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Abstract

We design and analyze a coupling of a discontinuous Galerkin finite element method with a

boundary element method to solve the Helmholtz equation with variable coefficients in three

dimensions. The coupling is realized with a mortar variable that is related to an impedance

trace on a smooth interface. The method obtained has a block structure with nonsingular

subblocks. We prove quasi-optimality of the h- and p-versions of the scheme, under a thresh-

old condition on the approximability properties of the discrete spaces. Amongst others, an

essential tool in the analysis is a novel discontinuous-to-continuous reconstruction operator on

tetrahedral meshes with curved faces.

Keywords: discontinuous Galerkin method; boundary element method; mortar coupling;

Helmholtz equation; variable sound speed

1 Introduction

A natural habitat of wave propagation problems are unbounded domains. An important class of
numerical methods for this setting is the coupling of a volume-based method such as the finite
element method (FEM) or one of its variants for a finite, chosen computational domain Ω and a
boundary element method (BEM) for its unbounded exterior Ωext := R

3 \ Ω. In this paper, we
study such a coupling technique for a time-harmonic acoustic scattering problem modelled by the
Helmholtz equation in R3 and given by

− div(ν∇u)− (kn)2u = f in R3, (1.1)

where the coefficients ν and n are constant outside a sufficiently large ball, k denotes the wave
number, and f is the right-hand side. Our focus is on a strategy that couples a high order
discontinuous Galerkin finite element method (DGFEM) in the computational domain Ω with
a BEM on Γ := ∂Ω to account for Ωext. We consider approximation spaces made of piecewise
polynomial functions.

The present work is a continuation of the recent work [37], where the coupling of a conforming,
high order FEM with a BEM is presented and analyzed. The coupling there is reminiscent of the
symmetric coupling proposed in [14] and [30] for Poisson-type problems but uses an additional
mortar variable that has the physical meaning of a Robin trace for incoming waves. A feature of
the mortar-based coupling is that the resulting system has a block structure where the two blocks
corresponding to the volume and to the BEM unknowns, respectively, are individually invertible.
This allows for the use of existing discretization techniques for these blocks. Other FEM-BEM
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coupling strategies for Helmholtz problems are possible and are discussed in [37]. In contrast to
the conforming setting of [37], our focus here is on a DGFEM for the discretization in Ω, since
the DGFEM has proved to be a very versatile discretization technique that can accommodate very
well, for example, high order discretizations. High order methods are particularly suited for wave
propagation problems [4, 36, 41, 43, 44]. Further well known advantages of DG discretizations in-
clude the ease to realize adaptivity and accommodate nonuniform polynomial degree distributions.
Moreover, DG formulations for Helmholtz problems in bounded domains have the potential to be
unconditionally well posed [22, 26]. We refer, e.g., to [17, 21–23, 29, 41, 52] for polynomial-based
DG methods for the Helmholtz problem, to [10, 15, 28] for hybridized DG (HDG) methods, and
to [16, 27] for discontinuous Petrov-Galerkin (DPG) methods.

For Poisson-type problems, couplings of several variants of the DGFEM with the BEM have
been proposed and analyzed. The first analysis appears to be that of the symmetric coupling of
the local DG (LDG) method with BEM in [8, 24, 25]. Generalizations to nonsymmetric couplings
have been proposed in [46] and analyzed in [31]. The closely related coupling of finite volume
methods with BEM is analyzed in [18–20]. A fairly general framework that uses mortar variables
for coupling the DGFEM and the BEM can be found in [11, 12]. In the limit k → 0, which is not
the focus of the present work, our method for (1.1) has similarities with those of [19, 25] for the
Laplace equation.

On a technical side, a main difficulty of the analysis of couplings of DG with BEM arises from
the mapping properties of BEM operators that do not easily accommodate the discontinuous traces
of DG functions. This is one of the reasons for using mortar variables for the coupling both for
Poisson-type problems discussed above and the present Helmholtz equation. In our analysis, we
tackle this issue with a new discontinuous-to-continuous operator in Theorem 4.4. From the many
possible DG variants, we opted for an interior penalty-like DG method to keep the presentation as
simple as possible, although other DG discretizations could be analyzed with similar techniques.
Following the lead in [37], we employ a form of symmetric coupling using all four BEM operators.
The sesquilinear forms are carefully designed to ensure both consistency and adjoint consistency. In
particular, as compared to [37], the discretization of the coupling condition required us to introduce
an additional (consistent) term in order to prove a discrete G̊arding inequality.

Notation. For bounded Lipschitz domains D ⊂ Rd, d ≥ 1, we introduce the following norms
and spaces: For integers s ∈ N0 and complex-valued functions v, we define the norms ‖v‖2s,D :=∑

α∈N3
0 : |α|≤s ‖Dαv‖20,D and the seminorms |v|2s,D :=

∑
α∈N3

0 : |α|=s ‖Dαv‖20,D. The Hilbert spaces

Hs(D) andHs
0 (D) are defined as the closure of C∞(D) and C∞

0 (D) with respect to the norm ‖·‖s,D.
We further set H0(D) := L2(D). For a noninteger s > 0, the spaces Hs(D) and Hs

0(D) are defined

by interpolation between H⌊s⌋(D) and H⌈s⌉(D) and between H
⌊s⌋
0 (D) and H

⌈s⌉
0 (D), respectively.

For s > 0, the space H−s(D) is defined as the dual of Hs
0(D) with norm

‖v‖−s,D := sup
w∈Hs

0(D)

|〈v, w〉|
‖w‖s,D

,

where 〈·, ·〉 denotes the duality pairing, which coincides with the L2 inner product whenever
both v, w ∈ L2(D). The inner product in Hs(D), denoted by (·, ·)s,D, is linear in the first ar-
gument and antilinear in the second argument.

For closed, connected, smooth 2-dimensional surfaces Γ ⊂ R
3 and s ≥ 0, we define the Sobolev

spaces Hs(Γ) as follows. Let {ϕn, λn}n∈N0 be a sequence of eigenpairs of the Laplace-Beltrami
operator on Γ, so that {ϕn}n∈N0 is an orthonormal basis of L2(Γ). For s ≥ 0, we define the
norm ‖v‖2s,Γ :=

∑
n |vn|2(1 + λn)

s, where v =
∑

n vnϕn is expanded in the basis {ϕn}n∈N0 . Then,

Hs(Γ) := {v ∈ L2(Γ) : ‖v‖s,Γ < +∞}. The ‖ · ‖s,Γ norm is equivalent to the one obtained
by using local charts as described in [38]; see also [45, Sec. 5.4]. The mapping v 7→ (vn)n∈N0 ,
with vn = (v, ϕn)L2(Γ), is an isometric isomorphism between Hs(Γ) and the sequence space
{(vn)n∈N0 |

∑
n |vn|2(1 + λn)

s < ∞}. Negative order Sobolev spaces are defined by duality and
equipped with the norm

‖v‖−s,Γ := sup
w∈Hs(Γ)

|〈v, w〉|
‖w‖s,Γ

.
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Moreover, H−s(Γ) is equivalent to the space {(vn)n∈N0 |
∑

n |vn|2(1 + λn)
−s <∞}, endowed with

the norm ‖v‖2−s,Γ =
∑

n |vn|2(1 + λn)
−s. When identifying the spaces Hs(Γ) and H−s(Γ) with

sequence spaces as above, the duality pairing takes the form

〈v, w〉 =
∑

n

vnwn,

and, for s ∈ R, the inner product in Hs(Γ) takes the form

(v, w)s,Γ =
∑

n∈N0

vnwn(1 + λn)
s.

The seminorm | · | 1
2 ,Γ

in H
1
2 (Γ) is defined by |v| 1

2 ,Γ
= infc∈C ‖v − c‖ 1

2 ,Γ
.

Let s and s′ ∈ R. For a bounded linear operatorK : Hs(Γ) → Hs′(Γ), the adjoint operatorK∗ :
H−s′(Γ) → H−s(Γ) is defined by 〈v,K∗w〉 = 〈Kv,w〉, where the duality pairings are between the
appropriate spaces. This also implies 〈w,Kv〉 = 〈K∗w, v〉.

As we deal with the Helmholtz problem, we also introduce the following k-weighted Sobolev
norms for integers s ≥ 1 on domains D ⊂ R

3:

‖v‖2s,k,D :=
∑

α∈N3
0 : |α|≤s

k2(s−|α|)‖Dαv‖20,D.

Finally, given a, b ≥ 0, we write a . b and a & b to indicate the existence of a positive constant c,
whose dependence is specified at each occurrence, such that a ≤ c b and a ≥ c b, respectively.

Outline of the paper. The mortar formulation of the three dimensional Helmholtz problem is
detailed in Section 2; here, we also recall several properties of boundary integral operators. We
introduce the DGFEM-BEM mortar method in Section 3. Such a discretization is characterized
by a sesquilinear form satisfying a G̊arding inequality and continuity estimates, which we prove
in Sections 4 and 5, respectively. In Section 6, we provide results for the adjoint problem. Then
we cope with the well posedness of the method and the h- and p-error analysis in Section 7. We
present numerical results verifying the theoretical results in Section 8 and state some conclusions in
Section 9. Three appendices conclude the paper: in the first one, we show a consistency property
of the proposed DGFEM-BEM mortar coupling; in the second one, we construct a discontinuous-
to-continuous reconstruction operator on curvilinear meshes with optimal h- and p-stability and
approximation properties, which is of independent interest; in the third one, we prove quantitative
error estimates that are explicit in h and p.

2 Helmholtz model problem, boundary integral operators,

and mortar coupling

In this section, we describe the model problem, see Section 2.1, and present its continuous mortar
formulation in Section 2.3. The setting is the same as that of [37, Secs. 2 and 3]. In order to make
this paper self-contained, we report here all the necessary elements, including the definitions and
some properties of the boundary integral operators for the 3D Helmholtz problem; see Section 2.2.

2.1 Helmholtz model problem

Let Ω ⊂ R3 be a bounded domain with a connected C∞-smooth boundary Γ and nΓ be the outward
pointing unit vector normal to Γ. Denote Ωext := R

3 \ Ω and let k ∈ R
+, k ≥ k0 > 0, denote the

wave number.

We assume that Ωext is occupied by a homogeneous medium with both the refractive index
n ∈ L∞(R3;C) and a scalar-valued positive diffusion coefficient ν ∈ C∞(R3;R) normalized to 1,
while n and ν may vary within Ω. That is, the supports of 1−n and 1− ν are contained in Ω and
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ν satisfies 0 < νmin ≤ ν(x) ≤ νmax < +∞. In addition, we assume that |n(x)| ≥ c0 > 0 a.e. in R3.
Given f ∈ L2(Ω) with support contained in Ω, we set

f̃ =

{
f in Ω,

0 in Ωext.

Under the above assumptions on n, ν, and f̃ , there exists an open neighborhood N (Γ) of Γ such

that n ≡ 1, ν ≡ 1, and f̃ ≡ 0 in Ωext ∪ N (Γ).
We consider the Helmholtz problem: Find u : R3 → C such that





− div(ν∇u)− (kn)2u = f̃ in R3,

lim
|x|→+∞

|x|(∂|x|u− iku) = 0. (2.1)

We rewrite problem (2.1) as a transmission problem. To that end, we define the following jump
operators. For v ∈ H1(R3 \ Γ), we denote the Dirichlet traces of v|Ω and v|Ωext on Γ by γint0 (v)
and γext0 (v), respectively. The two Neumann traces (∂nΓ = nΓ · ∇) on Γ of a piecewise smooth
function v are denoted by γint1 (ϕ) and γext1 (ϕ). For sufficiently smooth functions v defined in R3\Γ,
we then define the jumps

JvKΓ = γint0 (v)− γext0 (v), J∂nΓuKΓ := γint1 (v)− γext1 (v).

With these jumps in hand, we reformulate (2.1) as looking for solutions u : R3 → C of the following
transmission problem: 




− div(ν∇u)− (kn)2u = f in Ω,

−∆u− k2u = 0 in Ωext,

JuKΓ = 0, J∂nΓuKΓ = 0,

lim
|x|→+∞

|x|(∂|x|u− iku) = 0.

(2.2)

Here, we required the boundary Γ to be globally smooth, whereas in Section 3 below we allow for
a piecewise smooth Γ. The global smoothness assumption is needed to promote the regularity of
the solution to problem (2.2) below, while the piecewise smoothness assumption is enough for the
design of the method.

2.2 Boundary integral operators

The fundamental solution to the 3D Helmholtz problem is

Gk(x,y) =
eik|x−y|

4π|x− y| .

Based on that, we define the single and double layer potentials as follows:

Ṽkϕ(x) =

∫

Γ

Gk(x− y)ϕ(y)ds(y) ∀x ∈ R
3 \ Γ, ∀ϕ ∈ H− 1

2 (Γ),

K̃kϕ(x) =

∫

Γ

∂nΓ(y)Gk(x− y)ϕ(y)ds(y) ∀x ∈ R
3 \ Γ, ∀ϕ ∈ H

1
2 (Γ).

Starting from the potentials Ṽk and K̃k, we introduce the four standard boundary integral operators
for the Helmholtz operator. Their properties are widely studied in the literature; see, e.g., [13,
38,47,51] and the references therein. The properties mentioned below have also been summarized
in [37].

Single layer operator. Define Vk : H− 1
2 (Γ) → H

1
2 (Γ) as

Vkϕ := γint0 (Ṽkϕ) ∀ϕ ∈ H− 1
2 (Γ). (2.3)

For C∞-smooth Γ, the operator Vk extends to Vk : H−1+s(Γ) → Hs(Γ) for all s ∈ R.
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Double layer operator. Define Kk : H
1
2 (Γ) → H

1
2 (Γ) as

(
−1

2
+Kk

)
ϕ := γint0 (K̃kϕ) ∀ϕ ∈ H

1
2 (Γ).

For C∞-smooth Γ, the operator Kk extends to Kk : Hs(Γ) → Hs(Γ) for all s ∈ R.

