By, and
Bmaz such that 0 < Brin < B%(x) < Bimag for all z € Q5 s = +, —.
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Figure 1: Left: a diagram of the geometries of an interface problem; Right: an unfitted mesh

The interface problem arises in many applications. Traditional finite element methods require
the mesh to be aligned with the interface to guarantee the optimal convergence rates, see for example
[1 (36, [, @ I1]. For complicated interfaces or moving interfaces, unfitted meshes, which are not
necessarily aligned with interfaces (see Figure [ for an illustration), have some advantages over
interface-fitted meshes and have become highly attractive for solving interface problems. The first
attempt to use unfitted meshes for solving problems with irregular boundaries dates back to Peskin’s
immersed boundary method [31] which is in the finite difference framework. The design and analysis
of finite element methods on unfitted meshes with optimal convergence rates was started in [2, [3].
Since then, many unfitted mesh finite element methods have been developed, for example, the
unfitted Nitsche’s method [18, B34] 35 [§], the extended finite element method [12], the enriched finite
element method [33], the multiscale finite method [10], the finite element method for high-contrast
problems [I7] and the immersed finite element (IFE) methods [27, 29] 28| 20, 19, 16, 15, 21], to
name only a few. In this paper, we focus on the IFE method. The basic idea of IFEs is to modify
traditional finite element space to recover the optimal approximation capabilities on unfitted meshes.
Differing from other unfitted mesh finite element methods, the IFE method has the same degrees
of freedom as that of traditional finite element methods and it can reduce to the traditional finite
element method when the interface disappears. In other words, the IFE spaces are isomorphic to
the standard finite element spaces defined on the same mesh, which is an important property for
moving interface problems [14].

All the above mentioned unfitted methods are designed for solving the primary variable u. In
many engineering applications, in contrast to the primary variable u, the flux E (z)Vu is an important
quantity of particular interest. The mixed finite element, see Brezzi and Fortin [7], is an efficient
method that discretizes the flux variable directly and can preserve fluxes within each element.

However, to the best of our knowledge, there are no known works on IFE methods based on mixed
finite elements. This paper is devoted to develop a mixed finite element method on unfitted meshes
following the idea of IFEs. The major challenge is the construction of IFE space for H (div; ) with
optimal approximation capabilities and the corresponding theoretical analysis. We consider the well-
known mixed method of Raviart-Thomas [32]. Similar to the P; conforming finite element, functions
in the standard Raviart-Thomas finite element space also cannot approximate the exact solution
optimally on these elements cut by the interface (called interface elements) due to the interface
conditions. By deriving a new interface condition for the flux, we modify the standard Raviart-
Thomas shape functions on interface elements to recover the optimal approximation capabilities. We
give an explicit formula for the modified shape functions (called IFE shape functions) associated with
the degrees of the freedom on edges and prove the unisolvence under a maximum angle condition.
Furthermore, the optimal approximation capabilities of the IFE space are derived for the problem
with variable coefficients. We also show that the commuting digram for standard Raviart-Thomas



elements also holds for the IFEs.

One drawback of the IFE space is that it does not belong to H (div; 2) because the normal com-
ponents of IFE functions may be discontinuous across the edges cut by the interface (called interface
edges). One approach to overcome the nonconformity is to add consistent terms locally on interface
edges to the bilinear form, and therefore a penalty term should also be included simultaneously
to ensure the stability (see [30, [25]). However, for the lowest-order Raviart-Thomas mixed finite
element method, we find that the consistent term is zero. Thus, the IFE method is stable without
requiring any penalty terms. Unfortunately, we show that the IFE method without penalties or
with a conventional penalty term only has suboptimal convergence rates due to the discontinuities
of normal components of IFE functions. To overcome the difficulty, we apply an over-penalization
only on interface edges which is similar to the approach in [5]. Optimal error estimates are derived
rigorously under a slight stronger regularity assumption of the exact solution. The hidden constant
in the analysis is independent of the interface location relative to the mesh, which is important for
analyzing unfitted methods for interface problems since interfaces may cut meshes in an arbitrary
way. Some numerical examples are also provided to validated our theoretical analysis.

The paper is organized as follows. In Section 2] we introduce the mixed variational formulation
and derive interface conditions for the flux. In Section Bl we first construct the IFE space based
on the Raviart-Thomas element and then present the IFE method. In Section Ml some important
properties of the IFE are discussed including the unisolvence of IFE basis functions, the optimal
approximation capabilities of the IFE space and the corresponding commuting digram. In Section 5]
we derive optimal error estimates for the proposed IFE method. Numerical examples are presented
in Section [f] to validate our theoretical analysis. We conclude in the last section.

2 The mixed variational formulation

By introducing another unknown

p(x) := B(x)Vu(x) Vo e Q\T (2.1)

and defining N .
Blx):= (B(x))™!, B (@) = (5°(@)) " s =+ -,
the interface problem (IZI)-(T4) can be rewritten as

Bp—Vu=0 in Q\T, (2.2)
-V.-p=f in Q\T, (2.3)
[ulr =0 onT, (2.4)
[p-njr=0 onT, (2.5)
u=0 on 0. (2.6)

From now on, we use bold letters to denote vector-valued functions. Multiplying the equation (2.2))
by a function q € H(div; Q) and integrating by parts, we have

ﬂp~qdw+/

uV~qd:c+/
Q

[ulrq - nds — / uq - ngods =0,
r 09

Q

where ngq is the unit normal vector of 92 exterior to €2, and

H(div; Q) := {q € (L*(2))? : div g € L*(Q)}



with norm defined by
HQH%I(div;Q) = ||‘I||%2(Q) + [|div Q||%2(Q)-
It follows from the interface condition (24 and the boundary condition (28] that
ﬁp-qdw—i—/uv-qdwzo Vg € H(div; Q).
Q Q
Let p* = plas, s = +, —. Obviously, p* € H(div;Q°), s = +, —. By the condition (2.1, we conclude
p € H(div; ). Let

a(p,q) ::/Qﬁp-qd:c, b(q,u) ::/QuV~qdw and F(v) ::—/vadw,

then the mixed variational formulation for the interface problem ([2.2))-(2.6) reads: find (p,u) €
H(div; Q) x L?(Q) such that

a(p,q) +b(q,u) =0 Vq € H(div;Q),

(2.7)
b(p,v) = F(v) Vv € L*(9).

From [7], we have the following well-posedness result for this variational problem. For any f € L%(Q),
the problem (Z7) has a unique solution (p,u) € (H(div;(2), L?(Q)) satisfying

1Pl (aivs) + lullzz) < Cllfllz2@)-

Next, we investigate the regularity of the solution (p,u). Define

H™Q uQh) = {v:v|g. € H™(Q%),5s =+, -}

equipped with the norm || - H?{m(ﬂﬂmf) = - ||§{m(9+) + - |‘§fm(9*) and the semi-norm | -
|§1m(Q+UQ,) = |§{m(9+) + - |§{m(9,). Define a subspace of H*(Q~ U Q™) as
H2(Q) :={ve H*QTUQ ) : u]r =0, [BVv-n|p = 0}. (2.8)

It is well-known that the interface problem (II)-(T4) has a unique solution
u € Hy(Q) N H*(Q) satisfying [[ull m2o+u0-) < Cllf 220, (2.9)
where the constant C' only depends on Q, T and 3 (see [23] for problems with piecewise smooth
coefficients and [22] [10] for problems with piecewise constant coefficients).
Note that 3% (z) € C*(0), s = +, —. From (ZJ), we immediately have
plos € (H' (%)), s =+, —. (2.10)
Let t(x) be the unit tangent vector of T’ obtained by a 90° clockwise rotation of n(x), i.e.,

t(x) = R_zn(x), where Rq = {COSOZ —sma] '

(2.11)

sinoe  cos«

From the interface condition ([2.4), we know [Vu - t]r = 0 on I', which together with (ZI)) yields
another interface condition for p, i.e.,

[Bp - tlr(x) =0 Ve el. (2.12)
If we define a subspace of H(div;{2) as

H'(div; Q) := {q € H(div;Q) : qlo: € (H(Q%))%, s =+,—, [Bq-t]r =0}, (2.13)
then it follows from (Z10) and (Z12) that
p € H'(div; Q). (2.14)



3 The immersed Raviart-Thomas mixed finite element method

Let {Tn}r>0 be a family of conforming triangulations of 2 with meshsize h := maxre7;, hr, where
hr is the diameter of T' € T;,. We assume that 7j, is shape regular, i.e., for every T, there exists a
positive constant o such that hp < grp where 7 is the diameter of the largest circle inscribed in T
Denote &, as the set of edges of the triangulation, and let £ := {e € &, : e C N}, & = E,\EL.
We adopt the convention that elements T° € 7}, and edges e € &, are open sets. Then, the sets of
interface elements and interface edges are defined as

Ti ={T €T, :TNT # 0}, & ={e€ & enT #0}.

