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Two time-stepping schemes for sub-diffusion equations with

singular source terms

Han Zhou∗ Wenyi Tian†

Abstract

Singular source terms in sub-diffusion equations may lead to the unboundedness of so-

lutions, which will bring a severe reduction of convergence order of existing time-stepping

schemes. In this work, we propose two efficient time-stepping schemes for solving sub-

diffusion equations with a class of source terms mildly singular in time. One discretization

is based on the Grünwald-Letnikov and backward Euler methods. First-order error estimate

with respect to time is rigorously established for singular source terms and nonsmooth ini-

tial data. The other scheme derived from the second-order backward differentiation formula

(BDF) is proved to possess second-order accuracy in time. Further, piecewise linear finite

element and lumped mass finite element discretizations in space are applied and analyzed

rigorously. Numerical investigations confirm our theoretical results.

Keywords: sub-diffusion equation, singular source term, convolution quadrature, back-

ward differentiation formula, linear finite element, lumped mass finite element

AMS subject classifications: 65M06, 65M60, 65M15, 35R11, 35R05

1 Introduction

This paper concerns with the construction of efficient discrete schemes for the sub-diffusion

equation with a singular source term in time, that is

CDα
t u(x, t)−∆u(x, t) = f(x, t), (x, t) ∈ Ω× (0, T ], (1.1)

together with the Dirichlet boundary condition and the nonsmooth initial condition

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,
(1.2)

where Ω ⊂ Rd, d = 1, 2, and u0(x) belongs to L2(Ω). The notation CDα
t u denotes the α-th

(0 < α < 1) order left Caputo derivative of u with respect to variable t, which is defined by

CDα
t u(t) =

1

Γ(1− α)

∫ t

0
(t− τ)−αu′(τ)dτ,

where Γ(·) represents the Gamma function given by Γ(s) =

∫ ∞

0
ts−1e−tdt with ℜ(s) > 0.

Throughout this paper, we will restrict our consideration to the singular source term f(x, t) ∈
L1(0, T ;L2(Ω)).
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Time-fractional diffusion equations (0 < α < 1) were formulated in [28] and used to simulate

anomalous diffusion phenomena in physics recently [25]. In contrast to some regularity results

for classical second-order parabolic problems, extensive analyses have shown that the solution of

a time-fractional evolution problem usually exhibits a weakly singular property near the origin

even if the given data are sufficiently smooth with respect to time [26, 3, 27, 29].

In terms of numerical approximations to this type of problems, most high-order time dis-

cretization methods were originally proposed by assuming that the solutions are relatively regular

for temporal variable. For instance, the so-called L1 and L1-2, etc, schemes based on contin-

uous piecewise polynomial interpolation were separately proposed and analyzed theoretically

in [19, 8, 24]. Furthermore, for sub-diffusion equations with nonsmooth initial values, applica-

tions of the time-stepping schemes from above may lead to the order reduction to first order in

time [13], and the optimal convergence order can be preserved by a correction approach in [31].

However, the convergence order deteriorates significantly near the initial layer [29]. Then the

L1 type schemes on graded meshes named after [2] were designed and analyzed rigorously to

improve the order of accuracy [29, 18, 17].

On the other hand, convolution quadrature (CQ) based on linear multistep methods was pro-

posed and analyzed in the pioneering work [20]. In particular, first- and second-order fractional

backward differentiation formulae were used as time discretizations of fractional diffusion-wave

equations [23, 5]. To restore the order of convergence, a strategy with the help of discrete Laplace

transform was proposed in [23] by choosing proper weight coefficients with respect to the source

term and initial values in the discrete schemes. Furthermore, this approach was applied in [16]

to develop proper corrected schemes based on fractional k-step BDFs for approximating both

sub-diffusion and fractional diffusion-wave equations in time. It is proved that the kth-order

convergence rate can be achieved if the source terms possess sufficient regularity in time.

An alternative approach by correction was applied in [5] to overcome the order reduction.

This idea of construction may originate from [21, 22], which interpreted convolutions with non-

integrable kernels as equivalent Hadmard-finite integrals [6]. It was also used in [14], where CQ

methods based on backward Euler (BE) and second-order backward difference (SBD) were revis-

ited and developed for time discretizations of both sub-diffusion and diffusion-wave equations.