Adjoint double layer operator. Define K′
k : H− 1

2 (Γ) → H− 1
2 (Γ) as

(
1

2
+K′

k

)
ϕ := γint1 (Ṽkϕ) ∀ϕ ∈ H− 1

2 (Γ).

For C∞-smooth Γ, the operator K′
k extends to K′

k : H−s(Γ) → H−s(Γ) for all s ∈ R.

Hypersingular boundary integral operator. Define Wk : H
1
2 (Γ) → H− 1

2 (Γ) as

−Wkϕ := γint1 (K̃kϕ) ∀ϕ ∈ H
1
2 (Γ).

For C∞-smooth Γ, the operator Wk extends to Wk : Hs(Γ) → H−1+s(Γ) for all s ∈ R.

Let V0, K0, K′
0, and W0 be the corresponding integral operators for zero wave number k = 0.

Then, for all s ≥ 0, the difference operators are linear bounded operators in the following spaces

Vk − V0 : H− 1
2+s(Γ) → H

5
2+s(Γ), Kk −K0 : H

1
2+s(Γ) → H

5
2+s(Γ),

K′
k −K′

0 : H− 1
2+s(Γ) → H

3
2+s(Γ), Wk −W0 : H

1
2+s(Γ) → H

3
2+s(Γ).

(2.4)

In other words, the difference operators possess enhanced shift properties with respect to those
of each term in the difference; see, e.g., [37, Prop. 2.2] and [38, Thm. 7.2]. Moreover, V0 and W0

satisfy the following properties: there exist positive constants cV0 , CV0 , cW0 , and CW0 such that

cV0‖ϕ‖2− 1
2 ,Γ

≤ 〈ϕ,V0ϕ〉 ≤ CV0‖ϕ‖2− 1
2 ,Γ

∀ϕ ∈ H− 1
2 (Γ), (2.5)

cW0 |ϕ|21
2 ,Γ

≤ 〈W0ϕ, ϕ〉 ≤ CW0 |ϕ|21
2 ,Γ

∀ϕ ∈ H
1
2 (Γ)/C.

We also have the following properties:

V∗
0 = V0, K∗

0 = K′
0, W∗

0 = W0.

2.3 Mortar coupling

In this section, we recall the mortar coupling described in [37]. Instead of looking for solutions
to (2.2), we aim to solve the following three coupled problems for u : Ω → C and uext, m : Γ → C:

{
− div(ν∇u)− (kn)2u = f in Ω,

∂nΓu+ iku−m = 0 on Γ,
(2.6)

{
uext = PItDm on Γ , (2.7)

{
u−

[(
1
2 +Kk

)
uext − Vk(m− ikuext)

]
= 0. (2.8)

The operator PItD : H− 1
2 (Γ) → H

1
2 (Γ) appearing in (2.7) maps the impedance mortar variable m

to the Dirichlet trace uext of the solution to the exterior problem. This operator was defined,
e.g., in [9, pp. 124–126]. In order to characterize it explicitly, we introduce the combined integral
operators

Bk := −Wk − ik

(
1

2
−Kk

)
, A′

k :=
1

2
+ K′

k + ikVk (2.9)

and recall their mapping properties, see, e.g., [9, Thm. 2.27]:

Bk : Hs+ 1
2 (Γ) → Hs− 1

2 (Γ), A′
k : Hs− 1

2 (Γ) → Hs− 1
2 (Γ)

5



are bounded. Then, equation (2.7) is equivalent to

Bku
ext + ikA′

k(u
ext)−A′

km = 0; (2.10)

see [37, Prop. 3.2] and the references therein.
The variational formulation of problem (2.6)–(2.8) reads as follows:





Find (u,m, uext) ∈ H1(Ω)×H− 1
2 (Γ)×H

1
2 (Γ) such that

(ν∇u,∇v)0,Ω − ((kn)2 u, v)0,Ω + i(ku, v)0,Γ − 〈m, v〉 = (f, v)0,Ω ∀v ∈ H1(Ω),

〈(Bk + ikA′
k)u

ext −A′
km, v

ext〉 = 0 ∀vext ∈ H
1
2 (Γ),

〈u, λ〉 − 〈(12 +Kk)u
ext − Vk(m− ikuext), λ〉 = 0 ∀λ ∈ H− 1

2 (Γ).

(2.11)

As in [37], we introduce

T ((u,m, uext), (v, λ, vext)) = (ν∇u,∇v)0,Ω − ((kn)2 u, v)0,Ω + ik(u, v)0,Γ − 〈m, v〉

− 〈(−Wk − ik(
1

2
−Kk) + ik(

1

2
+K′

k + ikVk))u
ext

− (
1

2
+K′

k + ikVk)m, v
ext〉+ 〈u, λ〉 − 〈(1

2
+Kk)u

ext − Vk(m− ikuext), λ〉.

(2.12)

Then, we can rewrite problem (2.11) in compact form:

{
Find (u,m, uext) ∈ H1(Ω)×H− 1

2 (Γ)×H
1
2 (Γ) such that

T ((u,m, uext), (v, λ, vext)) = (f, v)0,Ω ∀(v, λ, vext) ∈ H1(Ω)×H− 1
2 (Γ)×H

1
2 (Γ).

(2.13)

In [37, Thm. 3.5], the well posedness of (2.13) was proven, under the assumption of smoothness
of Γ and uniqueness of the solution to problem (2.2), based on the following G̊arding inequality:

Theorem 2.1. ([37, Thm. 3.6]) Let T (·, ·) be defined as in (2.12), and assume that the interface Γ
is smooth. Then, there exists c > 0 depending only on k0 and Ω and, for each k ≥ k0, there is a
positive constant cG(k) depending on k and Ω, such that, for all (v, λ, vext) ∈ H1(Ω)×H− 1

2 (Γ)×
H

1
2 (Γ),

RE(T ((v, λ, vext), (v, λ, vext))) ≥ c
{
‖ν1/2∇v‖20,Ω + ‖λ‖2− 1

2 ,Γ
+ ‖vext‖21

2 ,Γ

}

−
{
k2‖n v‖20,Ω + cG(k)

(
‖λ‖2− 5

2 ,Γ
+ ‖vext‖2− 1

2 ,Γ

)}
.

3 DGFEM-BEM mortar coupling

We introduce a discontinuous Galerkin finite element method-boundary element method (DGFEM-
BEM) for the discretization of problem (2.6)–(2.8). As a DGFEM discretization of (2.6) in the
interior domain Ω, we use the method introduced in [41], which is based on the same variational
formulation as that of [32]. For the sake of completeness, we recall the main steps of its derivation
in Section 3.1 below, in case of a smooth coefficient ν. Equation (2.7) is discretized as in [37], while
the discretization of (2.8) is obtained by a suitable modification described in Section 3.2 of what
is proposed in [37]. The complete discrete formulation is summarized in Section 3.3.

3.1 DGFEM discretization of (2.6)

We shall work with regular, shape regular meshes of the (curved) domain Ω. That is, the meshes
will have no hanging nodes and the parametrizations of common edges or faces induced by the
element maps of neighboring elements match; see [35, Def. 2.2] for the precise statement.

As in [35, Def. 2.2], we define a curved d-simplex K, d = 2, 3, as the image of a reference straight

d-simplex K̂ through a C1-diffeomorphism ΦK satisfying

‖DΦK‖L∞(K̂) ≤ γSRhK , ‖(DΦK)−1‖L∞(K̂) ≤ γSRh
−1
K , (3.1)

6



where D· denotes the Jacobian and γSR > 0 is the shape regularity constant.
Condition (3.1) implies that ΦK can be decomposed as ΦK = Φ∆

K +ΨK , where Φ∆
K is an affine

bijection and ΨK is a C1 mapping such that

cK := sup
x̂∈K̂

‖DΨK(x̂) · (DΦ∆
K)−1‖L∞(K̂) . 1. (3.2)

To see (3.2), it is enough to fix any x̂0 ∈ K̂ and take Φ∆
K := ΦK(x̂0) +DΦK(x̂0)(x̂ − x̂0). This

gives (3.2) with γ2SR + 1 on the right-hand side. A face F of a curved 3-simplex K is the image

through ΦK of a face F̂ of K̂.
Let {Ωh}h be a sequence of conforming, i.e., regular in the sense described above, decomposi-

tions of Ω into curved 3-simplices with mesh granularity h. For h sufficiently small, cK ≤ c < 1
for all K ∈ Ωh. The union of the (open) internal and boundary faces of Ωh are denoted by FI

h

and FB
h , respectively. We assume that all the faces in FI

h are flat. The faces in FB
h are curved

2-simplices.
Given an element K ∈ Ωh, denote its diameter by hK and the outward pointing unit vector

normal to ∂K by nK . We introduce the mesh size function h : Ω → R, where h|K = hK for
all K ∈ Ωh, h = min{hK1 , hK2} on each face in FI

h shared by K1 and K2, and h = hK on each
face in FB

h on ∂Ω. We may fix h arbitrarily at mesh vertices and on edges because we shall not
need it there.

To derive the DG formulation, we write the first equation of (2.6) in mixed form:

{
ikσ = ν∇u
−ik div(σ)− (kn)2u = f

in Ω.

On each element K ∈ Ωh, we multiply the above two equations by smooth functions τ and v,
respectively, and integrate by parts:





∫

K

ikσ · τ +

∫

K

u div(ν τ )−
∫

∂K

ν u τ · nK = 0,
∫

K

ikσ · ∇v −
∫

∂K

ikσ · nK v −
∫

K

(kn)2u v =

∫

K

f v.
(3.3)

We replace the traces of u and σ · nK in the integral on ∂K with suitable numerical fluxes û
and σ̂ · nK , respectively, which will be defined later on in (3.7). Thus, we replace u|∂K with û|∂K
in the first equation of (3.3), apply one more integration by parts, select τ = ∇v, and end up with

∫

K

ikσ · ∇v −
∫

K

ν∇u · ∇v +
∫

∂K

ν (u− û)∇v · nK = 0. (3.4)

Next, we replace σ · nK |∂K with σ̂ · nK |∂K in the second equation of (3.3), and obtain

∫

K

ikσ · ∇v −
∫

∂K

ik σ̂ · nKv −
∫

K

(kn)2u v =

∫

K

f v. (3.5)

Subtracting (3.4) from (3.5) and adding over all K ∈ Ωh lead to the following broken variational
formulation:





Find u ∈ H1
pw(Ωh) such that for all v ∈ H1

pw(Ωh)

∑

K∈Ωh

(∫

K

ν∇u · ∇v −
∫

∂K

ν (u− û)∇v · nK

)
−
∫

Γ

ik σ̂ · nΓv −
∫

Ω

(kn)2u v =

∫

Ω

f v,

(3.6)
where

H1
pw(Ωh) := {v ∈ L2(Ω) : v|K ∈ H1(K) ∀K ∈ Ωh}.

In order to complete the definition of the DGFEM method, we need to choose finite dimensional
subspaces of H1

pw(Ωh) and define the numerical fluxes.
To that end, we introduce the following notation for spaces of mapped, piecewise polynomial

functions of finite degree. Let D ⊂ R3 be an open, bounded Lipschitz domain with piecewise
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C∞-smooth boundary, and Dh a partition of D into curved simplices with flat internal faces. Let
ℓ ∈ N0, and denote by Pℓ(·) the space of polynomials of degree at most ℓ on the domain within the
brackets. For ℓ ≥ 1 and r = 0, 1, we set

Sℓ,r(D,Dh) = {v ∈ Hr(D) : v|K ◦ ΦK ∈ Pℓ(K̂) ∀K ∈ Dh}.

For later use, we also define mapped, piecewise polynomial spaces on surface meshes. To that end,
we assume that S ⊂ R

3 is a closed, piecewise C∞-smooth surface and let Sh be a partition of S
into curved 2-simplices, which is the trace of a partition Dh of its interior D as above. For ℓ ≥ 1
and r = 0, 1, we set

Sℓ,r(S, Sh) = {v ∈ Hr(S) : v|F ◦ ΦKF ∈ Pℓ(F̂ ) ∀F ∈ Sh},

where KF is the element of Dh with F as a face.

As for the DGFEM discretization of (3.6), we choose discretization spaces made by discontin-
uous piecewise polynomial functions:

Vh := Sp,0(Ω,Ωh),

and the numerical fluxes introduced in [32, 41]. We recall their definition in the case of a smooth
coefficient ν. We first introduce the following notation for the jump and the average functionals
on FI

h for smooth, scalar functions v and vector-valued functions τ . At any x ∈ FI
h shared by the

two elements K1
x and K2

x, the jumps JvK and Jτ K, and the averages {{v}} and {{τ}} are defined as

JvK(x) := v|K1
x

(x)nK1
x

+ v|K2
x

(x)nK2
x

, {{v}}(x) = 1

2
(v|K1

x

(x) + v|K2
x

(x)),

Jτ K(x) := τ |K1
x

(x) · nK1
x

+ τ |K2
x

(x) · nK2
x

, {{τ}}(x) := 1

2
(τ |K1

x

(x) + τ |K2
x

(x)).

Then, given functions α, β > 0 in L∞(FI
h) and δ ∈ (0, 1/2] in L∞(FB

h ), we define the following
numerical fluxes:

ik σ̂ = ik σ̂(u) :=

{
ν{{∇hu}} − ik να JuK on FI

h ,

∇hu− (1− δ)(∇hu+ ik unΓ −mnΓ) on FB
h ,

û = û(u) :=

{
{{u}} − (ik)−1β J∇huK on FI

h ,

u+ δ(−(ik)−1∇hu · nΓ − u+ (ik)−1m) on FB
h ,

(3.7)

where ∇h denotes the elementwise application of the gradient operator, and we recall that m
denotes the impedance boundary datum in (2.6).

Given positive constants a, b, and d, with a sufficiently large, see Remark 4.1 below, and b

and d sufficiently small, see (4.12), the functions α, β and δ are chosen as

α(x) = a
p2

kh(x)
, β(x) = b

kh(x)

p
∀x ∈ FI

h , δ(x) = d
kh(x)

p2
∀x ∈ FB

h . (3.8)

The assumption δ ∈ (0, 1/2] implies d ∈ (0, p2/(2khK)).