We also assume that all interface triangles satisfy the maximum angle condition ay,q, < 7/2 which
is a sufficient condition for the unisolvence of IFE functions (see Lemma[3)). We emphasize that the
maximum angle assumption does not restrict the application of IFE methods since we can simply
use Cartesian meshes regardless of the location of the interface, which is an advantage over the
interface-fitted mesh method. The set of non-interface elements is denoted by 7,7°" := T,\T}. We
can alway refine the mesh to satisfy the following assumption.

Assumption 3.1. The interface I' does not intersect the boundary of any interface element at more
than two points. The interface I’ does not intersect the closure € for any e € &, at more than one
point.

The interface I' is approximated by I'j, that is composed of all the line segments connecting
the intersection points of the triangulation and the interface. In addition, we assume that the
approximated interface I';, divides €2 into two disjoint sub-domains QZ and Q; such that I', = 0€), .
Let np(x) be the unit normal vector of 'y, pointing toward Q; The unit tangent vector of I', can
be obtained by a 90° clockwise rotation of nj(x), i.e.,

th(:c) = R_%l’lh(.’lt). (3.1)

3.1 The IFE space

On each T € Ty, define the traditional local Raviart-Thomas space with the lowest-order
ar X1 1
RT(T)—{¢3¢(I1,I2)—{ }"’bT[ ],GT,bT,CTGR}-
cr X9

To get the optimal approximation capabilities on interface elements T € 7?, we need to modify the
local Raviart-Thomas space RT (T) according to the interface conditions of the exact solution p.

Let T,j =T1nN QZ and T, :=TNQ, forall T € 7Y, see Figure 2 for an illustration. We define
a local immersed Raviart-Thomas space ZRT (T) as the set of the following functions

- ¢ (z) e RT(T) ifxeT),
() = {qb_(:n) eRT(T) ifzxeTy, (3-2)
satisfying
(¢ np]r,nr(@) = (¢ -np)(z) — (¢ np)(x) =0  Veel,NT, (3.3)

[Br¢ - thlr,nr(xr) == (BF T - tn)(xr) — (B~ - tn)(zr) =0,
Vgt — V. =0



Here xr is an arbitrary point on I'y, N T, and Sr(x) is a piecewise constant which is defined by
Br(z)|r; = B7, s = +,—. The constants B+ and B are chosen such that

18°(®) = B7llL= (s < Ch, s =+,—. (3.6)

Actually, we can choose 85 = (°(x$.) with arbitrary points @5 € TN Q*, s = 4, — to satisfy the
requirement ([3.6) since 3°(x) € C1(Q%), s = +, —.

Remark 3.2. Note that ¢°, s = 4+, — have the property that their normal components along any
straight lines are constants. Thus, (33) only provides one condition although the equality is enforced
over the entire line segment Ty, NT. The first two conditions (3.3) and (34)) are inspired by (25) and
(212) for continuous problems. However, the third condition (3.3) is added only for the unisolvence
of the IFE basis functions and does not provide any approximation capabilities since we use the
lowest-order Raviart-Thomas elements.

On each element T' € Ty, the local degrees of freedom are defined as

1
Ni,T(d)) = | / ¢ : ni,TdS7 1= 17 27 37 (37)

le
where e;, i = 1,2, 3 are edges of the element T, |e;| denotes the length of the edge e;, and n; ¢ is the
unit normal vector of e; exterior to T'. The global IFE space ZRT (Ty,) is then defined as the set of
all functions satisfying

élr € RT(T) v e T,°",
o|lr € IRT(T) VT €Ty,
/[d)-l’le]edSZO Ve e &

Here the jump across an edge e is defined by

[¢ ’ ne]e = (¢|Tf - ¢|T2ﬁ) e,
where Tf N T =€ and n. is the unit normal vector of the edge e exterior to Tf.

Remark 3.3. For any ¢ € IRT (Ty) and e € &}, it is easy to see that ¢|re - ne and @|rg - ne are
piecewise constants on the edge e. Thus, the condition [ [¢ - neleds =0 cannot imply ¢ - ne|. = 0.

In other words, ¢ - n. may be discontinuous on all interface edges e € E}. Hence, we conclude that
the IFE space is nonconforming, i.e., TRT (Ty) ¢ H(div; Q).

3.2 The IFE method

We define

Bmin = ~;L£w7 ﬁma;ﬂ = N;L%nu (38)
and extend the coefficients 8°(x), s = +, — smoothly to slight larger domains
Q={reT: VT €Tpand TNQ* #0}, s =+, —,

such that
ﬂs(m> € Cl (Q_g) and ﬂmin S ﬂs(m) S ﬂmaz; S = +, - (39)

Thus, there exists a constant Cg such that

VB poe@m) < Cay  s=+,—. (3.10)



Note that, if 3 is a piecewise constant function, it holds Cg = 0. For simplicity of the implementation,
we approximate the coefficient S(x) by

BH(z) ifzeQ,
Br(x) =19 _ . _
B (x) ifxeq,.
Define a piecewise constant space
My, :={v € L*(Q) :v|r e R* VT € T},

and the following discrete bilinear forms

An(Ph, qn) = an(Pr,qn) + s (Pn, qn), bu(gn,un) = / upV, - qnde,
0

an(Ph, qn) == / Buph - qndx,  sh(Ph.qn) =1 Y /[ph ‘Nele[gn - neleds,
Q rJe
eegh
where 1 > 0 is a penalty parameter independent of A and V- is understood in a piecewise sense,

ie, (Vh-qn)lr =V qu|r for al T € Ty, since g, ¢ H(div;2). The immersed Raviart-Thomas
mixed finite element method reads: find (pp,up) € ZRT (T;) x M), such that

An(Pr,aqn) + br(gn,un) =0 Van € IRT (Tn),

(3.11)
bh(phvvh) = F('Uh) Yoy, € Mj,.

The above IFE method is inconsistent. There are two kinds of inconsistent errors, which are
shown in the following lemma.

Lemma 3.4. Let (p,u) and (pn,un) be the solutions of problems (2.7) and (3I1), respectively.
Then it holds that, for all g5, € TRT (Ty),

An(p — Prygn) + br(gn, v — up) = (an(p, qn) — a(p, qn)) + Z /U[Qh “ MeJeds. (3.12)

6655

Proof. Multiplying the equation (22]) by a function q, € ZRT (T5) and integrating by parts on each
elements yield

/ Bp - qndx + Z / uV - qpdx — Z u[qp - ne]eds = 0, (3.13)
@ TeT, /T ecer e

where we have used ([24)), (Z6]) and the fact that the normal component of gy, is only discontinuous
on interface edges e € €. Note that si(p — pr,qn) = 0, the desired result (B.I2) is obtained by
subtracting the first equation of BI1]) from B.I3]). O

Remark 3.5. Different from the interior penalty method, the consistent term cannot be added into
the bilinear form because

Z /uh[qh ‘Neleds =0 Yup € My Yagn € IZRT (Tr).

ecEf
We find that if we use a conventional penalty
03 Jel o nl.lan - mlds,
ecgl ¢

then the IFE method cannot achieve the optimal convergence rates. Guided by [3], we apply the
over-penalization sp(-,-) to overcome the difficulty. The IFE method (311) is stable for any choice
of the penalty parameter even if the penalty parameter n = 0. However, we need to choose a positive
71 independent of h to ensure the optimal convergence rates (see Theorem [5.1).