In addition, the numerical results in [14, Table 5] showed a second-order scheme in solving the

sub-diffusion equation with certain continuous source term in time, while the mechanism behind

was unknown yet.

To the best of our knowledge, most existing time-stepping schemes for equation (1.1) are lim-

ited to the source term possessing certain degree of smoothness at time t = 0. For instance, error

estimates for corrected BE and SBD schemes in [14, 16] were established under the conditions

‖f(0)‖ <∞,
∫ t
0 (t−s)α−1‖f ′(s)‖ds <∞ and ‖f(0)‖ <∞, ‖f ′(0)‖ <∞,

∫ t
0 (t−s)α−1‖f ′′(s)‖ds <

∞, respectively. For corrected high-order schemes in [16], additional regularity conditions on

source terms were required to restore high-order accuracy. However, those smoothness conditions

are not suitable for singular source terms considered in this paper, such as f(x, t) = tµg(x) with

−1 < µ < 0. Thus the convergence orders of the existing time-stepping schemes are completely

lost and far below one.

As indicated above, singular source terms will make the problem much more difficult and

challenging both in designing efficient time-stepping schemes and establishing error estimates.

In this paper, based on the previous works [14, 5, 21, 22], we dedicate to designing efficient

numerical schemes to solve (1.1)-(1.2) with the singular source terms f(x, t) ∈ L1(0, T ;L2(Ω))

satisfying Assumption 1 as well as nonsmooth initial values. First, we investigate the existence

and uniqueness of weak solutions of the problem in the space C((0, T ];L2(Ω)). Furthermore, by
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the works on FEM and lumped mass FEM in [4, 12, 11, 23, 30], we applied these two spatial

discretization methods for the problem (1.1)-(1.2). After providing a possible understanding on

the efficiency of the approach in [21, 22], we propose two new time-stepping schemes (4.9) and

(4.32), named by GLBE and FBDF22 schemes, respectively.

Our main contribution consists of the following aspects.

- The well-posedness and regularity of solutions of (1.1)-(1.2) with the singular source term

f(x, t) satisfying Assumption 1 are investigated. Error estimates of semidiscrete continuous

piecewise linear FEM and lumped mass FEM are rigorously established.

- For f(x, t) satisfying Assumption 1, two new time-stepping schemes, named by GLBE

(4.9) and FBDF22 (4.32), are proposed. Error estimates for the first-order and second-

order accurate schemes are rigorously established, respectively. This largely improves the

convergence order of the previous time-stepping schemes in solving (1.1)-(1.2) with singular

source terms.

- Due to the singularity of the source term in time, the discrete Laplace transform technique

commonly used in existing works can not be employed for analyzing the fully discrete

schemes proposed in this paper. Then we develop a new analysis technique based on the

Laplace transform of the source term rather than its generating function to estimate the

errors of the proposed schemes (4.9) and (4.32).

The rest of this paper is organized as follows. In Section 2, we study the existence and

uniqueness of the weak solutions in certain proper space for the problem (1.1)-(1.2) with singular

source terms with respect to time. In Section 3, the continuous piecewise linear FEM and lumped

mass FEM are used for spatial discretization. Semidiscrete error estimates of both methods are

established. In Section 4, two new time-stepping schemes based on first- and second-order CQ-

BDFs were proposed for temporal discretization. Error estimates for fully discrete solutions are

rigorously established. Section 5 presents several numerical examples to verify the theoretical

convergence rates in both spatial and temporal directions as estimated in Sections 3 and 4.

2 Well-posedness and regularity of solutions

As discussed in [1, 27], the well-posedness and regularity of problem (1.1)-(1.2) have been well

established for f(x, t) ∈ Lp(0, T ;L2(Ω)) with p > 1. In this section, we will revisit the problem

and investigate the existence, uniqueness and regularity of its solution with a singular source

term satisfying Assumption 1.

Assumption 1. The singular source term f(x, t) in (1.1) is assumed to be in L1(0, T ;L2(Ω))

such that its Laplace transform with respect to time t is analytic within the domain Σθ given by

(2.2) and satisfies ‖f̂(s)‖ ≤ c|s|−µ−1 for −1 < µ < 0.

For instance, the singular source term f(x, t) = tµg(x) with −1 < µ < 0 and g(x) ∈ L2(Ω)

satisfies the conditions in Assumption 1.