The fluxes defined in (3.7) are single-valued on interior mesh faces and consistent, which entails
the consistency of the resulting DGFEM scheme (Lemma 3.1). Furthermore, they satisfy the
following combined consistency property:

ik σ̂ · nΓ + ik û = m on FB
h .

In the error analysis, we deal with the interior DGFEM-error u− uh, which is locally smooth but
globally only in L2(Ω). Thus, for r > 0, we introduce the broken Sobolev spaces on Ωh as

Hr
pw(Ωh) := {v ∈ L2(Ω) : v|K ∈ Hr(K) ∀K ∈ Ωh}.
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We also define the following two DG norms, which will be used in the analysis: Given v ∈
H

3
2+t
pw (Ωh), with t > 0 arbitrarily small, we define

‖v‖2DG(Ω) := ‖ν1/2 ∇hv‖20,Ω + ‖kn v‖20,Ω + k−1‖ν1/2β1/2J∇hvK‖20,FI
h
+ k‖ν1/2α1/2JvK‖20,FI

h

+ k−1‖δ1/2∇hv · nΓ‖20,Γ + k‖(1− δ)1/2v‖20,Γ,
(3.9)

and

‖v‖2DG+(Ω) := ‖v‖2DG(Ω) + k−1‖ν1/2α−1/2{{∇hv}}‖20,FI
h
.

In Section 2, we required the boundary Γ to be globally smooth, whereas in this section we can
allow for a piecewise smooth Γ. The global smoothness assumption is needed to promote the
regularity of the solution to problem (2.2), while the piecewise smoothness assumption is enough
for the design of the method.

3.2 BEM discretization of (2.7) and discretization of (2.8)

On Γ, we introduce the curved simplicial mesh Γh, whose elements are given by the intersection of
the elements in Ωh and Γ. As already mentioned, for (2.7), whose variational formulation is given
by the second equation in (2.11), we use the same discretization as in [37, eqns. (3.8) and (4.1)],
namely, a standard conforming BEM method with approximation spaces

Zh := Sp,1(Γ,Γh) and Wh := Sp−1,0(Γ,Γh)

for uext and m, respectively.
Next, we focus on the discretization of (2.8), whose variational formulation is given by the third

equation in (2.11). Compared to what was done in [37], we add suitable terms that will allow us
to prove a discrete G̊arding inequality, see Theorem 4.7 below, and retain consistency and adjoint
consistency, see Lemma 3.1 and Proposition 6.5 below. To that end, it is convenient to write the
integral terms on Γ appearing in the DGFEM discretization in the interior domain Ω explicitly.
Using the definition of the numerical fluxes (3.7) on FB

h , we write

−
∫

Γ

(uh − û(uh))∇vh · nΓ −
∫

Γ

ikσ̂(uh) · nΓvh

= −
∫

Γ

−δ(−(ik)−1∇huh · nΓ − uh + (ik)−1mh)∇hvh · nΓ

−
∫

Γ

(∇huh · nΓ − (1− δ)(∇huh · nΓ + ikuh −mh))vh

= −
∫

Γ

δ(ik)−1∇huh · nΓ∇hvh · nΓ −
∫

Γ

δuh∇hvh · nΓ +

∫

Γ

δ(ik)−1mh∇hvh · nΓ

−
∫

Γ

δ∇huh · nΓvh +

∫

Γ

(1 − δ)ikuhvh −
∫

Γ

(1 − δ)mhvh.

Therefore, the contribution from the interior discretization to the coupling, i.e., the terms involv-
ing mh, is

∫

Γ

δ(ik)−1mh∇hvh · nΓ −
∫

Γ

(1− δ)mhvh = −
∫

Γ

mh(δ(ik)−1∇hvh · nΓ + (1− δ)vh)

= −(mh, δ(ik)
−1∇hvh · nΓ + (1− δ)vh)0,Γ.

(3.10)

We have to discretize the third equation in (2.11) in such a way that we have terms that match
some of the terms in (3.10) when proving a discrete G̊arding inequality; see Proposition 4.3 below.

For mh ∈ Wh and uexth ∈ Zh, we abbreviate, for convenience,

Xh := (
1

2
+Kk)u

ext
h − Vk(mh − ikuexth ), (3.11)
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and introduce the following discretization of the third equation of (2.11):

〈−δ(ik)−1∇huh · nΓ + (1 − δ)uh + δ(ik)−1mh, λh〉 − 〈Xh, λh〉 = 0 ∀λh ∈ Wh.

The term −δ(ik)−1∇huh · nΓ − δuh is added in order to be able to prove the G̊arding inequality,
while the term δ(ik)−1mh is added in order to restore consistency. The signs of the terms are
chosen in a way that gives a convenient structure to the adjoint problem; see Section 6 below.

3.3 Complete discrete formulation

On Vh × Vh, we define local the sesquilinear forms aKh (·, ·) for all K ∈ Ωh by

aKh (uh, vh) :=

∫

K

ν∇huh · ∇hvh −
∫

K

(kn)2uhvh

−
∑

F⊂∂K∩FI
h

(∫

F

ν (uh − û(uh))∇hvh · nK +

∫

F

ikσ̂(uh) · nKvh

)
,

with fluxes û and σ̂ as in (3.7), and the global boundary sesquilinear form bΓh(·, ·) by

bΓh(uh, vh) := −
∫

Γ

δ(ik)−1∇huh · nΓ∇hvh · nΓ −
∫

Γ

δuh∇hvh · nΓ

−
∫

Γ

δ∇huh · nΓvh +

∫

Γ

(1 − δ)ikuhvh.

With Vh = Sp,0(Ω,Ωh), Wh = Sp−1,0(Γ,Γh), and Zh = Sp,1(Γ,Γh), the full DGFEM-BEM method
reads as follows:





Find (uh,mh, u
ext
h ) ∈ Vh ×Wh × Zh such that, for all (vh, λh, v

ext
h ) ∈ Vh ×Wh × Zh,

∑

K∈Ωh

aKh (uh, vh) + bΓh(uh, vh)− (mh, δ(ik)
−1∇hvh · nΓ + (1 − δ)vh)0,Γ = (f, vh)0,Ω,

〈(Bk + ikA′
k)u

ext
h −A′

kmh, v
ext
h 〉 = 0,

〈−δ(ik)−1∇huh · nΓ + (1− δ)uh + δ(ik)−1mh, λh〉 − 〈Xh, λh〉 = 0,

(3.12)
where the combined integral operators Bk and A′

k are as in (2.9) and Xh is as in (3.11).
The definition of û and σ̂ in (3.7) entails

∑

K∈Ωh

aKh (uh, vh) =
∑

K∈Ωh

(∫

K

ν∇uh · ∇vh −
∫

K

(kn)2uhvh

)

−
∫

FI
h

ν
(
JuhK · {{∇hvh}}+ {{∇huh}} · JvhK

)
−
∫

FI
h

νβ(ik)−1J∇huhKJ∇hvhK +

∫

FI
h

να ikJuhK · JvhK.

By introducing the sesquilinear form

Th((uh,mh, u
ext
h ), (vh, λh, v

ext
h ))

:=
∑

K∈Ωh

aKh (uh, vh) + bΓh(uh, vh)− (mh, δ(ik)
−1∇hvh · nΓ + (1− δ)vh)0,Γ

− 〈(−Wk − ik(
1

2
−Kk) + ik(

1

2
+K′

k + ikVk))u
ext
h − (

1

2
+K′

k + ikVk)mh, v
ext
h 〉

+ 〈−δ(ik)−1∇huh · nΓ + (1− δ)uh + δ(ik)−1mh, λh〉

− 〈(1
2
+Kk)u

ext
h − Vk(mh − ikuexth ), λh〉,

(3.13)

method (3.12) can be written in compact form as follows:
{
Find (uh,mh, u

ext
h ) ∈ Vh ×Wh × Zh such that

Th ((uh,mh, u
ext
h ), (vh, λh, v

ext
h )) = (f, vh)0,Ω ∀(vh, λh, vexth ) ∈ Vh ×Wh × Zh.

(3.14)
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Lemma 3.1. Let the exact solution (u,m, uext) to (2.6)–(2.8) belong to H
3
2+t(Ω)×L2(Γ)×H 1

2 (Γ),
for some t > 0. Then, the discrete DGFEM-BEM coupling (3.14), or equivalently (3.12), is
consistent, i.e.,

Th
(
(u,m, uext), (vh, λh, v

ext

h )
)
= (f, vh)0,Ω ∀(vh, λh, vexth ) ∈ Vh ×Wh × Zh. (3.15)

Proof. See Appendix A.

An immediate consequence of (3.14) and (3.15) is the following Galerkin orthogonality property:
For all (vh, λh, v

ext
h ) ∈ Vh ×Wh × Zh,

Th((u− uh,m−mh, u
ext − uexth ), (vh, λh, v

ext
h )) = 0. (3.16)

4 A G̊arding inequality

In this section, we establish in Theorem 4.7 a G̊arding inequality for the form Th((·, ·, ·), (·, ·, ·))
defined in (3.13). We start with a remark and some preliminary results.

Remark 4.1. For any K ∈ Ωh, introduce Ctrace(p,K) as the smallest constant such that

‖∇vh‖0,∂K ≤ Ctrace(p,K)‖∇vh‖0,K ∀vh ∈ Vh. (4.1)

For straight elements, it is well known that Ctrace(p,K) . ph
−1/2
K ; see, e.g., [49, Thm. 4.76]. Under

the shape regularity assumption (3.1), this is valid also for curved elements. In fact, given vh ∈ Vh,

let v̂h be the pull-back of vh|K through the mapping ΦK : K̂ → K. Since v̂h is a polynomial and

K̂ is a straight simplex, we have

‖∇vh‖0,∂K . ‖∇̂v̂h‖0,∂K̂ . p‖∇̂v̂h‖0,K̂ . ph
−1/2
K ‖∇vh‖0,K .

In the light of this, we demand the following assumptions: for hK sufficiently small and p sufficiently
large,

α(x) ≥ ℵ
k

max
K∈{K−

x ,K+
x }
C2

trace(p,K) ∀x ∈ FI
h , (4.2)

where ℵ is a constant, which will be fixed in the proof of Proposition 4.3 below; see equation (4.9).

The following coercivity/continuity result is valid.

Proposition 4.2. Let α satisfy (4.2) and 0 < δ < 1/2. Then, there exists a positive constant ccoer
independent of h, k, p, α, β, and δ, such that

∣∣∣∣∣
∑

K∈Ωh

aKh (vh, vh) + bΓh(vh, vh)

∣∣∣∣∣ ≥ ccoer‖vh‖2DG(Ω) − ‖knvh‖20,Ω ∀vh ∈ Vh. (4.3)

Moreover, for any t > 0, there exists a positive constant cc independent of h, k, p, α, β, and δ,
such that

∣∣∣∣∣
∑

K∈Ωh

aKh (u, v) + bΓh(u, v)

∣∣∣∣∣ ≤ cc‖u‖DG+(Ω)‖v‖DG+(Ω) ∀u, v ∈ H
3
2+t
pw (Ωh), (4.4)

∣∣∣∣∣
∑

K∈Ωh

aKh (u, vh) + bΓh(u, vh)

∣∣∣∣∣ ≤ cc‖u‖DG+(Ω)‖vh‖DG(Ω) ∀u ∈ H
3
2+t
pw (Ωh), ∀vh ∈ Vh, (4.5)

∣∣∣∣∣
∑

K∈Ωh

aKh (uh, v) + bΓh(uh, v)

∣∣∣∣∣ ≤ cc‖uh‖DG(Ω)‖v‖DG+(Ω) ∀uh ∈ Vh, ∀v ∈ H
3
2+t
pw (Ωh). (4.6)

Proof. The proof of [41, Prop. 3.1] applies also in our context. As for (4.3), we also refer to
the proof of Proposition 4.3 below. As for (4.4)–(4.6), we use the trace inequality (4.1) and
assumption (4.2).
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The coercivity bound (4.3) can be refined, as described in the following result, which is instru-
mental in the proof of the G̊arding inequality in Theorem 4.7 below.

Proposition 4.3. Given ε > 0, there exist a0 > 0, b0 > 0, and d0 > 0 independent of k such that,
for all a ≥ a0, b ≤ b0, and d ≤ d0 in (3.8), and for all vh ∈ Vh, the following bound is valid:

(RE+ εIM)(
∑

K∈Ωh

aKh (vh, vh) + bΓh(vh, vh)) ≥
1

2
‖ν1/2∇hvh‖20,Ω − ‖knvh‖20,Ω

+
1

2
ε
(
k−1‖ν1/2β1/2J∇hvhK‖20,FI

h
+ k‖ν1/2α1/2JvhK‖20,FI

h

+k−1‖δ1/2∇hvh · nΓ‖20,Γ + k‖(1− δ)vh‖20,Γ
)
.

(4.7)

Proof. The proof is a modification of that of [41, Prop. 3.1]. We begin by observing that

(RE+ εIM)(
∑

K∈Ωh

aKh (vh, vh) + bΓh(vh, vh))

= ‖ν1/2∇hvh‖20,Ω − ‖knvh‖20,Ω − 2RE(

∫

FI
h

νJvhK{{∇hvh}})− 2RE(

∫

Γ

δvh∇hvh · nΓ)

+ ε
(
k−1‖ν1/2β1/2J∇hvhK‖20,FI

h
+ k−1‖δ1/2∇hvh · nΓ‖20,FB

h

+ k‖ν1/2α1/2JvhK‖20,FI
h
+ k‖(1− δ)1/2vh‖20,Γ

)
.

(4.8)

Using the Young inequality with weight εk/2 entails
∣∣∣∣∣2RE

(∫

FI
h

νJvhK{{∇hvh}}
)∣∣∣∣∣ ≤

εk

2

∥∥∥ν1/2α1/2JvhK
∥∥∥
2

0,FI
h

+
2

εk

∥∥∥ν1/2α−1/2{{∇hvh}}
∥∥∥
2

0,FI
h

≤ εk

2

∥∥∥ν1/2α1/2JvhK
∥∥∥
2

0,FI
h

+
∑

K∈Ωh

1

εk

∥∥∥ν1/2α−1/2∇hvh

∥∥∥
2

0,∂K\Γ
.