4 Properties of the IFE space

In this section, we discuss some important properties of the IFE space ZRT (7). We begin with
some interpolation operators. On each element T € Tp,, define a local interpolation operator Ilp :
W(T) — RT(T) such that
Ni,T(HTq) = Ni,T(q)v 1= 15 27 37

where W(T) = H(div; T)N(L*(T))? with a fixed s > 2. Similarly, on each interface element T' € T,!,
define I/ : W(T) = ZRT(T) such that

Nir(z Pq) = Nir(q), i=1,2,3. (4.1)
The global IFE interpolation operator now is II}F# : W(Q2) — ZRT(Ty) such that

{ FE, i Te T

(I, F )| = (4.2)

v if T e Tmom,

where W(Q) = H(div; Q)N (L*(2))? with a fixed s > 2. We also define the standard Raviart-Thomas
finite element space
RT(Twn) ={qn € H(div;Q) : g € RT(T)} (4.3)

and a corresponding interpolation operator IIj, : W(2) — RT (7x) such that
(Hh’U)|T =1IIyv VT €Ty. (44)
Note that the local interpolation operator IIr is well-defined because ¢ € RT(T) is uniquely

determined by N; r(¢), i = 1,2,3. And we can define the standard Raviart-Thomas basis functions
on each interface element 7 € 7,!' as

AiT € RT(T), Nj,T(Ai,T) = 61']‘, 1,7 =1,2,3, (45)
where §;; is the Kronecker function.

However, the well-definedness for the interpolation operator ITIZ¥'F is not obvious. We need the
unisolvence of IFE shape functions in ZRT (T'), which is proved in the following subsection.

4.1 The unisolvence of IFE shape functions

Without loss of generality, we consider an interface element 7' € T,F'. Given a function ¢p € ZRT (T,
we define a function ¢° such that

o' € RT(T), Niz(¢°) = Nir(9), i=1,2,3. (4.6)

Obviously,
[” e, =0, (@7 talr,nr = 0, V- @0l = V- 607 = 0. (4.7)

The function ¢° is unisolvent and can be expressed by the standard Raviart-Thomas basis functions
3

¢’ = Z Nir(d)Nir (4.8)
i=1

We define another function ¢”¢ such that
¢% | € RT(T), ¢”|p- € RT(T), Niz(¢”) =0, i=1,23,

(4.9)
[¢7 nplr,nr =0, [@7 - taln,nr(@r) =1, V¢ e = V- @7 |- =0,



where the point &1 € ', N T is the same as that in ([3.4). The function ¢/t defined above is also
unisolvent which is proved below. Suppose there is another function satisfying ([@.9]), denoted by

‘1]t. From ([@9), it is easy to show that ¢”t — qb‘ljt = 0 which implies the uniqueness. The existence
can be proved by constructing the function as follows,

; wh =t in T,
¢ =w -l rw, w= (4.10)
w =0 inT, .
It is easy to verify that the function in ([£I0) indeed satisfies (£9)).
Lemma 4.1. Given ¢ € IZRT(T), if we know the jump
wi= @ tpr,nr(zT), (4.11)
then the function ¢ can be written as
¢ = ¢ + po’. (4.12)

Proof. Let w = ¢° + uep’t — . We just need to prove that w = 0. It follows from (33), (3.35), (7))
and (4.9) that

[w-nplp,nr =0, [w -ty nr(zr) =0, V- w|T; -V w|T; =0,
which together with w|r: € RT(T), s = +, — implies
w e RT(T). (4.13)
On the other hand, we know from (6] and (@3] that
Nir(w) = Ni1(¢°) + uNir(¢”) = Nip(¢) =0, i = 1,2,3. (4.14)

Combining (£I3) and [I4), we conclude w = 0, which completes the proof. O

Now the problem is to find the corresponding jump g so that the condition (B4 is satisfied.
Substituting (£12) into (34), we get the following equation for the jump g,

[Br¢” - th]r,ar(@r)p = —[Br¢° - talr,nr(er). (4.15)
By (@I0) and @), we find

Bro” - thlr,nr(zr) = B — (Bf — B7)[prw) (@) - th,
— [Br9" - tulr,nr(xr) = —(BF — B7)° (1) - th.

Hence, the equation (£I5) can be simplified as

(1+ (87 /BF = 1) rw)(xr) - ta) p = (B7 /85 — 1)@’ (x1) - th. (4.16)

Lemma 4.2. Let w be defined in {.10) and ez be the mazimum angle of the triangle T € T, .
If man < /2, then it holds

0< (Mprw)(z) -t <1 Ve eT. (4.17)



(a) The case 0 < LAz (b) The case 0 > LAz

Figure 2: Typical interface elements

Proof. For clarity, we consider a typical interface element T = AA; Ay Az with e; = Az As, e = A1 A3
and es = A; A5. Without loss of generality, we assume that the interface I' cuts e; and es at points D
and E. There are two cases: Case 1: T, = AEDAj (as shown in Figure[2); Case 2: T, = AEDAj;.
In Case 1, we have

DE|"'ED in AEDA
tn = [DE|"'ED and w= 4 PF! o % (4.18)
0 in T\AEDA;.

In order to distinguish these two cases, we replace the notations t; and wy, by t;, and w’ in Case 2.
According to (8)), we have the following relations according to (Z10)

0 in AEDAs,
t, = |DE|"'DE and o = (4.19)
\DE|"'\DE in T\AEDAS.

Comparing (m) Wlth (m), we find
l !/ l !/ I
h h W W hs

which implies
(Hh,Tw’) -t;l = (thw — th) . (—th) =1- (Hh,Tw) -ty (4.20)

If the estimate (ZIT) holds for Case 1, then we can conclude from ([20) that the estimate (ZI7)
also holds for Case 2. Therefore, we only need to consider Case 1 whose geometric configuration is
given in Figure

On the concrete element T = AA; Ay Az, the standard Raviart-Thomas basis functions defined
in (@A) can be written as
_ leil

Air(z) = 21T i,

i=1,2,3.
It follows from B1) and (£I0) that

(Hh,T‘U)(m) -ty = Nl,T(w))\l,T(m) ~th + NQﬁT(w)AzﬁT(.’B) -ty

|A3D| e — |As E| lea| —
= th 7 Azt t), - nor i Agz -t
fea] 1T IR gt T gy e
AsD e1l — AsE ea| —
= | 3 |(R%th) . (R%nLT)uAlarth—k | 3 |(R%th) . (R%ngyT)MAQCB-th

fe1] 2[T] es]
= 7)) (o - DA (A - ) + (mp - A5 E) (Ao - 1))

2|T|

10



—_—
where Rz is arotation matrix defined in (ZI1]). Using the relation ny,-DAs+ny, 'Agg =ny-D ﬁ =0,
we further have

(I 7e0)(@) -t = (AT (o, - DAS)(Are - t4) — (my - DAS) (Azz - 1))

= (2/T])" (0, - DA) (A7 Ap - 1)

s —_—
__ DA (0 DA\ (Ady (4.21)
|€1|SinZA2 |DA3| |63|

_ |DA3|sinf cos~y
|€1|SinZA2 ’

— e
where 6 is the angle from A3As to tj, and v is the angle from A; As to ty, (see Figure ). It is easy
to see that
0<6< LA + LA, —LAs < v < LAy, (422)

Since ey < /2, using (@2I) we get the first inequality in ([@I7)
(HhﬁTw)(w) -th Z 0.