The Laplace operator ∆ is symmetric, then satisfies the following resolvent estimate [30]

‖
(
s−∆

)−1‖ ≤M |s|−1, ∀ s ∈ Σθ (2.1)

for θ ∈ (π/2, π), where Σθ is a sector of the complex plane C given by

Σθ =
{
z ∈ C \ {0} : |argz| < θ

}
. (2.2)
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First, we define a weak solution of the problem (1.1)-(1.2) analogous to that in [7, Chapter

7.1.1]. Throughout this paper, the notation (·, ·) denotes the inner product in L2(Ω).

Definition 2.1. For 0 < α < 1, we call a function u ∈ L1(0, T ;H1
0 (Ω)) with CDα

t u ∈
L1(0, T ;H−1(Ω)) a weak solution of (1.1)-(1.2) provided that

〈CDα
t u, ϕ〉+ (∇u,∇ϕ) = (f, ϕ), ∀ ϕ ∈ H1

0 (Ω),

u(x, 0) = u0(x)
(2.3)

holds for a.e. t ∈ (0, T ].

A weak solution defined by Definition 2.1 satisfies (1.1) for a.e. t ∈ (0, T ]. Note that

the operator −∆ is symmetric, and its eigenvalues and the corresponding eigenfunctions on

the domain Ω with a homogeneous Dirichlet boundary condition are denoted by {λk}+∞
k=1 and

{ϕk}+∞
k=1, where 0 < λ1 ≤ λ2 ≤ · · · , and −∆ϕk = λkϕk in Ω and ϕk = 0 on ∂Ω. Then {ϕk}+∞

k=1

makes up an orthonormal basis in L2(Ω). If u(x, t) satisfies Definition 2.1, then by substituting

u(x, t) =
∑+∞

k=1 uk(t)ϕk(x) into the variational form (2.3) and taking ϕ = ϕk, k = 1, 2, · · · ,
we may obtain CDα

t uk(t) + λkuk(t) = (f, ϕk). Multiplying it by ϕk(x) and summing over all

k = 1, 2, · · · yields the equation (1.1) for a.e. t ∈ (0, T ].

The existence, uniqueness and regularity of the solution to the problem (1.1)-(1.2) are stated

in the following theorems.

Theorem 2.1. Let u0(x) ≡ 0 and f(x, t) in (1.1) satisfy Assumption 1. Then the problem

(1.1)-(1.2) has a unique solution u ∈ C((0, T ];L2(Ω)), which satisfies

‖u(t)‖ ≤ ctα+µ, −1 < µ < 0, t > 0. (2.4)

Proof. Taking Laplace transform on (1.1) with u0(x) ≡ 0 arrives at û(x, s) = (sα−∆)−1f̂(x, s).

Let ũ(x, t) denote the inverse Laplace transform of û(x, s), then it follows that

ũ(x, t) =
1

2πi

∫

Γ
est(sα −∆)−1f̂(x, s)ds, (2.5)

where

Γ = {σ + iy : σ > 0, y ∈ R}. (2.6)

By the resolvent estimate in (2.1) and the Cauchy’s theorem, Γ in (2.5) can be replaced by

Γθ
ε ∪ Sε, where θ ∈ (π/2, π) and

Γθ
ε ∪ Sε = {ρe±iθ : ρ ≥ ε} ∪ {εeix : −θ ≤ x ≤ θ}. (2.7)

Due to the condition in Assumption 1, it holds that ‖f̂(x, s)‖ ≤ c|s|−µ−1 with −1 < µ < 0.

Let ε = t−1 in (2.7), then an estimate for ũ(x, t) in (2.5) can be obtained as follows

‖ũ(x, t)‖ ≤ c

∫

Γθ
ε∪Sε

|est|‖(sα −∆)−1‖‖f̂(x, s)‖|ds|

≤ c

∫

Γθ
ε∪Sε

|est||s|−α−µ−1|ds|

≤ c

(∫ +∞

ε
eρt cos θρ−α−µ−1dρ+ ε−α−µ

∫ θ

−θ
eεt cos ξdξ

)

≤ ctα+µ.