For the second summand, we use (4.1) and (4.2) to obtain

∑

K∈Th

1

εk

∥∥∥ν1/2α−1/2∇hvh

∥∥∥
2

0,∂K\Γ
≤
∑

K∈Th

νmax

εℵ ‖∇hvh‖20,K ≤
∑

K∈Th

νmax

εℵνmin
‖ν1/2∇hvh‖20,K .

Fix
ℵ = 2νmax/(ενmin) (4.9)

and get ∑

K∈Th

1

εk

∥∥∥ν1/2α−1/2∇hvh

∥∥∥
2

0,∂K\Γ
≤ 1

2
‖ν1/2∇hvh‖20,Ω.

We deduce
∣∣∣∣∣2RE

(∫

FI
h

νJvhK{{∇hvh}}
)∣∣∣∣∣ ≤

εk

2

∥∥∥ν1/2α1/2JvhK
∥∥∥
2

0,FI
h

+
1

2
‖ν1/2∇hvh‖20,Ω. (4.10)

We deal with the fourth term on the right-hand side of (4.8) analogously: For any constant t > 0,
we have

∣∣∣∣2RE
(∫

Γ

δvh∇hvh · nΓ

)∣∣∣∣ ≤ tk

∥∥∥∥
δ

1− δ

∥∥∥∥
∞,Γ

‖(1− δ)1/2vh‖20,Γ +
1

tk
‖δ1/2∇hvh · nΓ‖20,Γ.

Take t = 1
2‖ δ

1−δ ‖−1
∞,Γ and get

∣∣∣∣2RE
(∫

Γ

δvh∇hvh · nΓ

)∣∣∣∣ ≤
k

2
‖(1− δ)1/2vh‖20,Γ +

2

k

∥∥∥∥
δ

1− δ

∥∥∥∥
∞,Γ

‖δ1/2∇hvh · nΓ‖20,Γ. (4.11)

12



Inserting (4.10) and (4.11) into (4.8), we get

(RE+ εIM)

(
∑

K∈Ωh

aKh (vh, vh) + bΓh(vh, vh)

)
≥ 1

2
‖ν1/2∇hvh‖20,Ω − ‖knvh‖20,Ω

+ εk−1‖ν1/2β1/2J∇hvhK‖20,FI
h
+

(
ε− 2

∥∥∥∥
δ

1− δ

∥∥∥∥
∞,Γ

)
k−1‖δ1/2∇hvh · nΓ‖20,Γ

+
1

2
εk‖ν1/2α1/2JvhK‖20,FI

h
+

1

2
εk‖(1− δ)1/2vh‖20,Γ.

Take d such that

2

∥∥∥∥
δ

1− δ

∥∥∥∥
∞,Γ

≤ 1

2
ε (4.12)

and deduce

(RE+ εIM)

(
∑

K∈Ωh

aKh (vh, vh) + bΓh(vh, vh)

)
≥ 1

2
‖ν1/2∇hvh‖20,Ω − ‖knvh‖20,Ω

+
1

2
ε
(
k−1‖ν1/2β1/2J∇hvhK‖20,FI

h
+ k−1‖δ1/2∇hvh · nΓ‖20,Γ

+k‖ν1/2α1/2JvhK‖20,FI
h
+ k‖(1− δ)1/2vh‖20,Γ

)
,

whence the assertion follows.

An explicit choice of ε in the bound (4.7) is given in the proof of the G̊arding inequality in
Theorem 4.7.

Next, we present a discontinuous-to-continuous reconstruction operator for piecewise smooth
functions on curvilinear simplicial meshes.

Theorem 4.4. Let Ωh be a shape-regular mesh on Ω as defined in Section 3.1. Then, there exists
c > 0 depending only on Ω and γSR in (3.1) such that, for each ℓ ∈ N, there exists a linear
operator P : H1

pw(Ωh) → H1(Ω) that satisfies, for all v ∈ H1
pw(Ωh),

‖∇Pv‖0,Ω ≤ c
(
‖∇hv‖0,Ω + ‖h−1/2ℓJvK‖0,FI

h

)
, (4.13)

‖Pv‖0,Ω ≤ c
(
‖hℓ−2∇hv‖0,Ω + ‖v‖0,Ω + ‖h1/2ℓ−1JvK‖0,FI

h

)
, (4.14)

‖h−1/2ℓ (I − P)v‖0,Γ ≤ c
(
‖∇hv‖0,Ω + ‖h−1/2ℓJvK‖0,FI

h

)
. (4.15)

Proof. We postpone the proof to Appendix B below.

Remark 4.5. The parameter ℓ appearing in the statement of Theorem 4.4 is not necessarily related
to the polynomial degree of the DGFEM space under consideration. However, it will be apparent
in Theorem 4.7 and Proposition 5.1 below that a natural choice in our framework is in fact ℓ = p.

Remark 4.6. Theorem 4.4 relates to similar results in the literature; see, e.g., [7, Sec. 5.2] and [33,
Prop. 5.2]. With respect to the first reference, we provide here optimal estimates also on curvilinear
simplicial meshes; moreover, differently from the second reference, we also present stability esti-
mates for the elemental L2 norm. Furthermore, we define the reconstruction operator for piecewise
sufficiently smooth functions, without restricting to piecewise polynomial functions. The price to
pay is that the image of this operator is not an H1-conforming piecewise polynomial space over the
decomposition Ωh, but rather on a sufficiently fine shape regular refinement of Ωh; see Appendix B
below for more details.

We are left to prove the main result of the section, namely the following discrete G̊arding
inequality for the form defined in (3.13).
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Theorem 4.7. Let Th((·, ·, ·), (·, ·, ·)) be defined as in (3.13) and the interface Γ be smooth. Then,
the following G̊arding inequality is valid: there exist a constant ε > 0 only depending on Ω and γSR

in (3.1) (see (4.30)), three constants a0 > 0, b0 > 0, and d0 > 0 depending additionally on ν, and
a positive constant cG(k) depending additionally on k such that, for all a ≥ a0, b ≤ b0, and d ≤ d0
in (3.8),

(RE + εIM)Th((vh, λh, vexth ), (vh, λh, v
ext

h ))

& ‖ν1/2∇hvh‖20,Ω + εk−1‖δ1/2∇hvh · nΓ‖20,Γ + εk‖ν1/2α1/2JvhK‖20,FI
h

+ εk−1‖ν1/2β1/2J∇hvhK‖20,FI
h
+ εk‖(1− δ)vh‖20,Γ + ‖λh‖2− 1

2 ,Γ
+ ‖vexth ‖21

2 ,Γ

− ‖kn vh‖20,Ω − cG(k)
(
‖λh‖2− 3

2 ,Γ
+ ‖vexth ‖2− 1

2 ,Γ

)
∀(vh, λh, vexth ) ∈ Vh ×Wh × Zh.

(4.16)

The hidden constant depends on cV0 and cW0 in (2.5) but not on k.

Proof. Observe that

Th((vh, λh, vexth ), (vh, λh, v
ext
h ))

=
∑

K∈Ωh

aKh (vh, vh) + bΓh(vh, vh)− (λh, δ(ik)
−1∇hvh · nΓ + (1− δ)vh)0,Γ

− 〈(−Wk − ik(
1

2
−Kk) + ik(

1

2
+K′

k + ikVk))v
ext
h − (

1

2
+K′

k + ikVk)λh, v
ext
h 〉

− 〈λh, δ(ik)−1∇hvh · nΓ − (1 − δ)vh − δ(ik)−1λh〉 − 〈λh, (
1

2
+Kk)vexth − Vk(λh − ikvexth )〉.

Equivalently, we write

Th((vh, λh, vexth ), (vh, λh, v
ext
h )) =

∑

K∈Ωh

aKh (vh, vh) + bΓh(vh, vh)

+ 〈Wkv
ext
h , vexth 〉+ ik〈(1

2
−Kk)v

ext
h , vexth 〉 − ik〈(1

2
+K′

k + ikVk)v
ext
h , vexth 〉

+ 〈(1
2
+K′

k)λh, v
ext
h 〉+ ik〈Vkλh, v

ext
h 〉 − ik−1‖δ1/2λh‖20,Γ

− 〈λh, (
1

2
+Kk)vexth 〉+ 〈λh,Vkλh〉 − ik〈λh,Vkvexth 〉

− 2RE
(
〈λh, δ(ik)−1∇hvh · nΓ〉

)
− 2i IM (〈(1 − δ)λh, vh〉) ,

and thus

Th((vh, λh, vexth ), (vh, λh, v
ext
h )) =

∑

K∈Ωh

aKh (vh, vh) + bΓh(vh, vh)

+ 〈λh,Vkλh〉+ 〈Wkv
ext
h , vexth 〉+ k2〈Vkv

ext
h , vexth 〉 − ik〈(K′

k +Kk)v
ext
h , vexth 〉

+

[
〈(1
2
+K′

k)λh, v
ext
h 〉 − 〈λh, (

1

2
+Kk)vexth 〉

]
− ik−1‖δ1/2λh‖20,Γ

+ ik〈Vkλh, v
ext
h 〉 − ik〈λh,Vkvexth 〉 − 2RE

(
〈λh, δ(ik)−1∇hvh · nΓ〉

)
− 2i IM (〈(1 − δ)λh, vh〉) .

For some ε > 0 to be fixed sufficiently small below, we take the RE+ εIM part on both sides and
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get

(RE+ εIM)Th((vh, λh, vexth ), (vh, λh, v
ext
h )) =

∑

K∈Ωh

(RE+ εIM)[aKh (vh, vh) + bΓh(vh, vh)]

+ (RE+ εIM)[〈λh,Vkλh〉+ 〈Wkv
ext
h , vexth 〉+ k2〈Vkv

ext
h , vexth 〉 − ik〈(K′

k +Kk)v
ext
h , vexth 〉]

+ (RE+ εIM)

[
〈(1
2
+K′

k)λh, v
ext
h 〉
]
− (RE+ εIM)

[
〈λh, (

1

2
+Kk)vexth 〉

]

− εk−1‖δ1/2λh‖20,Γ + (RE+ εIM)
[
+ik〈Vkλh, v

ext
h 〉 − ik〈λh,Vkvexth 〉

]

− 2RE
(
〈λh, δ(ik)−1∇hvh · nΓ〉

)
− 2εIM (〈(1 − δ)λh, vh〉)

=:
∑

K∈Ωh

(RE+ εIM)[aKh (vh, vh) + bΓh(vh, vh)] +

10∑

i=1

Ti.

(4.17)

We deal with the terms Ti, for i = 1, . . . , 10, separately.
The continuity of Vk − V0 : H− 3

2 (Γ) → H
3
2 (Γ), see (2.4), the fact that 〈λh,V0λh〉 is real,

and ε . 1 imply

T1 := (RE+ εIM)(〈λh,Vkλh〉)
= 〈λh,V0λh〉+ (RE+ εIM)(〈λh, (Vk − V0)λh〉)
(2.5)

≥ cV0‖λh‖2− 1
2 ,Γ

− (1 + ε)‖λh‖− 3
2 ,Γ

‖(Vk − V0)λh‖ 3
2 ,Γ

≥ cV0‖λh‖2− 1
2 ,Γ

− c1(k)‖λh‖2− 3
2 ,Γ
.

(4.18)

Analogously, the continuity ofWk−W0 : H− 1
2 (Γ) → H

1
2 (Γ), see (2.4), and the fact that 〈W0v

ext
h , vexth 〉

is real and ε . 1 imply

T2 := (RE+ εIM)(〈Wkv
ext
h , vexth 〉)

= 〈W0v
ext
h , vexth 〉+ (RE+ εIM)(〈(Wk −W0)v

ext
h , vexth 〉)

(2.5)

≥ cW0 |vexth |21
2 ,Γ

− (1 + ε)‖(Wk −W0)v
ext
h ‖ 1

2 ,Γ
‖vexth ‖− 1

2 ,Γ
≥ cW0‖vexth ‖21

2 ,Γ
− c2(k)‖vexth ‖2− 1

2 ,Γ
.

(4.19)

By the discussion after (2.3) the operator Vk : H− 1
2 (Γ) → H

1
2 (Γ) is continuous so that we get for

ε ∈ (0, 1]

T3 := k2(RE+ εIM)(〈Vkv
ext
h , vexth 〉) ≥ −c3(k)‖vexth ‖2− 1

2 ,Γ
. (4.20)

Owing to the continuity of K′
k : H− 1

2 (Γ) → H− 1
2 (Γ) and Kk : H− 1

2 (Γ) → H− 1
2 (Γ), and ε . 1, we

note that

T4 := −(RE+ εIM)(ik〈K′
kv

ext
h , vexth 〉+ ik〈Kkv

ext
h , vexth 〉)

≥ −k(1 + ε)‖K′
kv

ext
h ‖− 1

2 ,Γ
‖vexth ‖ 1

2 ,Γ
− k(1 + ε)‖Kkv

ext
h ‖− 1

2 ,Γ
‖vexth ‖ 1

2 ,Γ

≥ −cW0

5
‖vexth ‖21

2 ,Γ
− ck2‖K′

kv
ext
h ‖2− 1

2 ,Γ
− cW0

5
‖vexth ‖21

2 ,Γ
− ck2‖Kkv

ext
h ‖2− 1

2 ,Γ

≥ −2

5
cW0‖vexth ‖21

2 ,Γ
− c4(k)‖vexth ‖2− 1

2 ,Γ
.

(4.21)

Next, we focus on the term T5. We observe that

T5 := (RE+ εIM)(〈(1
2
+K′

k)λh, v
ext
h 〉 − 〈λh, (

1

2
+Kk)vexth 〉)

=
1

2
(RE+ εIM)(〈λh, vexth 〉 − 〈λh, vexth 〉) + (RE+ εIM)(〈K′

kλh, v
ext
h 〉 − 〈λh,Kkvexth 〉)

=: T5,1 + T5,2.