Finally, we prove the second inequality in (£I7). If 0 < § < ZA5 (see Figure , we know from

@21) that
|DAs| cos~y <1

lea]
If @ > £A,, then v > 0 (see Figure[2(b)). We need a refined estimate. Let D’ be a point on e; such
that the line D’A; is parallel to the line DE. Then we have

(I, rw)(z) - tp <

|DAs] < | D’ As| DAy 1 les|siny sin Z Az sin~y

ler] = ler| e lei|sing sin ZA; sinf’

which together with (£21]) and the facts § = v+ £As and LA; + LAs + LA3 = 7 yields

(I, 7)) - b, < <1 _ sin(£A; + £4,) sin~y> sin(y + £As2) cos~y

sin ZA; sin(y + £As) sin Z A,
By a direct calculation, we obtain

siny cosy cos LA, <1
sin lAl -

(I, 7w)(x) - t, < cos® y —

where the facts 0 < v < 7/2 and 0 < LA; < /2 are used in the last inequality. This completes the
proof of the lemma. O

Lemma 4.3. Let T € T,l' be an interface triangle satisfying the mazimum angle condition Qumay <
w/2. Then the function ¢ € IRT(T) is uniquely determined by N; v(¢p), ¢ = 1,2,3. Furthermore,
we have the following explicit formula

3 - 3
(B7/6F =) X Niz(@)Air(xr) -ty
o= > Nir(P)\ir + — =1 ’ w — I rw), 4.23
& N e G (e 0 (429
where X; 7 and w are defined in (4.0) and ([{.10), respectively.
Proof. From Lemma ([#2), we have
1 if A7 /85 > 1,

L+ (87 /Br — 1)y rw) (@) - t), > { (4.24)

Br/Bf if0<Br/BF <1,
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which implies the equation ([@I6) has a unique solution
 B5/BE -1 @) b
1+ (B7/BF — D[y rw) (@) - th
Substituting the above identity into (12) yields
(Br/Br —1)(@°(z7) - )™
1+ (B7/B7 — )y, rw)(zr) - th
The result (£23) is then obtained by using (£.8) and ([@I0). If N; r(¢p) =0, i = 1,2,3, it is easy to

see from (£23) that ¢ = 0. Hence, the function ¢ € ZRT (T') is uniquely determined by N; r(¢),
1 =1,2,3, which completes the proof. O

¢=0¢"+

Remark 4.4. If 8} = B3, we can see from (Z.23) that the IFE shape function space TRT(T)
is the same as the traditional Raviart-Thomas shape function space RT (T). Therefore, when the
interface disappears, i.c., [B)r(z) = 0 for all z € T, the IFE method (311) becomes the traditional
Raviart-Thomas mized finite element method.

4.2 Estimates of IFE basis functions

On each interface element T' € T, define IFE basis functions by
¢ir € IRT(T), Njr(bir) =0y, i,j=1,2,3, (4.25)
which can be computed by ([@23) easily in practical implementation.
It is well-known that the traditional basis functions defined in (@3] satisfy
[AirllLee(ry <C, i=1,2,3 VI €Ty, (4.26)

where the constant depends only on the shape regularity parameter po. The following lemma shows
that the IFE basis functions also have similar estimates.

Lemma 4.5. There exists a constant C, depending only on the shape reqularity parameter o, such
that

i zll=(r) < Cmax{B3/B7, By /BF}, i=1,2,3 VI ET,. (4.27)
Furthermore, if define ¢; € RT(T) such that @; p = @i |r;, then it holds
Hd’iT”L“’(T) < CmaX{ﬁ;/ﬁf,ﬁf/ﬁ;}, s=4,—-, =123 VTEEF' (4'28)

Proof. We just need to prove the estimate ([A28]) because ([£.27) is a direct consequence of (£.28]).
From (£20) and ([£23), the IFE basis functions can be expressed explicitly

(B /B — DAir(2r) - th
1+ (B7/B7 — D)(Ihrw)(zr) - th
which together with (AI0) and [@26]) implies

dir =N+ (W* = Mprw), s=+,—,

11+ (87 /67 — DM rw)(@r) - th]’
Applying the estimate (£24]) to the above inequality, we can derive

165 ol oe(ry < C (L + 87 /B7 — 1) < CBr /By if By /Bt > 1,
S 1 — ﬁ’;/ﬁ;’: + — . _ +

||¢i,THL°°(T) <C I+ —— < CBT /B if0< By /87 <1,

Br /b7

which completes the proof. O

@ rllLes () < s=4,—.
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4.3 The commuting diagram

Define a local L? projection P2 : L?(T) — R! such that

1
Py = T /T vdx (4.29)

and a global L? projection PP : L*(Q) — M, such that (P)v)|r = Pv for all T € Tp,. It is well-
known that the following commuting property holds for the standard Raviart-Thomas interpolation
operator IIj, defined in (£4)

V-T,q=P)V-q VqecW().

Next we show that the commuting property also holds for the IFE interpolation operator II}F'#. Tt

follows from (£29), B7) and (@I) that

3
/V~H£FEq—P,?V~qd:c:/V~H£FEq—V~qd:c:Z/(H,ILFEq—q)~nl-7Tds
T T i=1 " €i

3
= leilNir (g —q)=0 VT €T,
=1

(4.30)

Moreover, we know from (B that V-(H,IIFEQNT; = V-(H{lFEq)|T;. In other words, (V-IIZFEq)|
is a constant. Thus, (£30) implies

V- MFeq—P)V.q=0 VqeW(Q).

We summarize these commuting results in the following diagram:

wEQ) —Y s L2(Q) W(Q) —Y . L2Q)
tnh tp,g [H,{FE [P,? (4.31)
RT(Th) ———s M, IRT(Th) —2 M.

4.4 Approximation capabilities of the IFE space

Denote dist(z,T') as the distance between a point  and the interface ', and U(T,§) = {z € R? :
dist(x,T") < 0} as the neighborhood of T' of thickness ¢. Define a signed distance function near the
interface as

(@) dist(z, T") if x € QT NU(T, ),
xr) =
P —dist(x,T)  ifx € Q NU(T,b).
We also define the meshsize of 7;" by
hr := hr. 4.32
ri= mex hr (4.32)

It is obvious that Ar < h and UTGT{ T Cc U, hr).

Assumption 4.6. There exists a constant g > 0 such that the signed distance function p(x) is
well-defined in U(T, &) with p(x) € C*(U(T,d)). We also assume hr < & so that T C U(T, )
for all interface elements T € T;-.

13



The assumption is reasonable since the interface I' is C2-smooth. Now the unit normal and
tangent vectors of the interface can be evaluated as

op Op

n(z) =Vp, tla)= (_a_xz’ a_:,;1>T' (4.33)

We note that these functions n(x) and t(x) are well-defined in the region U(T,dp). We also view
the functions n,(x) and tp,(x) as piecewise constant vectors defined on interface elements. On each
interface element T € '7;;, since I is in C?, by Rolle’s Theorem, there exists at least one point
x* € I'NT, see Figure 2 such that

n(x*) =np(x”) and t(xz*) =ty(x"). (4.34)

Since p(z) € C?(U(T, d)), we have

2

n(z) e (C'(T)° and t(z) e (C'(T)* vIeTl. (4.35)
Using Taylor’s expansion at x*, we further have
Hn—nhHLoo(T) <Ch and ||t_th||Loo(T) <Ch VTE’ELF. (4.36)

The following lemma presents a d-strip argument that will be used for the error estimate in the
region near the interface (see Lemma 2.1 in [26]).

Lemma 4.7. Let 6 be sufficiently small. The constant oy is fivzed and satisfies Assumption [{.6
Then it holds for any v € H'(Q) that

vl 2w rsy < CVE ol wr.s0)- (4.37)
Furthermore, if v|r = 0, then there holds

vl 2w r,s)) < C0 VY| L2w(r.5)) - (4.38)

Given two scalar or vector-valued functions v* and v~ on an element 7', define
[vE] () := v (x) — v (z) Vo eT.

We note that the difference between [-](z) and [|r(x) is the range of . On each interface element
T € T,F, define the following auxiliary functions

5 € RT(T), Y5 € RT(T), ©% € RT(T), s = +, — (4.39)

and
Ur

T}f = ‘I’%, 'I'T|T; = T%, ®T|T; = GTST) s = _|_7_7 (440)
such that

[¥7 -wl(@r) =1, [B7 %5 - thl(@r) =0, [V-¥5][=0, Nip(¥r)=0
Y7 -ol(@r) =0, [B7X5 - tul(@wr) =1, [V-YX7]=0, Nir(Yr)=0, (4.41)
[©F -ni](zr) =0, [8707 -ta](zr) =0, [V-©7]=1, Nir(©7)=0

where 7 and S3 are the same as that in (34).
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Lemma 4.8. On each interface element T € TY, the functions \Il%, T% and @% defined in (£.39)-
(441) exist and satisfy

s ﬁma;ﬂ
€5 L2y < Cﬁ

hT, =+4,—, (4.42)

/Bmllw
hr, X% 21y < Cﬂ—hTa 1©F L2 ﬂ

where Bmax and Bmin are define in (3.8), and the constant C' depends only on the shape regularity
parameter o.