(2.8)
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Next we prove that ũ is continuous with respect to t ∈ (0, T ]. For any t1, t2 > 0, using (2.5),

we have

‖ũ(x, t1)− ũ(x, t2)‖ ≤ c
∥∥∥
∫

Γθ
ε∪Sε

(
est1 − est2

)
(sα −∆)−1f̂(x, s)ds

∥∥∥

≤ c

∫

Γθ
ε∪Sε

|est1 − est2 ||s|−α−µ−1|ds|

≤ c|t1 − t2|max{tα+µ−1
1 , tα+µ−1

2 },

(2.9)

where the last inequality holds by the result

|est1 − est2 | =
∣∣∣
∫ t1

t2

seszdz
∣∣∣ ≤

∣∣∣
∫ t1

t2

|s||esz|dz
∣∣∣ ≤ m|s||t1 − t2|

with m = max{|est1 |, |est2 |}. The estimate (2.9) implies the continuity of ũ(x, t) with respect to

t > 0.

Recall that any weak solution u defined by (2.3) satisfies (1.1) and (1.2) for a.e. t ∈ (0, T ],

then it has the same Laplace transform as that of ũ, which implies u = ũ for a.e. t ∈ (0, T ].

Therefore, the problem (1.1)-(1.2) has a unique weak solution in the space C((0, T ];L2(Ω)), and

the result (2.4) follows from (2.8).

For the case u0 ∈ L2(Ω) and f(x, t) ≡ 0, the corresponding result can be obtained analogous

to that in [27].

Theorem 2.2 ([27]). Let u0 ∈ L2(Ω) and f ≡ 0 in the problem (1.1)-(1.2). Then there exists a

unique weak solution u ∈ C([0, T ];L2(Ω)) such that

max
0≤t≤T

‖u(t)‖ ≤ c‖u0‖. (2.10)

3 Spatially semidiscrete FEM

In this section, we establish error estimates for the semidiscrete Galerkin FEM and lumped mass

FEM for the sub-diffusion equation (1.1)-(1.2) with a singular source term f(x, t) satisfying

Assumption 1.

3.1 Galerkin FEM

Let Th be a regular triangulation of Ω into d-simplexes and h = max
T∈Th

diam(T ) the maximal

diameter, then we denote Xh ⊂ H1
0 (Ω) as a continuous piecewise linear finite element space on

Th. The semidiscrete problem by finite element for (1.1)-(1.2) is to find uh(t) ∈ Xh satisfying

(CDα
t uh(t), ϕ) + (∇uh(t),∇ϕ) = (f(t), ϕ), ∀ ϕ ∈ Xh,

uh(0) = Phu
0,

(3.1)

where the operator Ph : L2(Ω) → Xh denotes the L2-projection onto the finite element space

Xh, defined by

(Phϕ,ψ) = (ϕ,ψ), ∀ ψ ∈ Xh.

We further introduce the operator ∆h : Xh → Xh defined by

− (∆hϕ,ψ) = (∇ϕ,∇ψ), ∀ ϕ,ψ ∈ Xh. (3.2)
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Then the semidiscrete form of (3.1) can be rewritten in the form of

CDα
t uh(t)−∆huh(t) = fh(t), ∀ t > 0, (3.3)

with uh(0) = Phu
0 and fh = Phf . The Laplace transform on (3.3) implies

sαûh(s)−∆hûh(s) = sα−1Phu
0 + f̂h(s). (3.4)

Then by the inverse Laplace transform together with the estimate ‖(sα −∆h)
−1‖ ≤M |s|−α for

s ∈ Σθ with θ ∈ (π/2, π) [30], the solution uh(t) for t > 0 can be represented by

uh(t) =
1

2πi

∫

Γθ
ε∪Sε

est(sα −∆h)
−1
(
sα−1Phu

0 + f̂h(s)
)
ds. (3.5)

Next we establish the error estimate of the semidiscrete scheme (3.1) with homogeneous

initial data and the singular source term f satisfying Assumption 1.

Theorem 3.1. Assume that u0(x) ≡ 0 and f(x, t) in (1.1) satisfies Assumption 1. Let u and

uh be the solutions to (2.3) and (3.1), respectively. Then we have

‖u(t)− uh(t)‖ ≤ ctµh2, −1 < µ < 0, t > 0. (3.6)

The proof of Theorem 3.1 is presented in Appendix A.1. For the case u0(x) ∈ L2(Ω) and

f(x, t) ≡ 0, the corresponding result estimated in [12, 15] is ‖u(t)− uh(t)‖ ≤ ch2| log h|t−α‖u0‖,
which can be improved to be ‖u(t)−uh(t)‖ ≤ ch2t−α‖u0‖ removing | log h| as mentioned in [15].