First, we focus on the term T5,1:

T5,1 = εIM(〈λh, vexth 〉) ≥ −ε‖λh‖− 1
2 ,Γ

‖vexth ‖ 1
2 ,Γ

≥ −1

2
ε
(
‖λh‖2− 1

2 ,Γ
+ ‖vexth ‖21

2 ,Γ

)
. (4.22)
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To show a bound on the term T5,2, we use [40, eqn. (1.2)], (2.4), and ε . 1:

T5,2 = (RE+ εIM)(〈(K′
k −K′

0)λh, v
ext
h 〉 − 〈λh, (Kk −K0)vexth 〉)

≥ −(1 + ε)‖(K′
k −K′

0)λh‖ 1
2 ,Γ

‖vexth ‖− 1
2 ,Γ

− ‖λh‖− 3
2 ,Γ

‖(Kk −K0)v
ext
h ‖ 3

2 ,Γ

& −c5,2(k)‖λh‖2− 3
2 ,Γ

− c5,2(k)‖vexth ‖2− 1
2 ,Γ
.

(4.23)

We show a bound on the term T6 using the polynomial inverse inequality of [5, Lemma A.1] with
constant cGinv and (3.8):

T6 := −εk−1‖δ1/2λh‖20,Γ ≥ −εcGinvd‖λh‖2− 1
2 ,Γ
. (4.24)

Using the continuity of Vk : H− 3
2 (Γ) → H− 1

2 (Γ) and ε . 1, we get

T7 := k(RE+ εIM)(i〈Vkλh, v
ext
h 〉) ≥ −(1 + ε)k‖Vkλh‖− 1

2 ,Γ
‖vexth ‖ 1

2 ,Γ

≥ − 1

10
cW0‖vexth ‖21

2 ,Γ
− c7(k)‖λh‖2− 3

2 ,Γ
.

(4.25)

Besides, using the continuity of Vk : H
1
2 (Γ) → H

3
2 (Γ), we prove that

T8 := −k(RE+ εIM)(i〈λh,Vkv
ext
h 〉) ≥ −(1 + ε)k‖λh‖− 3

2 ,Γ
‖Vkv

ext
h ‖ 3

2 ,Γ

≥ −cW0

5
‖vexth ‖21

2 ,Γ
− c8(k)‖λh‖2− 3

2 ,Γ
.

(4.26)

Next, we focus on the term T9. Using again the polynomial inverse inequality of [5, Lemma A.1],
the Young inequality with weight ε/4, and (3.8), we arrive at

T9 := −2RE
(
〈λh, δ(ik)−1∇hvh · nΓ〉

)
≥ −2k−1/2‖δ1/2λh‖0,Γ k−1/2‖δ1/2∇hvh · nΓ‖0,Γ

≥ −4

ε
k−1‖δ1/2λh‖20,Γ − ε

4
k−1‖δ1/2∇hvh · nΓ‖20,Γ

(3.8)

≥ −4cGinvd

ε
‖λh‖2− 1

2 ,Γ
− εk−1

4
‖δ1/2∇hvh · nΓ‖20,Γ.

(4.27)

As for the term T10, we proceed as follows. Recall that

T10 := −2εIM 〈(1− δ)λh, vh〉 .

Let P be the operator introduced in Theorem 4.4, with ℓ = p. Then, we use a trace inequality and
again the polynomial inverse inequality of [5, Lemma A.1] to deduce

〈λh, vh〉 = 〈λh,Pvh〉+ 〈λh, (1− P)vh〉
≤ ‖λh‖− 1

2 ,Γ
‖Pvh‖ 1

2 ,Γ
+ ‖h1/2p−1λh‖0,Γ‖h−1/2p(I − P)vh‖0,Γ

(4.13)−(4.15)

. ‖λh‖− 1
2 ,Γ

(
‖∇hvh‖0,Ω + ‖vh‖0,Ω + ‖h−1/2pJvhK‖0,FI

h

)

. ‖λh‖− 1
2 ,Γ

(
ν
−1/2
min ‖ν1/2∇hvh‖0,Ω + (k0c0)

−1‖kn vh‖0,Ω + ν
−1/2
min k1/2a−1/2‖ν1/2α1/2JvhK‖0,FI

h

)
,

where the last inequality follows from the bounds ν ≥ νmin and |kn| ≥ k0c0, and from the definition
of α in (3.8).

Let ε̃ > 0 be a positive constant, which will be fixed below; see (4.29). The Young inequality
gives

− 2εIM(〈(1 − δ)λh, vh〉) ≥ −ε̃−1ε‖λh‖2− 1
2 ,Γ

− c10ε̃ε(ν
−1
min‖ν1/2∇hvh‖20,Ω + (k0c0)

−2‖kn vh‖20,Ω + ν−1
mink‖ν1/2α1/2JvhK‖20,FI

h
),

(4.28)

where c10 depends on a−1/2. Provided that a is sufficiently large and d, b are sufficiently small,
depending on ε, we insert (4.7), (4.18), (4.19), (4.20), (4.21), (4.22), (4.23), (4.25), (4.26), (4.27),
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and (4.28) into (4.17), and arrive at

(RE+ εIM)Th((vh, λh, vexth ), (vh, λh, v
ext
h ))

≥ cV0‖λh‖2− 1
2 ,Γ

− c1(k)‖λh‖2− 3
2 ,Γ

+ cW0‖vexth ‖21
2 ,Γ

− c2(k)‖vexth ‖2− 1
2 ,Γ

− c3(k)‖vexth ‖2− 1
2 ,Γ

− 2

5
cW0‖vexth ‖21

2 ,Γ
− c4(k)‖vexth ‖2− 1

2 ,Γ
− ε

2
‖λh‖2− 1

2 ,Γ
− ε

2
‖vexth ‖21

2 ,Γ

− c5,2(k)‖λh‖2− 3
2 ,Γ

− c5,2(k)‖vexth ‖2− 1
2 ,Γ

− εcGinvd‖λh‖2− 1
2 ,Γ

− 1

10
cW0‖vexth ‖21

2 ,Γ
− c7(k)‖λh‖2− 3

2 ,Γ
− 1

5
cW0‖vexth ‖21

2 ,Γ
− c8(k)‖λh‖2− 3

2 ,Γ

− cGinvd4ε
−1‖λh‖2− 1

2 ,Γ
− ε̃−1ε‖λh‖2− 1

2 ,Γ

− c10ε̃ε
(
ν−1
min‖ν1/2∇hvh‖20,Ω + (k0c0)

−2‖kn vh‖20,Ω + ν−1
mink‖ν1/2α1/2JvhK‖20,FI

h

)

+
1

2
‖ν1/2∇hvh‖20,Ω − ‖kn vh‖20,Ω +

1

2

(
εk−1‖ν1/2β1/2J∇hvhK‖20,FI

h
+ εk‖ν1/2α1/2JvhK‖20,FI

h

)

+
1

2

(
εk−1‖δ1/2∇hvh · nΓ‖20,Γ + εk‖(1− δ)vh‖20,Γ

)
− ε

4
k−1‖δ1/2∇hvh · nΓ‖20,Γ.

Simple computations yield

(RE+ εIM)Th((vh, λh, vexth ), (vh, λh, v
ext
h ))

≥ (1/2− c10ε̃εν
−1
min)‖ν1/2∇hvh‖20,Ω − (c10ε̃ε(k0c0)

−2 + 1)‖kn vh‖20,Ω + k−1ε/4‖δ1/2∇hvh · nΓ‖20,Γ
+ εk(1/2− c10ε̃ν

−1
min)‖ν1/2α1/2JvhK‖20,FI

h
+

ε

2k
‖ν1/2β1/2J∇hvhK‖20,FI

h
+

1

2
εk‖(1− δ)vh‖20,Γ

+
(
cV0 −

ε

2
− εcGinvd− 4cGinvdε

−1 − ε̃−1ε
)
‖λh‖2− 1

2 ,Γ
− (c1(k) + c5,2(k) + c7(k) + c8(k)) ‖λh‖2− 3

2 ,Γ

+

(
3

10
cW0 −

ε

2

)
‖vexth ‖21

2 ,Γ
− (c2(k) + c3(k) + c4(k) + c5,2(k))‖vexth ‖2− 1

2 ,Γ
.

We select
ε̃ :=

νmin

4c10
, (4.29)

and fix ε as

ε := min

{
cV0

3(1/2 + cGinv + 4c10ν
−1
min)

,
cW0

10
, 1

}
, (4.30)

where we recall that the constants cV0 and cW0 are from (2.5), νmin is a lower bound of the
coefficient ν (see Section 2.1), cGinv is the inverse inequality constant in (4.24), and c10 is from (4.28).

Using (4.29) and (4.30), we investigate the constants of the terms appearing in the DG norm:

* (1/2− c10ε̃εν
−1
min) ≥ 1/2− ε/4 > 1/4;

* −(c10ε̃ε(k0c0)
−2 + 1) ≥ −(14νminε(k0c0)

−2 + 1);

* εk(1/2− c10ε̃ν
−1
min) = εk/4;

* by taking d in (3.8) also fulfilling

d ≤ d0 ≤ cV0

12cGinv
ε,

we also have
(
cV0 −

ε

2
− 4cGinvd− cGinvdε

−1 − ε̃−1ε
)
= cV0 − ε

(
1

2
+ cGinvd+ 4c10ν

−1
min

)
− 4cGinvdε

−1

≥ 2cV0/3− 4cGinvdε
−1 = cV0/3;

this term is positive as well;

*
(

3
10cW0 − ε

)
> cW0/5.

The assertion follows.

17



5 Continuity of Th((·, ·, ·), (·, ·, ·))
In this section, we prove the continuity of Th((·, ·, ·), (·, ·, ·)). To that end, we introduce the two
following energy norms, which extend the DG(Ω) and DG+(Ω) norms to the DGFEM-BEM cou-
pling:

∣∣∣∣∣∣(u,m, uext)
∣∣∣∣∣∣2
DG(Ω)

:= ‖u‖2DG(Ω) + ‖m‖2− 1
2 ,Γ

+ ‖uext‖21
2 ,Γ
,

∣∣∣∣∣∣(u,m, uext)
∣∣∣∣∣∣2
DG+(Ω)

:= ‖u‖2DG+(Ω) + ‖m‖2− 1
2 ,Γ

+ ‖h1/2p−1 m‖20,Γ + ‖uext‖21
2 ,Γ
.

Proposition 5.1. For all (u,m, uext), (v, λ, vext) ∈ H
3
2+t
pw (Ωh)×L2(Γ)×H 1

2 (Γ) for some regularity
parameter t > 0, the following continuity bound is valid:

∣∣Th((u,m, uext), (v, λ, vext))
∣∣ .

∣∣∣∣∣∣(u,m, uext)
∣∣∣∣∣∣
DG+(Ω)

∣∣∣∣∣∣(v, λ, vext)
∣∣∣∣∣∣
DG+(Ω)

, (5.1)

where the hidden constant depends on k. If (u,m, uext) or (v, λ, vext) is in Vh ×Wh ×Zh, then we
can replace the corresponding |||·|||

DG+(Ω) norm in (5.1) with |||·|||
DG(Ω).

Proof. We present the estimates of the terms in the sesquilinear form Th((u,m, uext), (v, λ, vext))
defined in (3.13) separately.

First, to estimate the term
∑

K∈Ωh
aKh (u, v) + bΓh(u, v), we use (4.4).

For the terms involving the integral operators, we use the definitions of the combined integral
operators in (2.9), and the mapping properties described in Section 2.2. More precisely, we write

∣∣− 〈(−Wk − ik(
1

2
−Kk) + ik(

1

2
+K′

k + ikVk))u
ext − (

1

2
+K′

k + ikVk)m, v
ext〉
∣∣

≤ ‖Bku
ext‖− 1

2 ,Γ
‖vext‖ 1

2 ,Γ
+ k‖A′

ku
ext‖− 1

2 ,Γ
‖vext‖ 1

2 ,Γ
+ ‖A′

km‖− 1
2 ,Γ

‖vext‖ 1
2 ,Γ

. ‖uext‖ 1
2 ,Γ

‖vext‖ 1
2 ,Γ

+ ‖m‖− 1
2 ,Γ

‖vext‖ 1
2 ,Γ
,

where we have used ‖uext‖− 1
2 ,Γ

≤ ‖uext‖ 1
2 ,Γ

and

∣∣− 〈(1
2
+Kk)u

ext − Vk(m− ikuext), λ〉
∣∣ ≤ ‖(1

2
+Kk)u

ext − Vk(m− ikuext)‖ 1
2 ,Γ

‖λ‖− 1
2 ,Γ

.
(
‖uext‖ 1

2 ,Γ
+ ‖m‖− 1

2 ,Γ

)
‖λ‖− 1

2 ,Γ
.

Next, we focus on the coupling terms. Several of the following estimates are already established
in the proof of Theorem 4.7. However, we cannot use the polynomial inverse inequality here. With
the Cauchy-Schwarz inequality and the definition of δ in (3.8), we get

∣∣(m, δ(ik)−1∇hv · nΓ)0,Γ
∣∣ ≤ k−1‖δ1/2m‖0,Γ‖δ1/2∇hv · nΓ‖0,Γ
≤ d1/2‖h1/2p−1 m‖0,Γk−1/2‖δ1/2∇hv · nΓ‖0,Γ

The next coupling term is dealt with as follows:

∣∣〈−δ(ik)−1∇hu · nΓ, λ〉
∣∣ ≤ k−1‖δ1/2∇hu · nΓ‖0,Γ‖δ1/2λ‖0,Γ
≤ k−1/2‖δ1/2∇hu · nΓ‖0,Γd1/2‖h1/2p−1 λ‖0,Γ.

Furthermore, we get

∣∣〈δ(ik)−1m,λ〉
∣∣ ≤ k−1‖δ1/2m‖0,Γ‖δ1/2λ‖0,Γ ≤ d1/2‖h1/2p−1 m‖0,Γd1/2‖h1/2p−1 λ‖0,Γ.