Proof. We construct ¥ as follows,

zT =n, inT,j,

B ' (4.43)
z= =0 inT, .

\IIT—z—HIFE z_{

It is easy to verify that Wl = \IIT|T+ and ¥, = ¥, |T7 exist and satisfy (£39)-(@41). From (@43)
and B1), we have |N; r(z)| < C, i =1,2,3. Thus, by Lemmalm, it holds

w

/Bmax
TR 2 e ) Z 2)|¢irllLery < Cmax{B1 /By, Br /Bf} < C3
which together with (£43)) yields the first estimate in (£.42)
S S Bmaw
15| L2(r) < Chrl|[ 5| Loy = Chrl|z® = 5P 2| oo () < Cﬁ—_h . S=+,—

Similarly, we construct X1 as

zt in T,",
Yr=z-10F2 2= Soh (4.44)
z~ in Th_.
where
z+:th/ﬁ;7 z= =0 if ﬁ;>ﬁ;’ (445)
*=o, z7=—ty/By i B <Br. '

We can also verify easily that X5 = Yr|r:, s = +, — exist and satisfy [@39)-(AI). Using (£.43),
1) and Lemma .5 we have

3
I35 2l ooy < Y [N (2l it | e (1) < Cmax{1/57, 1/} <

Bmzn
which together with (£44) and ([@4H]) implies the second estimate in (£42)
Y < Chr|| Y} Ch I <ol =
1721 7| X7/l (r) = Chrl|lz® — Z|| Lo (1) 5 s=+—
Finally, we construct
2zt = 1(w—w;r) in T;F,
Or=z-1;"F2z =z= 2 (4.46)
z= =0 inT,,

where xr is the center of the largest circle inscribed in the element 7. Obviously, the functions
©7 = Or|r:, s = +, — exist and satisfy ([£.39)-(©.41). Now we have

3
||HI Z||L°° Z INi,r(2)|||di,rllLoe(r) < Chr max{ﬁ}'/ﬂTvﬂT/BT} < Cgmax .

min
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Therefore, by ([£46]), we get

ﬂmaz
ﬁmin

which competes the proof of this lemma. o

105121y < Chrl|®% (1) = Chrll2® — I P 2| ooy < C h7,

To show that functions in ZR7T (7,) can approximate g € H (div; ) optimally in the L?-norm,

we need to interpolate extensions of qlgs, s = +, —. For any ¢* € (H'(Q?))?, from the standard
Sobolev extension property (see [13]), there exist extensions q3, € (H(Q%,,))?, s = +, — such that

Hi(Q2,,) < C'|qS Hi(Qs)s 1=0,1,2, s=+4,—, (447)

ext

qploe =¢° and |qj
where Q3, := Q° UU(T, dp) with a fixed dy satisfying Assumption

Lemma 4.9. On each interface element T € T\, for any q € ﬁl(div; Q), it holds that

(rgy)(2) — (7 Fq)* (x) = [(Urag) - ml(@r) ®5 (@) + [67 (Irgg) - thl(@r) Yi(x)

3 (4.48)
+[V - ([rgp)]0%(x) + Y gigir(z) Vo eT,
i=1
where )
9i = (/ (Irqy — qf) - mipds +/ (rqy —qg) - m,Td8> : (4.49)
|ei| eﬂ']Q* e; N~
Proof. For simplicity of notation, we let
w1y = wp, wy, = 1Ilrqy — (7% q)*, s =+,-, (4.50)
and define
zhlry =25,z (2) = [wy - u](@r) W5 () + [BFw) - tn](xr) X5 ()
(4.51)

3
+ [[V ’ w}:::]]@%(w) + ZNi,T(wh)¢i,T(w)7 s=+,—.
=1

Next, we prove wy, = zp. First, it is easy to verify from B2)-(33) and (@28 that the IFE basis
functions ¢; 1, ¢ = 1,2, 3 satisfy the following identities

[[d)i:T -np](xr) =0, [[ﬁ%qbi:T “tp](zr) =0, [V- d)i:T =0, Nj7T(¢i,T) =i, 1=1,2,3. (4.52)
Then, combining [@51)-(52) and [@39)-(ZA1) yields

[z, -nal(zr) = [wj; -np](zr),  [B72, - tal(zr) = [Brw; - thl(@r),
V-2, 1=V w].  Nizr(zn) = Nizr(wn),
which implies
zn—wp €IRT(T), Nir(zn,—wy)=0,i=123.
By [@23) we conclude zp, — wp, =0 (i.e., 2, = wy). We now have the following decomposition
wy, = zy, = [wy; - 0] (21)Pr(2) + [Brw;, - ] (@r) Ti(2)
(4.53)

3
+[V-w;10%(x) + ) Nir(w)dir(@), s=+,—.
i=1
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To prove the desired result (£48), it remains to estimate the coefficients in the above identity.
Using the facts from B3)-(@B.3) that

[ q)*](xr) = 0, [67 (77 Fq)* - tr](zr) =0, [V (7 Fg)*] = 0.
and the definition of wy, in (£50), we can derive

[wif - np](zr) = [rgs — (TFPq)*](zr) = [Lrqz](zr),
[Bfwif - t](@r) = [5F (rgf — (I Pq)*) - tu](xr) = [BF1lrgs - tr](z), (4.54)
[V-w; ] =[V- (rgy — (1577 q)*)] = [V - rgg],

and )
Nortw) = Y [ (lrap — (7P)°) nrds

|ei| s—+ e; NS
1 S S S

== > / (Irqg — i + ai — (Ui 7 q)°) - nirds (4.55)
leil st JeinQs
1

- Y [ trap-ap) nards
leq s—t.— JeinQe

where we have used the following property of the IFE interpolation operator IIZF'E from (@)
Nir(qe —TIF"Fq) = / (g3 — (IFFPq)*)ds = 0.
s=+,— e; NS
Substituting [@54)) and ([@55) into [@53]) completes the proof of this lemma. O

Theorem 4.10. For any q € ﬁl(diV;Q), let g3, be defined in (£.47), then there exists a constant
C, independent of h, Bmaz, Bmin and the interface location relative to the mesh, such that

3 llag - @) 2 <Cﬁg”“””h% 3 la:lnweny 5=+
TGTF min s=+,—

where hy = maxperr hr.

Proof. On each interface element 7 € 7,1, by the triangle inequality, we have

lai; — (W) 2e () < 2lla — Trail o) + 2[0ral — (75 @) |72, (4.56)

The estimate of the first term is standard

g — Trgill7e < CPlaulin ), s =+, — (4.57)
For the second term on the right-hand side of (£56), using Lemma 9] Lemma [£§ and Lemma [L.5]
we get
ITMrqs — (I q)° (|71
< C([(Mrqg) - nu]* @) 51720y + [87 Trgs) - tr]* (@) [ X572

3
+ [V (rgi)* 1951720y + Y G105 7ll72r))
: (4.58)

mwn

< Cﬂmaz (h%[[(HTqE) . nh]] (wT) + hT[[V (HTqE ]]2 + h Z.%)

+C W7 187 (rqs) - tr]* (1),

2
ﬂmzn
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where g; is defined in (£49). Next, we estimate these terms on the right-hand side of (£58]) one by
one. By the standard inverse inequality and the estimate (£36]), we find

[(M1rqd) - a2 (@r) = |[(0Trqd) - a3 oy < Ch [(Trad) - ol ey
< Ch? (I[(rah —a) - me + a5 - (s — 0+ )]
< onz? (I10raE — a)] - mlacry + Nkl - (o — )3y + Nlak - nllZ2cr))

<C Y (Il +lasliem) + Chz2llas - nllar).
s=-+,—

(4.59)

Similarly,
187 (Tray) - tr]*(zr) = ||[87 (rg) tn]l 3~y < Ch2NIBT (rqs) tn]ll72(r)
< Chz® (185 (rag — af) -t + B i - (6 — t+ )]132r))
< Chz? (H[W%(HTQ%E —ap)] - tall7zer + 187 aE] - (6n = Ol Z2(r) + 115795 'ﬂ]”%z(:r))