The improved result can be obtained by using the similar argument in the proof of Theorem

3.1.

Theorem 3.2. Assume u0(x) ∈ L2(Ω) and f(x, t) ≡ 0 in (1.1)-(1.2). Let u and uh be the

solutions to (2.3) and (3.1), respectively. Then we have

‖u(t) − uh(t)‖ ≤ ct−α‖u0‖h2, t > 0. (3.7)

3.2 Lumped mass FEM

In this subsection, we consider the more practical lumped mass FEM [30] and estimate the

corresponding discretization errors. The semidiscrete problem by the lumped mass FEM for

(1.1)-(1.2) is to find ūh(t) ∈ Xh satisfying

(CDα
t ūh(t), ϕ)h + (∇ūh(t),∇ϕ) = (f(t), ϕ), ∀ ϕ ∈ Xh,

ūh(0) = Phu
0,

(3.8)

where (·, ·)h is defined by

(v,w)h :=
∑

τ∈Th

Qτ,h(vw) with Qτ,h(g) =
|τ |
d+ 1

d+1∑

j=1

g(xτj ),

and {xτj }d+1
j=1 are the vertices of the d-simplex τ ∈ Th. Define the operator ∆̄h : Xh → Xh by

− (∆̄hϕ,ψ)h = (∇ϕ,∇ψ), ∀ ϕ,ψ ∈ Xh, (3.9)

and a projection operator P̄h : L2(Ω) → Xh by

(P̄hf, ψ)h = (f, ψ), ∀ ψ ∈ Xh.

Then the semidiscrete scheme (3.8) can be rewritten in the form of

CDα
t ūh(t)− ∆̄hūh(t) = f̄h(t), ∀ t > 0, (3.10)

with ūh(0) = Phu
0 and f̄h = P̄hf .
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Theorem 3.3. Assume that u0(x) ≡ 0 and f(x, t) in (1.1) satisfies Assumption 1. Let u(t) and

ūh(t) be the solutions to (2.3) and (3.8), respectively. Then we have

‖u(t)− ūh(t)‖ ≤ ctµh, −1 < µ < 0, t > 0. (3.11)

Moreover, if the quadrature error operator Qh defined by (A.4) satisfies (A.6), then we have

‖u(t)− ūh(t)‖ ≤ ctµh2, −1 < µ < 0, t > 0. (3.12)

The proof of Theorem 3.3 is given in Appendix A.2. For u0(x) ∈ L2(Ω) and f(x, t) ≡ 0,

the error estimate for the lumped mass finite element scheme (3.8) has been considered in [12].

In the following theorem, we provide an improved result without the term | log h| by using the

similar argument in the proof of Theorem 3.3.

Theorem 3.4. Assume u0(x) ∈ L2(Ω) and f(x, t) ≡ 0. Let u(t) and ūh(t) be the solutions to

(3.1) and (3.8), respectively. Then we have the error u(t)− ūh(t) satisfies

‖u(t)− ūh(t)‖ ≤ ct−α‖u0‖h, t > 0. (3.13)

Moreover, if the quadrature error operator Qh defined by (A.4) satisfies (A.6), then we have

‖u(t) − ūh(t)‖ ≤ ct−α‖u0‖h2, t > 0. (3.14)

4 Time discretization

In this section, we construct two fully discrete schemes for solving (1.1)-(1.2) with the singular

source term f(x, t) satisfying Assumption 1 and establish the error estimates in time. Without

loss of generality, our discussion is mainly on the semidiscrete scheme (3.3). Analogous results

for the lump mass FEM can be obtained by the same technique.

If the singular source term satisfies Assumption 1, then the result of Theorem 2.1 reveals

that the analytic solution to the problem (1.1)-(1.2) will be unbounded near the origin as well

for −1 < µ < −α. Singularity of the source term and the solution will bring a severe influence

on the accuracy of numerical results. We present an example to illustrate the phenomenon of

order reduction of the schemes based on backward Euler (BE) and second-order BDF (SBD) in

[14, 16].