As for the two remaining coupling terms, we employ the reconstruction operator P : H1
pw(Ωh) →

H1(Ω) introduced in Theorem 4.4, and write

∣∣− 〈m, (1− δ)v〉
∣∣ . |〈m,Pv〉|+ |〈m, (1− P)v〉|
≤ ‖m‖− 1

2 ,Γ
‖Pv‖ 1

2 ,Γ
+ ‖h1/2p−1m‖0,Γ‖h−1/2p(I − P)v‖0,Γ.
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Properties (4.13)–(4.15) with ℓ = p, hp−2 ≤ 1, and the definition of α in (3.8) lead to

∣∣〈m,(1− δ)v〉
∣∣ . ‖m‖− 1

2 ,Γ
(‖∇hv‖0,Ω + ‖h−1/2pJvK‖0,FI

h
+ ‖v‖0,Ω)

+ ‖h1/2p−1m‖0,Γ(‖∇hv‖0,Ω + ‖h−1/2pJvK‖0,FI
h
)

. ‖m‖−1
2
,Γ(ν

−1/2
min ‖ν1/2∇hv‖0,Ω + ν

−1/2
min k1/2‖ν1/2α1/2JvK‖0,FI

h
+ (k0c0)

−1‖knv‖0,Ω)
+ ‖h1/2p−1m‖0,Γ(ν−1/2

min ‖ν1/2∇hv‖0,Ω + ν
−1/2
min k1/2‖ν1/2α1/2JvK‖0,FI

h
),

where the last inequality follows from the bounds ν ≥ νmin and |kn| ≥ k0c0. The hidden constant

depends additionally on a−
1
2 .

We proceed in the same way to estimate the term
∣∣〈(1 − δ)u, λ〉

∣∣, and the assertion follows
combining the above bounds.

When dealing with discrete functions, estimate (5.1) can be improved using the polynomial
inverse inequality of [5, Lemma A.1]:

‖h1/2p−1λh‖0,Γ . ‖λh‖− 1
2 ,Γ

∀λh ∈Wh.

Thus, we can replace |||·|||DG+(Ω) by |||·|||DG(Ω) for discrete functions.

6 Adjoint problem

In this section, we introduce and analyze the adjoint problem of (3.12).

The dual problem to (2.11) is: given (r, rm, r
ext) ∈ L2(Ω)×H− 3

2 (Γ)×H− 1
2 (Γ),





find (ψ, ψm, ψ
ext) ∈ H1(Ω)×H− 1

2 (Γ)×H
1
2 (Γ) such that

(ν∇v,∇ψ)0,Ω − ((kn)2 v, ψ)0,Ω + ik(v, ψ)0,Γ − 〈λ, ψ〉
−〈(Bk + ikA′

k)v
ext −A′

kλ, ψ
ext〉+ 〈ψm, v〉 − 〈ψm, (

1
2 +Kk)vext − Vk(λ− ikvext)〉

=
(
(w, r)0,Ω + (ξ, rm)− 3

2 ,Γ
+ (wext, rext)− 1

2 ,Γ

)

∀(v, λ, vext) ∈ H1(Ω)×H− 1
2 (Γ)×H

1
2 (Γ).

(6.1)

We recall some technical results from [37].

Lemma 6.1. ( [37, Lemma 3.6]) The following identities are valid: For all ϕ ∈ H− 1
2 (Γ) and for

all ψ ∈ H
1
2 (Γ),

V∗
kϕ = Vkϕ, K∗

kψ = K′
kψ, (6.2)

(K′
k)

∗ϕ = Kkϕ, W∗
kψ = Wkψ, (6.3)

where we recall that ·∗ denotes the adjoint operator.

Lemma 6.2. ( [37, Lemma 3.7]) Let s ∈ R+. Given rm ∈ Hs− 3
2 (Γ) and rext ∈ Hs− 1

2 (Γ), there

exist Rm ∈ Hs+ 3
2 (Γ) and Rext ∈ Hs+ 1

2 (Γ) such that

‖Rm‖s+ 3
2 ,Γ

= ‖rm‖s− 3
2 ,Γ
, ‖Rext‖s+ 1

2 ,Γ
= ‖rext‖s− 1

2 ,Γ

and

〈ξ, Rm〉 = (ξ, rm)− 3
2 ,Γ

∀ξ ∈ H− 1
2 (Γ), (6.4)

(wext, Rext)0,Γ = (wext, rext)− 1
2 ,Γ

∀wext ∈ L2(Γ).

Indeed, the global problem (6.1) can be split into three problems as detailed in the following
result.
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Lemma 6.3. ( [37, Lemma 3.8]) Let (r, rm, r
ext) ∈ L2(Ω)×H− 3

2 (Γ)×H− 1
2 (Γ) and Rm and Rext

be the representers of rm and rext constructed in Lemma 6.2. Then, problem (6.1) is equivalent to
the variational formulation of the following three coupled problems: Find (ψ, ψm, ψ

ext) ∈ H1(Ω)×
H− 1

2 (Γ)×H
1
2 (Γ) such that

{
− div(ν∇ψ)− (kn)2ψ = r in Ω,

∇ψ · nΓ + ikψ + ψm = 0 on Γ,
(6.5)

{
−ψ + (12 +Kk + ikVk)ψext + Vkψm = Rm on Γ, (6.6)

{
(Wk + ik(12 −K′

k)− ik(12 +Kk + ikVk))ψext − ((12 +K′
k) + ikVk)ψm = Rext on Γ.

(6.7)

Well posedness as well as regularity results for problem (6.1) are given in the following theorem.

Theorem 6.4. ( [37, Thm. 3.12]) Given s ∈ R
+
0 and

r ∈ Hs(Ω), rm ∈ Hs− 3
2 (Γ), rext ∈ Hs− 1

2 (Γ),

let (ψ, ψm, ψ
ext) be the solution to (6.5)–(6.7). Then, (ψ, ψm, ψ

ext) satisfies

ψ ∈ Hs+2(Ω), ψm ∈ Hs+ 1
2 (Γ), ψext ∈ Hs+ 3

2 (Γ),

together with the a priori estimates

‖ψ‖s+2,Ω + ‖ψm‖s+ 1
2 ,Γ

+ ‖ψext‖s+ 3
2 ,Γ

.k

(
‖r‖s,Ω + ‖rm‖s− 3

2 ,Γ
+ ‖rext‖s− 1

2 ,Γ

)
. (6.8)

In the next proposition, we prove that the adjoint formulation of (3.12) is in fact an approxi-
mation of the adjoint problem (6.1), i.e., of the coupled problems (6.5)–(6.7).

Proposition 6.5 (adjoint consistency). Let the right-hand side (r, rm, r
ext) of (6.1) belong to

L2(Ω)×H− 3
2 (Γ)×H− 1

2 (Γ). Then, the solution (ψ, ψm, ψ
ext) of (6.1) belongs to H2(Ω)×H 1

2 (Γ)×
H

3
2 (Γ) and satisfies

Th((w, ξ, wext), (ψ, ψm, ψ
ext)) = (w, r) + (ξ, rm)− 3

2 ,Γ
+ (wext, rext)− 1

2 ,Γ
(6.9)

for all (w, ξ, wext) ∈ H
3
2+t
pw (Ωh)× L2(Γ)×H

1
2 (Γ), for some t > 0.

Proof. According to Theorem 6.4, (ψ, ψm, ψ
ext) belongs to H2(Ω)×H

1
2 (Γ)×H

3
2 (Γ).

STEP 1: (ψ, ψm, ψ
ext) satisfies Th((w, 0, 0), (ψ, ψm, ψ

ext)) = (w, r)0,Ω for all w ∈ H
3
2+t
pw (Ωh).

Since ψ ∈ H2(Ω), on each internal face we have

JψK = 0, J∇ψK = 0, {{∇ψ}} = ∇ψ. (6.10)

We multiply the first equation in (6.5) by w ∈ H
3
2+t
pw (Ωh) and integrate by parts elementwise to

get

∑

K∈Ωh

(
−
∫

∂K

νw∇ψ · nΓ +

∫

K

ν∇w · ∇ψ
)
−
∫

Ω

(kn)2wψ =

∫

Ω

wr. (6.11)

With the aid of the boundary condition in (6.5), the definition of the parameter δ in (2.4), and the
fact that ν = 1 on Γ, we manipulate the boundary term in (6.11) as follows:

−
∑

K∈Ωh

∫

∂K

νw∇ψ · nΓ = −
∫

FI
h

νJwK · ∇ψ −
∫

FB
h

w∇ψ · nΓ

= −
∫

FI
h

νJwK · ∇ψ +

∫

FB
h

ikwψ +

∫

FB
h

wψm −
∫

FB
h

δw∇ψ · nΓ

−
∫

FB
h

δikwψ −
∫

FB
h

δwψm −
∫

FB
h

δ(ik)−1∇w · nΓ∇ψ · nΓ

−
∫

FB
h

δ∇w · nΓψ −
∫

FB
h

δ(ik)−1∇w · nΓψm.
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Inserting the above identity into (6.11) and adding some terms with property (6.10), we see that
STEP 1 is valid.

STEP 2: (ψ, ψm, ψ
ext) satisfies Th((0, ξ, 0), (ψ, ψm, ψ

ext)) = (ξ, rm)− 3
2 ,Γ

for all ξ ∈ L2(Γ).

First, we multiply (6.6) by ξ ∈ L2(Γ):

−
∫

Γ

ξψ +

∫

Γ

ξ(1/2 +Kk + ikVk)ψext +

∫

Γ

ξVkψm =

∫

Γ

ξRm. (6.12)

Identities (6.2) and (6.3) lead to
∫

Γ

ξ(1/2 +Kk + ikVk)ψext = 〈ξ, (1/2 +Kkψext〉+ ik〈ξ,Vkψext〉

= 〈ξ, (1/2 +Kk)
∗ψext〉+ ik〈ξ,V∗

kψ
ext〉 = 〈(1/2 +K′

k + ikVk)ξ, ψ
ext〉

and
∫

Γ

ξVkψm = 〈ξ,Vkψm〉 = 〈ξ,V∗
kψm〉 = 〈Vkξh, ψm〉.

Inserting these two terms into (6.12) and adding the boundary condition in (6.5) with the param-
eter δ, yields STEP 2. To deal with the right-hand side of (6.12), we have used (6.4).

STEP 3: (ψ, ψm, ψ
ext) satisfies Th((0, 0, wext), (ψ, ψm, ψ

ext)) = (wext, rext)− 1
2 ,Γ

for all wext ∈
H

1
2 (Γ).

We multiply (6.7) by wext ∈ H
1
2 (Γ):

∫

Γ

wext(Wk + ik(1/2−K′
k)− ik(1/2 +Kk + ikVk))ψext +

∫

Γ

wext((1/2 +K′
k) + ikVk)ψm

=

∫

Γ

wextRext.

We use again identities (6.2) and (6.3) and write
∫

Γ

wext(Wk + ik(1/2−K′
k)− ik(1/2 +Kk + ikVk))ψext

= 〈wext,Wkψext〉+ ik〈wext, (1/2−K′
k)ψ

ext〉 − ik〈wext, (1/2 +Kk)ψext〉 − (ik)2〈wext,Vkψext〉
= 〈wext,W∗

kψ
ext〉+ ik〈wext, (1/2−Kk)

∗ψext〉 − ik〈wext, (1/2 +K′
k)

∗ψext〉 − (ik)2〈wext,V∗
kψ

ext〉
= 〈(Wk + ik(1/2−Kk)− ik(1/2 +K′

k + ikVk))w
ext, ψext〉,

and
∫

Γ

wext((1/2 +K′
k) + ikVk)ψm = 〈wext, (1/2 +K′

k)ψm〉+ ik〈wext,Vkψm〉

= 〈wext, (1/2 +Kk)
∗ψm〉+ ik〈wext,V∗

kψm〉 = 〈(1/2 +Kk + ikVk)w
ext, ψm〉.

Thus, using the above terms and (6.4) for the right-hand side of (6.12) shows STEP 3. Combining
STEPS 1–3 gives the assertion.

7 Error analysis

In this section, we prove the well posedness of scheme (3.14) as well as the convergence rate of the
h- and p-versions of the method. We require the following approximability property.

Assumption 7.1. Let (ψ, ψm, ψ
ext) ∈ H2(Ω)×H 1

2 (Γ)×H 3
2 (Γ) satisfy ‖ψ‖2,Ω+‖ψm‖ 1

2 ,Γ
+‖ψext‖ 3

2 ,Γ
≤

1. Then, for every ε > 0, there exists η0(ε) > 0 such that for h and p satisfying hp−1 ∈ (0, η0(ε)]
there exists (ψh, ψmh, ψ

ext
h ) ∈ Vh ×Wh × Zh such that

(∥∥ψ − ψh

∥∥
DG+(Ω)

+
∥∥ψm − ψmh

∥∥
− 1

2 ,Γ
+
∥∥ψext − ψext

h

∥∥
1
2 ,Γ

+
∥∥h

1/2

p
(ψm − ψmh)

∥∥
0,Γ

)
≤ ε.
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Theorem 7.2. Let the solution (u,m, uext) to (2.13) be in H
3
2+t(Ω)×L2(Γ)×H 1

2 (Γ) for some t >
0, and (uh,mh, u

ext
h ) ∈ Vh×Wh×Zh be the discrete solution of method (3.14) with flux parameters

defined in (3.8) and satisfying the assumptions of Theorem 4.7. Furthermore, let Assumption 7.1 be
valid. Then, there exists η0 > 0 such that for h, p satisfying hp−1 ∈ (0, η0] and for all (vh, λh, v

ext

h )
in Vh ×Wh × Zh,

‖u− uh‖DG(Ω) + ‖m−mh‖− 1
2 ,Γ

+ ‖uext − uexth ‖ 1
2 ,Γ

. ‖u− vh‖DG+(Ω) + ‖m− λh‖− 1
2 ,Γ

+ ‖uext − vexth ‖ 1
2 ,Γ

+ ‖h1/2p−1(m− λh)‖0,Γ.

The hidden constant depends on k.