< OBt D (lasfin ) +llazliee)) + ChT2 15 -ty
s=+,—
(4.60)

Using the commuting diagram {31)) and the property of the L? projection: ||PRv| r2(ry < ||v||r2(r)
for all v € L?(T), we can derive

[V (Urgp)® =717V - (Urgg)llZa) < Chz? Y IV - LrgillEacry
s=+,—

=Chy® Y PRV -a)lier) < Ch® D IV aillieer < Chi® D lablh -
s=+,— s=-4,— s=-+,—

(4.61)

By the Cauchy-Schwarz inequality and the standard trace inequality, the term g; defined in (£49)
can be estimated as

gt ¥ (f

2
(M7rqx — q) - ni,TdS)

s=+,— N6
— S s 2 — s s 112
< Cth Z [(Mrqy — q%) - ni,T||L2(esz) < Cth Z Tlrqy — qEHL2(ei) (4.62)
i=+,— i=+,—
<C Z (h52||HT(I% — q3llZz) + Mrgs — qJSEﬁ{l(T)) <C Z @51 (1)
i=4,— i=+,—

We now combine ([@50])-([62]) to obtain the error estimate on interface elements

2
g% — (777 q)°|| 721y < Cﬁ?‘” h% Z gz 17 o)

min s=+,—

2
+ Cﬁg”?”” gz - nlliZ=(r) + Oﬁ2 _

Summing up the estimate over all interface elements and using Assumption [4.6] we have

118745 -t 27

2
Z g% — (777 q)°||32(py < CBZL‘?I h Z a2l e me)
TeTr min s=+,—
: (4.63)

2
max 1
+ Oﬂg _ laz - nllZ2wpey + O—ﬂz _ 118745 - t1IZ2wr.ney)-
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Since the function g belongs to the space H L(div; ©2) which is defined in ([Z13]), we know
lgs -n](x) =0 and [BEqs-t](x)=0 Vzel.

Therefore, it follows from (B.6]), the estimate (£3])) in Lemma 7 and B.I0) that

Iaz - 0lll72w@ney < CPRIGE - 03wy < ChE D lab i )

s=+,—
87 a5 7w ) < 2([8* a5 72wy + 2([(8* - B7)az 172w )
< Chi. <|[[ﬁiq§ )3 @ ne)) T Z gk 'tH%?(U(F,hF))) oy
s=+,—
< OB anhi Z ”qSEH?{l(U(F,hF))'
s=+,—
Finally, substituting (£.64) into (£63)) completes the proof of this theorem. O

Theorem 4.11. For any q € H! (div; Q), there exists a constant C, independent of h, Bmaz; Bmin
and the interface location relative to the mesh, such that
IFE Bmaa
lg — (I, 7 @)l 2 () < Cﬁ —hllq| z1 2+ ua-)-

min

Proof. On each non-interface element 1" € 7", the following estimate is standard,

lg = TP ql|72 () = lg — Taqll 320y < ChT gl (1)- (4.65)

On each interface element T € ', define T := TNQ*, s = +, —. Using the relations T =TT UT~
and T% = (T*NT;7) U (T*NT}, ), s =+, —, we have

H]I'LFEqH%Q(T) = Z lg® — (HiIzFEq)S”%?(TSmT,f)
s=+,— (4.66)
+lla™ = W F ) ey + 0 = ) T g -

llq —

It follows from the triangle inequality that

lg~ — (II,"Fq )+||L2(T ary S 2llg” — qEHL2 r-nrty T 2llqf — (I;""q )+||L2 -1}y (467)
lg™ — (IéFE )_HLz THAT) = <2|q* qE||L2(T+ﬁThf) +2|lgg — (I L'E )_||L2(T+mT )
Substituting (£67) into (£66]) yields
lg =T 2 ql a0y < C D gy — UR"P@)* |32y + Cllahy — apl7zray, (4.68)
s=+,—
where
T = (T~ NT,Hu T nT,). (4.69)

Since the interface is C?-smooth, we conclude that, there exists a constant C' depending only on the
maximum curvature of the interface I'; such that dist(I',T';,) < Chp, which leads to

U 74 cu,cht) c U, ). (4.70)
TeTr
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Summing up the estimates ([LG5) and (LE]) over all elements T € Ty, and using (£70) , we have
> la -1 Eqlla

TeThH

<CP > iy +C > Y llay — )% 72y + Cllah — QE”%%U(F,Ch;))-
TETom TeTT s=+,—

Applying Theorem 10 and the estimate ([@37) in Lemma 7] we further have

ﬁ’?‘nam S -
Z lg — 1,7 qll7(r) < Cﬂz h? Z laZ 17 wr.s0y) + CPllaE — aall7n @ r.50)
TET, min s=+,—
2
< 06’5‘” h? Z HqSEH?P(U(F,éO)) +Ch? Z HQ%H%I(U(F,%)),
min s=+,— s=+,—
which together with the extension result (£.47) completes the proof. O

5 A priori error estimates for the IFE method

For the purpose of error analysis, we introduce the following mesh dependent norms for the space
IRT (Tn) + H(div; ),

lall® = a7z +1 > g neellzey lall® :=llal*+ > IV - allfm.
ec&r TETh

Lemma 5.1. Ifq € ﬁl(div; Q)N H2(QTUQNT), then there exists constant C, independent of h, the
penalty parameter n and the interface location relative to the mesh, such that

la —THF2q] < Chllalm @sva-y + 172 Y lallusas ooz ) (5.1)
s=-+,—

where Q5 = U(T',d0) NQ°, s =+, —.
Proof. First, by Theorem 11| we have
lg — (77 q)l| 22 () < Chllglla @+ua-)- (5.2)

By the definition of extensions ([£47), the standard trace lemma and Theorem 10, we get

> e =T Pa) nelellfa < D7 D llla — (7 @)*) - neellza(,)

ec&f ecf s=+,—
<c Y Y (hr'llax- HIFEQ)S|I%2<T>+’”LT|‘17E_(HiFE‘I)SﬁP(T)) (5.3)
TeTF s=+,—
<C Z hF”QEHHl(UFhF))"‘C Z Z hrlgy — (IG7F )S|§11(T)~
=t TeTr s=t.—

Using the fact (V- IIIFEq)* = (V- 1I}7Fq)~ is a constant, we find
S 1 S 1
|(H£FEQ) |§Il(T) = §||V ‘ (H{LFE‘I) ||2L2(T) = §||V ‘ (H{LFE‘])HQN(T)
which together with the property of the L? projection

|1 PRvll 2y < ||vllz2ery Vo € L*(T)
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and the commuting diagram ([3T]) leads to

. 1 1 1
|52 Q)% g () = §||v 035 E gl 2y = §HP%(V “@)lz2 () < §||v “qllL2(7).- (5.4)
Therefore,
gy — (0152 q)% oy < laplm ) + 1P @)% gy < Claglmry, s=+,—

Substituting the above estimate into (5.3) and using ([@37)) in Lemma E.7, we obtain

S llg - q) nel2a) <C > hrllablin wawney <C Y. RElas3e o)
665}1: s=—4,— s=+,—

Finally, combining (52)), the above inequality and the extension result [@A47) yields the desired
estimate (B.1)). O

It is easy to see that by (-, -) = b(-,-) on the space H(div;$2) x L?(Q) and it is continuous:
bi(g.v) < lla |l [vlr2) ¥(g.v) € (TRT(Th) + H(div; ), L*(%)). (5.5)
Obviously, the bilinear form ap(,-) is also continuous:
An(p; @) < max{Bmaz, 1}|Pllllgll  Vp,q € TRT(Tn) + H(div; Q). (5.6)
Let us introduce a kernel
Ky :={qn € IRT(Tn) : bn(gn,vn) =0 Vv, € Mp}, (5.7)

then we have the following coercivity result.

Lemma 5.2. It holds that
An(gn, qn) > min{Buin, 1} || @nlll* = min{Bmin, 1}Hanl*  Van € K.