Example 4.1. Consider the fractional ordinary differential equation (fODE) CDαu(t) = λu(t)+

f(t) for t ∈ (0, T ], with u0 = 0 and f(t) = Γ(ν+1)
Γ(ν+1−α) t

ν−α−λtν, where α−1 < ν < 0 and λ = −1.

The exact solution is u(t) = tν.

The existing corrected BE and uncorrected SBD schemes (see [14, 16]) for the fODE in

Example 4.1 are given by

τ−α
n∑

j=0

σj
(
un−j − u0

)
= λun + f(tn) (4.1)

for 1 ≤ n ≤ N , where τ = T/N and σj being the coefficients of (1 − ξ)α or (32 − 2ξ + 1
2ξ

2)α.

Note that the term f(t) in Example 4.1 is unbounded at t = 0, then the corrected SBD scheme

in [14, 16] is not applicable to Example 4.1. Thus the order of accuracy of the uncorrected SBD

scheme for the fODE in Example 4.1 can not exceed one.
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Table 1: Errors and convergence rates for Example 4.1 at T = 1 by the corrected BE scheme

(4.1).

α ν N = 20 40 80 160 320 rate

0.1 -0.1 2.7636E-03 1.5279E-03 8.4788E-04 4.7180E-04 2.6310E-04 ≈ 0.85

-0.5 2.0762E-02 1.5103E-02 1.1052E-02 8.1204E-03 5.9843E-03 ≈ 0.45

-0.9 4.1489E-01 4.0265E-01 3.9146E-01 3.8112E-01 3.7153E-01 ≈ 0.04

0.5 -0.1 4.6742E-02 3.3543E-02 2.4446E-02 1.8019E-02 1.3391E-02 ≈ 0.45

-0.3 1.1258E-01 9.2906E-02 7.7893E-02 6.6046E-02 5.6447E-02 ≈ 0.25

-0.5 2.8959E-01 2.7507E-01 2.6512E-01 2.5824E-01 2.5345E-01 ≈ 0.05

0.7 -0.1 1.3185E-01 1.1051E-01 9.3940E-02 8.0587E-02 6.9526E-02 ≈ 0.23

-0.2 1.9793E-01 1.7798E-01 1.6231E-01 1.4934E-01 1.3817E-01 ≈ 0.13

-0.3 2.9962E-01 2.8907E-01 2.8275E-01 2.7895E-01 2.7666E-01 ≈ 0.03

Table 2: Errors and convergence rates for Example 4.1 at T = 1 by the uncorrected SBD scheme

(4.1).

α ν N = 20 40 80 160 320 rate

0.1 -0.1 2.5725E-03 1.4344E-03 8.0166E-04 4.4881E-04 2.5163E-04 ≈ 0.84

-0.5 2.0097E-02 1.4781E-02 1.0893E-02 8.0416E-03 5.9451E-03 ≈ 0.44

-0.9 4.1427E-01 4.0236E-01 3.9131E-01 3.8105E-01 3.7149E-01 ≈ 0.04

0.5 -0.1 4.4559E-02 3.2453E-02 2.3900E-02 1.7746E-02 1.3254E-02 ≈ 0.44

-0.3 1.0972E-01 9.1482E-02 7.7180E-02 6.5688E-02 5.6267E-02 ≈ 0.24

-0.5 2.8695E-01 2.7376E-01 2.6447E-01 2.5791E-01 2.5328E-01 ≈ 0.05

0.7 -0.1 1.2845E-01 1.0873E-01 9.3022E-02 8.0116E-02 6.9286E-02 ≈ 0.22

-0.2 1.9449E-01 1.7619E-01 1.6139E-01 1.4887E-01 1.3792E-01 ≈ 0.12

-0.3 2.9664E-01 2.8754E-01 2.8198E-01 2.7856E-01 2.7646E-01 ≈ 0.03

The errors eN defined by |uN − u(T )| with various N such that Nτ = T are presented in

Tables 1 and 2. Convergence rates are checked by the formula rate = log2 (eN/e2N ) with an

average. As shown in Tables 1 and 2, the corrected BE and uncorrected SBD schemes in (4.1)

both fail to restore first order of accuracy for Example 4.1.

To tackle the above disadvantages of the existing time-stepping schemes, we intend to con-

sider a reformulation of the semidiscrete scheme (3.3), and propose two new fully discrete schemes

in the next subsections to preserve the optimal first and second order of accuracy.