Proof. We use Schatz’ argument [48]; see also [26,37,41]. For convenience, we write x := (u,m, uext)
and xh := (uh,mh, u

ext
h ). For all yh := (vh, λh, v

ext
h ) in Vh ×Wh × Zh we get

|||x− xh|||DG(Ω) ≤ |||x− yh|||DG(Ω) + |||yh − xh|||DG(Ω) . (7.1)

We use the discrete G̊arding inequality (4.16) to estimate

|||yh − xh|||2DG(Ω) . Th(yh − xh, yh − xh)

+ 2‖kn(vh − uh)‖20,Ω + cG(k)
(
‖λh −mh‖2− 3

2 ,Γ
+ ‖vexth − uexth ‖2− 1

2 ,Γ

)
. (7.2)

We estimate the first term on the right-hand side of (7.2). Using (3.16) to replace xh by x in the
first argument, applying Proposition 5.1, where the second argument is discrete, and using the
Young inequality lead to

Th(yh − xh, yh − xh) = Th(yh − x, yh − xh)

. ε−1
1 |||x− yh|||2DG+(Ω) + ε1 |||xh − yh|||2DG(Ω) .

(7.3)

where ε1 > 0 will be fixed later on. Next, we estimate the compact perturbation term appearing
in (7.2). The triangle inequality yields

2‖kn(vh − uh)‖20,Ω + cG(k)
(
‖λh −mh‖2− 3

2 ,Γ
+ ‖vexth − uexth ‖2− 1

2 ,Γ

)

≤ 2‖kn(u− vh)‖20,Ω + cG(k)
(
‖m− λh‖2− 3

2 ,Γ
+ ‖uext − vexth ‖2− 1

2 ,Γ

)

+ 2‖kn(u− uh)‖20,Ω + cG(k)
(
‖m−mh‖2− 3

2 ,Γ
+ ‖uext − uexth ‖2− 1

2 ,Γ

)
.

(7.4)

We apply a standard duality argument for the last two terms. More precisely, we consider (6.9)
with r = 2(kn)2(u− uh), rm = cG(k)(m−mh), r

ext = cG(k)(u
ext − uexth ), and x− xh for the test

function. We collect the solution to the adjoint problem into the vector Ψ := (ψ, ψm, ψ
ext) and we

get

2‖kn(u− uh)‖20,Ω + cG(k)
(
‖m−mh‖2− 3

2 ,Γ
+ ‖uext − uexth ‖2− 1

2 ,Γ

)
= Th(x− xh,Ψ).

Next, we use the Galerkin orthogonality (3.16) to subtract an arbitrary Ψh := (ψh, ψmh, ψ
ext
h ) ∈

Vh ×Wh × Zh to the right-hand side, and apply the continuity estimate (5.1) (the first argument
in the second term is discrete):

2‖kn(u− uh)‖20,Ω + cG(k)
(
‖m−mh‖2− 3

2 ,Γ
+ ‖uext − uexth ‖2− 1

2 ,Γ

)

= Th(x − xh,Ψ−Ψh) = Th(x− yh,Ψ−Ψh) + Th(yh − xh,Ψ−Ψh)

.
(
|||x− yh|||DG+(Ω) + |||xh − yh|||DG(Ω)

)
|||Ψ−Ψh|||DG+(Ω) .

(7.5)

From (6.8), we see that

‖ψ‖2,Ω + ‖ψm‖ 1
2 ,Γ

+ ‖ψext‖ 3
2 ,Γ

. ‖u− uh‖0,Ω + ‖m−mh‖− 1
2 ,Γ

+ ‖uext − uexth ‖ 1
2 ,Γ
.
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This, together with Assumption 7.1, yields

|||Ψ−Ψh|||DG+(Ω) . ε
(
‖ψ‖2,Ω + ‖ψm‖ 1

2 ,Γ
+ ‖ψext‖ 3

2 ,Γ

)
. ε |||x− xh|||DG(Ω) .

We insert this bound into (7.5) and merge the resulting bound with (7.4):

2‖kn(vh − uh)‖20,Ω + cG(k)
(
‖λh −mh‖2− 3

2 ,Γ
+ ‖vexth − uexth ‖2− 1

2 ,Γ

)

. |||x− yh|||2DG(Ω) + (|||x− yh|||DG+(Ω) + |||xh − yh|||DG(Ω))ε |||x− xh|||DG(Ω)

. (1 + ε) |||x− yh|||2DG+(Ω) + ε |||xh − yh|||2DG(Ω) .

(7.6)

Eventually, we insert (7.3) and (7.6) in (7.2) and, writing c for the constant implied in all the
previous estimates, we get

|||xh − yh|||2DG(Ω) ≤ c
(
ε−1
1 + 1 + ε

)
|||x− yh|||2DG+(Ω) + c

(
ε1 + ε

)
|||xh − yh|||2DG(Ω) .

Assuming that ε in Assumption 7.1 is sufficiently small and taking ε1 small enough, we shift the
second term to the left-hand side:

(1− c(ε+ ε1)) |||xh − yh|||2DG(Ω) . |||x− yh|||2DG+(Ω) . (7.7)

Inserting (7.7) in (7.1) concludes the proof.

The quasi-optimality result Theorem 7.2 can lead to quantitative error estimates that are
explicit in the mesh size h and the polynomial degree p. To obtain higher order rates of convergence,
the element maps ΦK need to have more regularity than what has been assumed so far at the outset
of Section 3.1. To be concrete, one can make the following assumption as in [6].

Assumption 7.3. Given s ∈ N, there is a constant c̃B > 0 such that

‖DlΦK‖L∞(K̂) ≤ c̃Bh
l
K , 2 ≤ l ≤ s+ 1.

Remark 7.4. Scenarios for the constructions of triangulations and element maps that ensure the
validity of Assumption 7.3 are provided in [6].

Corollary 7.5. Let s ∈ N and Assumption 7.3 be valid. Set h := maxK(hK). Let the solution

(u,m, uext) to (2.13) belong to Hs+1(Ω)×Hs− 1
2 (Γ)×Hs+ 1

2 (Γ) and (uh,mh, u
ext
h ) ∈ Vh×Wh×Zh

be the discrete solution of method (3.14) with flux parameters defined in (3.8) and satisfying the
assumptions of Theorem 4.7. Then, there are constants η0 = η0(k) and c(k) > 0 such that, under
the scale resolution condition hp−1 ∈ (0, η0], the following bound is valid

‖u− uh‖DG(Ω) + ‖m−mh‖− 1
2 ,Γ

+ ‖uext − uexth ‖ 1
2 ,Γ

≤ c(k)hmin(p,s)p−s+ 1
2 (‖u‖s+1,Ω + ‖m‖s− 1

2 ,Γ
+ ‖uext‖s+ 1

2 ,Γ
).

Proof. See Appendix C.

Remark 7.6 (suboptimality in p). The suboptimality by half an order in the polynomial degree p
is due to the p-scaling of the parameter α in the definition of the DGFEM norm in (3.9). Under
further assumptions on the mesh, it is possible to argue as in [41, Sec. 4.2.2] to obtain p-optimal
estimates.

Remark 7.7 (exponential convergence). Exponential convergence that is explicit in h and p for
analytic solutions can be proved if the element maps ΦK are assumed to be of the form ΦK =
RK ◦ AK with an analytic map RK and an affine map AK . We refer to [41, Assump. 4.1] for
details. See also [39, Sec. 3.3.2] for the concept of “patchwise structured meshes”.
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8 Numerical results

In this section, we present numerical results validating the convergence rate detailed in Corol-
lary 7.5.

We implemented method (3.12) by combining the NGSolve package [3] with the BEM++
library [1, 50]. In particular, we proceeded as in [37], yet replacing the interior discretization with
the novel discontinuous Galerkin part. In order to solve the resulting algebraic linear system, we
used a GMRES iteration with a preconditioner based on H-matrix LU -decomposition provided by
the H2Lib library [2].

We considered sequences of quasiuniform tetrahedral meshes Ωh in Ω and used the trace of the
corresponding interior finite element mesh as a partition Γh of Γ. As for the choice of the discretiza-
tion spaces, we picked Vh = Sp,0(Ω,Ωh) as the space of discontinuous piecewise polynomials of order
p over the tetrahedral meshes Ωh, whereas we picked Zh = Sp,1(Γ,Γh) and Wh = Sp−1,0(Γ,Γh) as
the spaces of continuous and discontinuous piecewise polynomials of orders p and p − 1 over the
triangulation Γh of Γ, respectively.

We are interested in studying the convergence of the following relative errors:

‖u− uh‖0,Ω
‖u‖0,Ω

,
‖∇h(u− uh)‖0,Ω

‖∇u‖0,Ω
, h

1
2
‖m−mh‖0,Γ

‖m‖0,Γ
, h−

1
2
‖uext − uexth ‖0,Γ

‖uext‖0,Γ
.

For the h-version of the method, the last two error measures scale like the relative errors in
the H− 1

2 (Γ) and the H
1
2 (Γ), respectively. The stabilization parameters of the DG method (3.8)

are taken to be a0 := 10, and b0 := d0 := 0.1.
We investigated the performance of method (3.12) for the domain Ω := (−1, 1)3 and the

coefficients ν = 1 and n = 1 in (2.1), and prescribe the exact smooth solution

u(x, y, z) :=





sin(k x) cos(ky) (x, y, z) ∈ Ω

eik
√

x2+y2+z2√
x2+y2+z2

otherwise.
(8.1)

The function u solves the Helmholtz equation in R3 but has nonzero Dirichlet and Neumann jumps.
This case is not covered by the theory in Sections 2–7, but can be incorporated into method (3.12)
via a suitable modification of the right-hand sides.

The coupling strategy based on the mortar variable m aims at solvability for all wave num-
bers k. To underline this feature, we select the wave numbers k as k := n

√
3π for n = 1, 2, which

are the first two nonzero eigenvalues of the Dirichlet and Neumann Laplacian on the unit cube.
Figures 1 and 2 show that the method (3.12) delivers optimal convergence rates of the errors after
some pre-asymptotic phase, which is expected due to dispersion errors (“pollution” effect) typical
of wave propagation problems. These rates partly surpass those predicted by Corollary 7.5, which
only considers a convergence of the combined error, i.e., the rate of all contributions would be dom-
inated by the lowest order contribution, namely, the H1(Ω) seminorm. A similar superconvergence
phenomenon is well known for the simpler Poisson problem and analyzed in details in [42].

We also considered the p-version of the method with wave numbers k := 4
√
3π ∼ 21.7 and k :=

2
√
3π ∼ 10.88. We fixed an underlying uniform mesh of size h ≈ 1/4 and considered the exact

solution as in (8.1). For both wave numbers, we observe exponential convergence after a small
preasymptotic regime; see Figure 3.

9 Conclusions

We introduced a DGFEM-BEM mortar coupling for three dimensional Helmholtz problems with
variable coefficients. Upon showing that the discrete sesquilinear form satisfies a G̊arding inequality
and continuity bounds, we showed quasi-optimality of the h- and p-versions of the scheme. The
theoretical results are validated by numerical examples. Notably, theoretical and numerical results
are valid regardless of whether the wave number is a Dirichlet or Neumann Laplace eigenvalue.

As a pivot result of independent interest, we constructed a discontinuous-to-continuous recon-
struction operator on tetrahedral meshes, with optimal h- and p-stability properties in the H1

seminorm and in the L2 norm, covering the case of curvilinear meshes.
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A Consistency of method (3.12)

Proof of Lemma 3.1. Proving assertion (3.15) is equivalent to proving that the continuous solution

(u,m, uext) solves also the three equations in (3.12). Since u ∈ H
3
2+t(Ω) we have that

JuK = 0, J∇uK = 0, {{∇u}} = ∇u on FI
h . (A.1)

We multiply (2.6) by vh ∈ Vh and integrate elementwise by parts to get

∑

K∈Ωh

(
−
∫

∂K

ν∇u · nΓvh +

∫

K

ν∇u · ∇vh
)
−
∫

Ω

(kn)2uvh =

∫

Ω

fvh.

With the aid of the boundary condition in (2.6), inserting the parameter δ, and using the fact that
ν = 1 on Γ, we manipulate the boundary term as follows:

−
∑

K∈Ωh

∫

∂K

ν∇u · nΓvh

= −
∫

Γ

δ∇u · nΓvh −
∫

Γ

(1− δ)mvh +

∫

Γ

ik(1− δ)uvh −
∫

FI
h

ν∇u · JvhK

+

∫

Γ

(ik)−1δm∇vh · nΓ −
∫

Γ

(ik)−1δ∇u · nΓ∇vh · nΓ −
∫

Γ

δu∇vh · nΓ.

Properties (A.1) and the above identity lead to the consistency of the first equation of (3.12), i.e.,

∑

K∈Ωh

aKh (u, vh) + bΓh(u, vh)− (m, δ(ik)−1∇hvh · nΓ + (1− δ)vh)0,Γ = (f, vh)0,Ω ∀vh ∈ Vh.

To show the consistency of the second equation of (3.12), we multiply (2.10), which is an equivalent

formulation of (2.7), by vexth ∈ Zh and integrate over Γ:

〈(Bk + ikA′
k)u

ext −A′
km, v

ext
h 〉 = 0 ∀vexth ∈ Zh.

Eventually, multiplying (2.8) by λh ∈ Wh and integrating over Γ, we get

〈u, λh〉 − 〈(1
2
+Kk)u

ext − Vk(m− ikuext), λh〉 = 0.

Similarly as above, the boundary condition in (2.6) leads to

〈−δ(ik)−1∇u · nΓ, λh〉+ 〈−δu, λh〉+ 〈δ(ik)−1m,λh〉 = 0.