Proof. For any qp, € ZRT (Ty), we know from B3 that V - gp|r is a constant for all T € T;,. Thus,
Vi - qn € My,. Taking vy, = Vy, - qp in (57) yields Vi, - g, = 0. Therefore,

lgnll® = llgn > Van € Ka, (5.8)

which together with

An(@ns @) = Brninllanl 2y +1 32 s - nele[2ay = mind Brins 1} a2
6655

completes the proof of this lemma. O

In order to prove the inf-sup condition for the bilinear form by, (-, ), we first state a property of
the IFE operator II.FF in the following lemma.

Lemma 5.3. Suppose 7;; s quasi-uniform, i.e., h;l < C’h;l for all T € 7?. Then there exists
a constant Cry, independent of h, the penalty parameter n and the interface location relative to the
mesh, such that

Bmaw
Il T, || < Cng™

lallme)  VYa e (H'(Q)% (5.9)

min
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Proof. On each interface element T € T,F', we have

HIFE ZNzT d)zT

It follows from Lemma 4.5 the Cauchy-Schwarz inequality and the standard trace inequality that

2
I a gy < 00 S ([ qomirds) < 0500183 g malfa,
min €5 mn

i=1 i=1

(5.10)
72nam 2 ’ —2 2 ﬂma;ﬂ 2
< Ogsnd 3 (el mulacry + g mrlin ) < €8 lalling,
min i=1
which together with a similar estimate on non-interface elements leads to
2
I P |20y < Cﬁll(lllipm)- (5.11)
On the other hand, using the standard trace inequality, we get
> I Ealfa < 32 >0 10 P9 [7a
ecEf ec&f s=+,— (5.12)
<C Y Y it AEEQCTay +C Y0 D bl (TP ) |
TEeT, s=t~ TEeTT s=+.~

By Theorem [£10] the estimate (@37) in Lemma [£7] and the extension result [@47), the first term
on the right-hand side can be estimate as

> > ht I ey = D0 D he'llah + (550 — agla

TeTr s=+,— TeTF s=+:—
<Ohe' 3 Naklieweney +Che" D D llak = (1 0) ey (5.13)
s=+,— TeTT s=+,— :
ﬂmamh ﬂmam 2
<C Z ||‘IE||H1 (U(T,80)) T 052 r Z ||QE||H1 (U(T,hr)) S 052 lallz -
s= +7 min s= +7 min

The estimate (B.4]) gives the estimate for the second term on the right-hand side of (5.12))

SN bl EQ By < Chr Y lalh ) < Cllallin o).

TeTF s=+,— TeTF

which together with (513) and (B12) yields

> I gl < Cﬁgm lallF (q)- (5.14)
ecEf mn

The estimate (54) also implies

Z IV -T2 g7y < C Z IV - g2y < Cllalin oy (5.15)
TeTh TETh

The desired result (B.9) now follows from (E.I1)), (514) and (EI5). O

Lemma 5.4. Under the condition of Lemmal5.3, the following inf-sup condition holds for a positive
constant 1, independent of the meshsize h, the penalty parameter n and the interface location relative

to the mesh
br(qn,vn)
sup —_—

> NullonllLz)  Yon € My, (5.16)
anerT () llanll
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Proof. Let vy, be any function in My, C L2(f2), then there is a function w satisfying (see Lemma

11.2.3 in [6])
V-w=wv, and |w|g (o) < Callvn|r2)

with a constant Cq only depends on Q. It follows from the commuting diagram (£31]) that

bh(H]IIFE'w, vh) = /

vp V- T Pwda = / v PP (V - w)dex
Q

Q

1
= [ oV wdz = ||v,|? > —|jw ,
X Ionliec@ 2 g Il o

which together with (5.9]) leads to

sup bu(gn,vn) _ bn(I;F P w, vp) Brmin b (I Pw, v) Bmin
aezrT(y Manll —  NPPwll 7 Cufmae wlae  — CoCnBmas
Thus, the inf-sup condition (5I0)) is proved by choosing 1. = C,Qg%

(5.17)

O

Theorem 5.5. Suppose the condition of Lemmali3 holds. The discrete method (311)) has a unique
solution (pn,un). Let (p,u) be the solution of problem (2.7). If p € H'(div; Q)N H?*(QTUQ™), then
there exists a constant C, independent of the meshsize h, the penalty parameter n and the interface

location relative to the mesh, such that

P — pull + llu — unllL2(o)
<Ch (HPHHI(Q*UQ*) + 771/2||P||H2(Q5+0u9g0) +(1+ 7771/2)||“||H2(Q+uszf)) )

where Q5 = U(T',00) N, s =+, —.

(5.18)

Proof. The well-posedness of the discrete problem (BII]) is a direct consequence of (B.3), (&8,

Lemma and Lemma [5.4]
Next, we prove the error estimate (B.I8). Similar to (&I7), it holds

bh(H]IIFEpu Uh) = b(pa Uh,) V'Uh (S Mh.
By subtracting the second equations in each of [Z71) and B.II]), we find

b(pavh) - bh(phavh) =0 Yo, € My,

It follows from the above two equalities that by, (H,IIF Ep —pn,vn) = 0 for all v, € My, which implies

1,"Fp — pi € K.
Then, using the triangle inequality, Lemma ([5.2]) and the continuity (5.0]), we have

1P —paull < llp — TP + 117 Fp — pal|
AT FEp — pp. w
<|p-Ep|+C sup | An (TP — P, wn)|
w, €K\ {0} [[wn|]
AT Ep — pLwn) + An(p — o, w
N e g i s ALOREL R S

wy, €K, \ {0} [|[ws]|

Ap(p — pn, wi
<C|p-TFEp|+C  sup [An( )l
wy, €K, \ {0} [|ws|
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The first term can be bounded by Lemma 5.1

1/2
lp— 1" Ppl| < Ch <||p||§11(sz+usz) +n Z ”p”§l2(U(F,60)ﬁQS)> : (5.20)
s=+,—

We now consider the latter term. For all w, € K, we know from (E1) that bp(wp,up) =
by (wp, PYu) = 0. Then, it follows from (@I2) that

|[AR(p — Py wn)| < |br(wh, u — PYu)| + |an(p, wr) — a(p,wy)| + Z /U[wh ‘neleds| . (5.01)
6655 ¢
From (&0 and (58)), we can bound the first term on the right-hand side of (5221)) by
}bh(wh, u— P,?u)| < ||wh||L2(Q)||u — P]?U||L2(Q) < Ch|u|H1(Q) ||'th||L2(Q). (5.22)

For the second term on the right-hand side of (5.21)), recalling the definition of 74 in ([@69) and
using ([L.70), [@37) and the extension result ([@.47), we have

< SB[ o wnlde

TeTr

(a1 (pr wn) — a(p, wn)] = ‘ R

< Clplew.cnanllwallz) < D ClpEl2wm,cnzylwall2@ (5.23)
s=+,—

< Y Chrllpillmwersonlwnlzz) < Chrlpla @roa-) lwall L2 @)
s=+,—

Note that [ [wy, - neleds = 0 for all e € &, then the third term on the right-hand side of (5.21)) can
be written as

>

2.

[0 = ot nlds

/u[wh ‘nc)eds

eeg}; 665};
1/2 1/2
< | D Ml =cellfage > lwn - nelel 72, (5.24)
ecEf e€Ey
1/2
< D0 Nlu=cellfae | 02 llwall,
ecEf

where ¢, is an arbitrary constant on the edge e. By the standard trace inequality, Lemma (£7) and
the extension result (&4,

Z [u = cellfaey < C Z (h%lllu — Ppul|7acr) + hT|u|§11(T)) < Chrlultp e )
ec&f TeTr

(5.25)
<Chr Y luplinweney < ChE D lublizwrs) < Chillullizoroa-)-
s=+,— s=+,—
Therefore, we get the following error estimate on interface edges
3 /u[wh ‘ncleds| < O 2 heull g2 oa- lwnl) (5.26)

o
Substituting (222)), (523) and (B26) into (B21), we have

[4n(p = i wi)| < Ch (Pl @rvan) + 0+ 1) ulliz@vo-) ) lwal
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which together with (519) and (520)) yields the desired estimate

lp—pnll < Ch (HpHHl(QJrUQ*) + 771/2||p||H2(Q;0uQ;0) +(1+ 7771/2)||u||H2(Q+UQ*)) - (527)