Summing up the last two equations shows the consistency of the third equation in (3.12).
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B An hp-stable, discontinuous-to-continuous reconstruction

operator on curvilinear simplicial meshes

Here, we prove Theorem 4.4.
Let the mesh Ωh satisfy the shape regularity assumption (3.1) and v ∈ H1

pw(Ωh). We construct
the operator P : H1

pw(Ωh) → H1(Ω) as the composition P := P2 ◦ P1 of two operators P2, P1

that we define below. Preliminarily, for each K ∈ Ωh, we construct a quasi-uniform, shape regular
simplicial decomposition Ω̃K

h of K, such that the size of each element K̃ of Ω̃K
h is comparable

to h̃K := hK/ℓ
2. Denote the union of all Ω̃K

h by Ω̃h. By using a standard refinement strategy on

the original mesh, we can additionally ensure that Ω̃h does not contain hanging nodes. We also
introduce

Ṽh := {v ∈ S1,0(Ω, Ω̃h) | v|K ∈ S1,1(K, Ω̃K
h ) ∀K ∈ Ωh}, (B.1)

the space of the mapped, piecewise linear polynomials over Ω̃h, which are continuous in each K ∈
Ωh but possibly discontinuous at the interfaces of Ωh.

We define P1 : H1
pw(Ωh) → Ṽh as follows. For each K ∈ Ωh, P1(vh|K) ∈ S1,1(K, Ω̃K

h ) is the

quasi-interpolant of v defined in [6, Sec. 4]. As for P2 : Ṽh → S1,1(Ω, Ω̃h) ⊂ H1(Ω), we choose the
lowest-order, Oswald-type operator introduced by Karakashian and Pascal in [34]. This operator

interpolates the arithmetical averages of the degrees of freedom at each vertex of the mesh Ω̃h.
Thus, we are actually going to prove Theorem 4.4 with P : H1

pw(Ωh) → S1,1(Ω, Ω̃h) ⊂ H1(Ω). For
simplicity, throughout this section we assume that h/ℓ2 . 1 and ℓ ∈ N. The other cases follow
similarly but would incur some cumbersome notation/case distinctions.

Before proving (4.13)–(4.15), we recall two propositions, which summarize the properties of the
operators P1 and P2.

Proposition B.1. For any element K ∈ Ωh, the quasi-interpolant P1 : H1
pw(Ωh) → Ṽh satisfies

the following estimates:

‖∇P1v‖0,K . ‖∇v‖0,K , (B.2)

‖v − P1v‖0,K . ‖hℓ−2∇v‖0,K , (B.3)

‖JP1vK‖0,∂K\Γ . ‖JvK‖0,∂K\Γ + ‖h1/2ℓ−1∇hv‖0,ωK , (B.4)

where ωK in (B.4) denotes the set of elements sharing a face with K.

Proof. Bounds (B.2) and (B.3) follow from [6, Thm. 4.1] locally on K as the domain to obtain

a function on the subtriangulation Ω̃K
h . We can apply [6, Thm. 4.1] since Ω̃K

h fulfills (3.1) and
thus (3.2), which is the condition required there.

To show (B.4), we fix a facet F shared by the elements K and K ′. We get

‖JP1vK‖0,F ≤ ‖JvK‖0,F + ‖Jv − P1vK‖0,F
≤ ‖JvK‖0,F + ‖

(
v − P1v

)
|K‖0,F + ‖

(
v − P1v

)
|K′

‖0,F .

For brevity, we only consider the third term on the right-hand side. Transforming to the reference
element, applying a multiplicative trace estimate and transforming back gives

‖
(
v − P1v

)
|K′

‖0,F . ‖h−1/2(v − P1v)‖0,K′ + ‖v − P1v‖1/20,K′‖∇(v − P1v)‖1/20,K′ .

Inserting (B.2) and (B.3) yields (B.4).

Proposition B.2. The Oswald-type operator P2 : Ṽh → S1,1(Ω, Ω̃h) satisfies the following prop-
erties:

‖ṽh − P2ṽh‖0,Ω . ‖h1/2ℓ−1JṽhK‖0,FI
h
, ‖∇h(ṽh − P2ṽh)‖0,Ω . ‖h−1/2ℓJṽhK‖0,FI

h
. (B.5)

Proof. We claim that

‖ṽh − P2ṽh‖20,Ω .
∑

K∈Ωh

‖h̃1/2K JṽhK‖20,∂K\Γ, ‖∇h(ṽh − P2ṽh)‖20,Ω .
∑

K∈Ωh

‖h̃−1/2
K JṽhK‖20,∂K\Γ.
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This follows as in the proof of [34, Thm. 2.2], which only makes use of the definition of the
Lagrangian degrees of freedom of P2ṽh as arithmetical averages of the degrees of freedom of ṽh and
of the scaling properties of the basis functions. We remark that [34, Thm. 2.2] states the estimate in
the H1 seminorm; the estimate in the L2 norm follows along the same lines; see also [7, Lemma 5.3].

Then, the estimates in (B.5) follow from the definition of h̃K = hK/ℓ
2 and the fact that function ṽh

is continuous within each element K ∈ Ωh, i.e., no extra jumps are introduced along the edges of
the refined triangulation Ω̃h.

As an immediate consequence of the shape regularity of Ωh and the locality of the operator P1,
we get

‖h−1ℓ2
(
P1v − P2(P1v)

)
‖0,Ω

(B.5)

. ‖h−1/2ℓJP1vK‖0,FI
h

(B.4)

. ‖h−1/2ℓJvK‖0,FI
h
+ ‖∇hv‖0,Ω. (B.6)

We prove further properties of the operator P2. First, proceeding as in Remark 4.1, we have the
following inverse estimate for mapped, affine functions:

‖∇q‖0,K̃ . h̃−1
K ‖q‖0,K̃ = ‖h−1ℓ2q‖0,K̃ ∀K̃ ∈ Ω̃K

h , ∀q ∈ S1,1(K, Ω̃K
h ). (B.7)

Next, we observe that

‖∇hP2(P1v)‖0,Ω ≤ ‖∇h(P1v)‖0,Ω + ‖∇h(P1v − P2(P1v))‖0,Ω
(B.2)

. ‖∇hv‖0,Ω + ‖∇h(P1v − P2(P1v))‖0,Ω
(B.7)

. ‖∇hv‖0,Ω + ‖h−1ℓ2
(
P1v − P2(P1v)

)
‖0,Ω

(B.6)

. ‖∇hv‖0,Ω + ‖h−1/2ℓJvK‖0,FI
h
.

(B.8)

From this and the triangle inequality, we get (4.13).
In order to prove (4.14), we observe that the following approximation property of the opera-

tor P2 is valid:

‖v − P2(P1v)‖0,Ω ≤ ‖v − P1v‖0,Ω + ‖P1v − P2(P1v)‖0,Ω
(B.3),(B.6)

. ‖hℓ−2∇hv‖0,Ω + ‖h1/2ℓ−1JvK‖0,FI
h
.

(B.9)

Then, (4.14) follows by the triangle inequality.
We are left to prove (4.15). To that end, we use a scaling argument. Given v ∈ H1

pw(Ωh), for

any K ∈ Ωh, let v̂ be the polynomial pull-back of v|K through the mapping ΦK : K̂ → K. We

denote the counterparts of P1 and P2 acting on the polynomials on K̂ by P̂1 and P̂2, respectively.
For any boundary face F ∈ FB

h , we denote the pull-back of F through ΦK by F̂ , where K is the
only element such that F ⊂ ∂K. For all F ∈ FB

h , we apply a scaling argument, the multiplicative
trace inequality, and the Young inequality to get

‖v − P2(P1v)‖20,F . ‖h(v̂ − P̂2(P̂1v̂))‖20,F̂
. ‖h(v̂ − P̂2(P̂1v̂))‖20,K̂ + ‖h(v̂ − P̂2(P̂1v̂))‖0,K̂‖h∇̂(v̂ − P̂2(P̂1v̂))‖0,K̂
ℓ≥1

. ‖hℓ(v̂ − P̂2(P̂1v̂))‖20,K̂ + ‖hℓ−1∇̂(v̂ − P̂2(P̂1v̂))‖20,K̂ .

Scaling back to K, summing over all the elements, and using the locality of the operators P1 and
P2, as well the shape regularity of the meshes to insert the factor h−1/2ℓ, we deduce

‖h−1/2ℓ
(
v − P2(P1v)

)
‖20,Γ

.
∑

K∈Ωh with K∩∂Ω∈FB
h

‖h1/2ℓ2(v̂ − P̂2(P̂1v̂))‖20,K̂ + ‖h1/2∇̂(v̂ − P̂2(P̂1v̂))‖20,K̂

.
∑

K∈Ωh with K∩∂Ω∈FB
h

‖h−1ℓ2(v − P2(P1v))‖20,K + ‖∇(v − P2(P1v))‖20,K

(B.9),(B.8)

. ‖∇hv‖20,Ω + ‖h−1/2ℓJvK‖20,FI
h
,

whence the assertion follows.
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C Explicit error estimates

Proof of Corollary 7.5. We start by noting that, for the special case s = 1, the arguments below
show that Assumption 7.1 is valid with ε = O(h/p). By Theorem 7.2, this fixes η0.

To simplify the exposition, we restrict our attention to the case p ≥ s. The case p < s is a
pure h-version that is shown along similar lines. We shall nevertheless write min(p, s) = s at the
appropriate places.

By [6, Lemma 2.3], for any v ∈ Hs+1(Ω), Assumption 7.3 implies that the following estimate
for the pull-back v̂ := v|K ◦ ΦK is valid for all K ∈ Ωh:

‖v̂‖s+1,K̂ ≤ ch
s+1−3/2
K ‖v‖s+1,K . (C.1)

We also note that, for j ∈ {0, 1} and for each face F of element K with corresponding pull-back

F̂ := Φ−1
K (F ), bounds (3.1) imply

|v̂|j,K̂ ∼ h
j−3/2
K |v|j,K , |v̂|0,F̂ ∼ h−1

K |v|0,F , |∇̂v̂|0,F̂ ∼ |∇v|0,F . (C.2)

Properties (C.2) allow for transferring approximation results on the reference element K̂ to the
physical elements K (“scaling argument”). The last preliminary ingredient are p-explicit approxi-
mation results on the reference element for which we refer, e.g., to [43, Lemma B.3, Thm. B.4]. As

in, e.g., [41], combining the polynomial approximation results on K̂ with (C.2) and (C.1) allows
for showing that

inf
vh∈Sp,0(Ω,Ωh)

‖u− vh‖DG+(Ω) ≤ chmin(p,s)p−s+ 1
2 ‖u‖s+1,Ω. (C.3)

For the approximation of uext and m, we obviate the discussion of changes of variables in fractional
Sobolev norms by resorting to appropriate liftings. For the approximation of uext, let Uext ∈
Hs+1(Ω) be a lifting of uext with ‖Uext‖s+1,Ω . ‖uext‖s+ 1

2 ,Γ
. Since the mesh Ωh is a regular mesh

(see the discussion at the outset of Section 3.1), [43, Thm. B.4] provides an H1(Ω)-conforming
approximation with optimal convergence properties:

inf
vh∈Sp,1(Ω,Ωh)

‖Uext − vh‖1,Ω ≤ chmin(p,s)p−s‖Uext‖s+1,Ω ≤ chmin(p,s)p−s‖uext‖s+ 1
2 ,Γ
.

By taking the trace of vh on Γ, we obtain the desired approximation of uext. Finally, for m, let
M ∈ Hs(Ω) be a lifting of m ∈ Hs− 1

2 (Γ) with ‖M‖Hs(Ω) . ‖m‖
Hs− 1

2 (Γ)
. Let mh ∈ Sp−1,0(Γ,Γh)

be the L2(Γ)-projection of m into Sp−1,0(Γ,Γh). For each face F ∈ FB
h , denote by KF ∈ Ωh the

element that has F as a face. Using approximation results on the reference element K̂ and the
“scaling arguments” (C.2) we get

‖m−mh‖0,F ≤ ch
min(p,s)−1/2
K p−s+1/2‖M‖s,KF . (C.4)

By summation over all faces F ∈ FB
h , we arrive at

‖h1/2p−1(m−mh)‖0,Γ . hmin(p,s)p−s−1/2‖(m−mh)‖s− 1
2 ,Γ
.

The H− 1
2 (Γ)-estimate is obtained by a standard duality argument using the orthogonality provided

by the L2(Γ)-projection:

‖m−mh‖− 1
2 ,Γ

= sup
v∈H

1
2 (Γ)

|〈m−mh, v〉|
‖v‖ 1

2 ,Γ

= sup
v∈H

1
2 (Γ)

inf
vh∈Sp−1,0(Γ,Γh)

|〈m−mh, v − vh〉|
‖v‖ 1

2 ,Γ

. (C.5)

The infimum is estimated by taking vh as the L2(Γ)-projection of v into Sp−1,0(Γ,Γh). To estimate

v− vh, let V ∈ H1(Ω) be a lifting of v ∈ H
1
2 (Γ) with ‖V ‖1,Ω . ‖v‖ 1

2 ,Γ
. By the same arguments as

in (C.4) (taking s = 1), we have

‖v − vh‖0,F ≤ ch
min(p,1)−1/2
K p−1+1/2‖V ‖1,KF .
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Inserting this in (C.5) yields

‖m−mh‖− 1
2 ,Γ

. sup
v∈H

1
2 (Γ)

∑
F∈FB

h
‖m−mh‖0,F ‖v − vh‖0,F

‖v‖ 1
2 ,Γ

. sup
v∈H

1
2 (Γ)

1

‖v‖ 1
2 ,Γ

∑

F∈FB
h

p−sh
min(p,s)−1/2+1−1/2
K ‖M‖s,KF ‖V ‖1,KF

. hmin(p,s)p−s‖m‖s− 1
2 ,Γ
,

which completes the proof.

32


	1 Introduction
	2 Helmholtz model problem, boundary integral operators, and mortar coupling
	2.1 Helmholtz model problem
	2.2 Boundary integral operators
	2.3 Mortar coupling

	3 DGFEM-BEM mortar coupling
	3.1 DGFEM discretization of (2.6)
	3.2 BEM discretization of (2.7) and discretization of (2.8)
	3.3 Complete discrete formulation

	4 A Gårding inequality
	5 Continuity of Th( (,,), (,,))
	6 Adjoint problem
	7 Error analysis
	8 Numerical results
	9 Conclusions
	A Consistency of method (3.12)
	B An hp-stable, discontinuous-to-continuous reconstruction operator on curvilinear simplicial meshes
	C Explicit error estimates