Finally, we derive the error estimate for the solution wy. It follows from the triangle inequality,
the inf-sup condition (BI6]) and the continuity (5.5) that

u—unllp2(0) < llu— Plull L2 + |1 Pru — unl| (o)

|br (g, PPu — up)|

<lu— Pulp2)+C  sup

anETRT(Th) gl
b ,Pow —u)+b LU — U (5.28)
< |lu— Plullr2)+C  sup LACTAE ) & bnlan 3l
anETRT(T3) llgnll
b _
<C|lu- P,?u||L2(Q) +C sup —| n(an, v — up)|
4, ETRT(T) llanll
The first term can be bounded easily
lu— PRull20) < Chlu| g (q).- (5.29)

For the second term, we know form (BI2]) that

/U[Qh-ne]edé’ :

€

bn.(gh, v — un)| < [An(P — Pryqn)| + |an(p, qn) — a(p, qn)| + Z
3

Similar to (523) and (5.26), it holds

lan(p, an) — a(p,qn)| + Y

/u[qh ‘ne]eds

ceer (5.30)
< Chrlplla@rua-)lanlL2@) + Cn~ 2 hellul m2@+va-) lgnll
On the other hand, (58) and (527) imply
|[An(p — P, an)| < Cllp — pallllanll
o i R (5.31)
< Ch (Iplm@ron )+ 12 1Blges v + (117 lulsron ) ) lanl.
Combining (5.28)-(5.31) and using the fact [gn|| < |[|gnll|, we get the desired estimate
lu = unllL2@) < Ch (||P||H1(Q+usr) + 771/2||p||H2(Q;0uQ;0) +(+ 7771/2)”“”H2(Q+UQ*)) -
O

Remark 5.6. From Theorem[53, we know the penalty sp(-,-) with n > 0 is necessary to ensure the
optimal convergence rates which is confirmed in the next section, although the IFE method is stable
without the penalty (i.e., n = 0) in view of Lemma[5.2 and Lemma[54 Throughout the proof, we
find the issue is caused by the inequality [5.24) which does not hold if n = 0.

6 Numerical examples

In this section, we present some numerical examples to validate the theoretical analysis. We also
compare the proposed immersed Raviart-Thomas mixed finite element method (Immersed RT) with
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the traditional Raviart-Thomas mixed finite element method (Traditional RT) which reads: find
(ph,un) € RT(Th) X My, such that

an(ph, qn) + bn(qn,un) =0 Van € RT(Tr),
br(ph,vn) = F(vn) Yy, € My,

where RT (75) is the standard Raviart-Thomas space defined in ([@3]). For simplicity, we take
Q2 = (-1,1) x (—=1,1) as the computational domain and use uniform triangulations constructed
as follows. We first partition the domain into N X N congruent rectangles, and then obtain the
triangulation by cutting the rectangles along one of diagonals in the same direction. We only report
the errors ||p — pnl|r2 and the corresponding convergence rates. The numerical results for uy, are
not listed because they are almost the same and the corresponding convergence rates are O(h) for
different methods.

Example 1. We first consider a benchmark example from [29] which has been used in many
articles. The interface is I' = {(x1,22) € R? : 23+ 23 = r2} which separates Q into Q= = {(z1,22) €
R? : 23 + 23 < r3} and QF = {(z1,72) € Q: 27 + 23 > r3}. The exact solution to the interface

problem is chosen as
(a2 +23)*/? /B~ in Q-
u(x) = 2 | 2\3/2 3+ 3- Z+),3 i Ot
(aF +23)*2/B* + (/8- - 1/B%) i @,

where 79 = 0.5, 5*‘ =102 and E‘ =1.

Table 1: The ||p — pn|/2 errors and convergence rates for Example 1.

Traditional RT | Immersed RT (n = 0) | Immersed RT (n =1)
N | llp—pnlzz rate | [[p—pnllrz  rate | [|[p—pnllr2  rate
3.033E-01 3.770E-01 3.649E-01

16 1.477E-01 1.04 | 3.068E-01 0.30 2.763E-01 0.40
32 7.322E-02 1.01 | 2.980E-01 0.04 2.002E-01 0.46
64 | 3.653E-02 1.00 | 1.772E-01 0.75 9.581E-02 1.06
128 | 1.824E-02 1.00 | 1.546E-01 0.20 6.386E-02 0.59
256 | 9.115E-03 1.00 | 1.105E-01 0.48 3.117E-02 1.03
512 | 4.554E-03 1.00 | 7.855E-02 0.49 1.502E-02 1.05

oo

The numerical results are presented in Table [l We observe the optimal convergence rates for
the immersed Raviart-Thomas mixed finite element method with 7 = 1 and suboptimal convergence
rates for the method without penalty, i.e., n = 0, which are in good agreement with Theorem [5.51

From the second column of Table[I] it is surprising that the solution of the traditional Raviart-
Thomas mixed finite element method also converges optimally even if unfitted meshes are used
for this interface problem. Below we explain what is happening. We find that the exact solution
of this example is a constant along the interface I".  Thus, the tangential derivative of the exact
solution is zero on the interface, i.e., (Vu - t)|r = 0, which implies a special interface condition:
[p-tlr = [BVu - tlp = 0. On the other hand, the standard Raviart-Thomas functions also satisfy
this interface condition, i.e., [py - t]r = 0 for all p, € RT (7). We have test many other numerical
examples from the literature satisfying (Vu - t)|r = 0 and similar optimal convergence rates have
also been observed.
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Example 2. In order to show the suboptimal convergence of the traditional Raviart-Thomas
mixed finite element method, we test an example with (Vu - t)|r # 0 which was constructed in
[24]. The interface is T' = {(z1,72) € R? : 27 4+ 23 = rZ} which separates 2 into Q= = {(z1,22) €
R? : 2?2 + 23 <12} and QF = {(z1,72) € Q : 27 + 23 > r3}. Let (r,0) be the polar coordinate of
x = (x1,22). The exact solution is chosen as u(x) = j(x)v(zx) sin(f), where

1
exp| ——————
j(®) = ( L= (r—ro)?/n?
0 if |r —ro| >,

> if |r —ro| <,

and _
L+ (r*—r3)/BT  ifxecQh,

v(z) = ~
1+ (r*—r2)/B~ ifxecQ .

Let ro = 0.5, n = 0.45, [3'+ = 102 and E‘ = 1. It is easy to verify that the jump conditions
(T2)-([@T3) are satisfied and Vu -t #0 on I'.

Table 2: The ||p — pn|/2 errors and convergence rates for Example 2.

Traditional RT | Immersed RT (n = 0) | Immersed RT (n =1)
N | llp—pnlz2 rate | [[p—pnllrz  rate | [|[p—pnllr2  rate
6.946E-01 6.595E-01 6.563E-01

16 | 4.107E-01 0.76 | 3.069E-01 1.10 3.069E-01 1.10
32 2.100E-01  0.97 | 1.652E-01 0.94 1.438E-01 1.09
64 1.376E-01  0.61 | 8.953E-02 0.88 7.081E-02 1.02
128 | 8.944E-02 0.62 | 6.300E-02 0.51 3.817E-02 0.89
256 | 6.056E-02 0.56 | 4.180E-02 0.59 1.888E-02 1.02
512 | 4.190E-02 0.53 | 2.851E-02 0.55 9.331E-03 1.02

oo

Numerical results presented in Table 2] clearly show the optimal convergence rates for the im-
mersed Raviart-Thomas mixed finite element method with 7 = 1 and suboptimal convergence rates
for other methods.

7 Conclusions

In this paper, we have constructed an immersed Raviart-Thomas finite element and proposed a
corresponding mixed finite element method for solving second-order elliptic interface problems on
unfitted meshes. We have shown that the immersed Raviart-Thomas finite element space is noncon-
forming and a penalty term on the interface edges is necessary to ensure the optimal convergence.
Some important properties of the immersed Raviart-Thomas finite element space have also been
derived including the unisolvence of IFE basis functions, the optimal approximation capabilities of
the IFE space and the corresponding commuting digram. Moreover, we have proved the inf-sup
condition of the proposed IFE method and derived the optimal error estimates which are confirmed
by numerical examples.
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