4.1 GLBE scheme

First, we define Uh(t) and Fh(t) by
∫ t
0 uh(ξ)dξ and

∫ t
0 fh(ξ)dξ, respectively. Then for integrable

uh and fh it follows that

DUh(t) = uh(t), Uh(0) = 0 (4.2)

and

DFh(t) = fh(t), Fh(0) = 0 (4.3)

for a.e. t > 0, where D := ∂/∂t. Next, we substitute (4.2) and (4.3) into (3.3) and get

CDα
t DUh(t) = ∆hDUh(t) +DFh(t). (4.4)
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Further, integrating (4.4) from 0 to t and using the semigroup property of fractional integrals

arrive at
CDα

t Uh(t) = ∆hUh(t) + Fh(t) +
t1−α

Γ(2− α)
uh(0), Uh(0) = 0. (4.5)

Together with (4.2)-(4.3), the semidiscrete scheme (4.5) can be viewed as an equivalent form of

(3.3).

Given a uniform partition of the interval [0, T ] by

0 = t0 < t1 < · · · < tN−1 < tN = T.

The step size of the uniform mesh is denoted by τ = T/N and tn = nτ for 0 ≤ n ≤ N .

We introduce Ũh(t) and ũh(t) as approximations to Uh(t) and uh(t) solving (4.5) and (4.2),

respectively. For t > 0, Ũh(t) satisfies the difference equation

Dα
τ Ũh(t) = ∆hŨh(t) + Fh(t) +

t1−α

Γ(2− α)
uh(0), (4.6)

and is prescribed by zero otherwise, where Fh(t) satisfying (4.3). Here Dα
τ denotes the well-

known Grünwald-Letnikov (GL) or fractional backward Euler difference operator, which is writ-

ten as

Dα
τ Ũh(t) = τ−α

∞∑

j=0

σjŨh(t− jτ), (4.7)

where {σj , j ≥ 0} are coefficients of a generating function such that
∞∑
j=0

σjξ
j = (1 − ξ)α.

Moreover, we denote Dτ by the backward Euler (BE) operator such that Dτ Ũh(t) = τ−1(Ũh(t)−
Ũh(t− τ)), and let

ũh(t) = Dτ Ũh(t). (4.8)

This implies ũh(t) = 0 for t ≤ 0 as well. Then choosing t = tn for n = 1, · · · , N in (4.6) and

(4.8), we propose a fully discrete scheme, named by GLBE and of the form

τ−α
n∑

j=0

σjŨ
n−j
h = ∆hŨ

n
h + Fn

h +
t1−α
n

Γ(2− α)
uh(0),

ũnh = τ−1
(
Ũn
h − Ũn−1

h

)
,

(4.9)

where ũnh := ũh(tn), Ũ
n
h := Ũh(tn) and F

n
h := Fh(tn) with Fh(·) satisfying (4.3).

We illustrate the superiority of the above method by Example 4.1, where the fODE is now

discretized by

τ−α
n∑

j=0

σjUn−j = λUn + F (tn) +
t1−α
n

Γ(2− α)
u0 and un = τ−1 (Un − Un−1) . (4.10)

Here F (t) =
∫ t
0 f(ξ)dξ. From Table 3, the first-order accuracy of the scheme (4.10) can be

observed for Example 4.1 with various α ∈ (0, 1) and ν ∈ [α− 1, 0), where the convergence rates

are checked by the formula rate = log2 (eN/e2N ) with an average. In contrast, as shown in

Table 1, the corrected BE scheme (4.1) fails to restore the first-order accuracy when the source

term is singular near the origin.

We next establish the fully discrete error estimates by means of Laplace transform. By

taking Laplace transform on (4.2),(4.3) and (4.5), the semidiscrete solution uh(t) in (3.5) can

be rewritten as

uh(t) =
1

2πi

∫

Γθ
ε∪Sε

estsÛh(s)ds, (4.11)
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Table 3: Errors and convergence rates for Example 4.1 at T = 1 by the GLBE scheme in (4.10).

α ν N = 20 40 80 160 320 rate

0.1 -0.1 2.3849E-03 1.1760E-03 5.8379E-04 2.9082E-04 1.4513E-04 ≈ 1.01

-0.5 1.2491E-02 6.1250E-03 3.0285E-03 1.5042E-03 7.4894E-04 ≈ 1.01

-0.9 3.3167E-02 1.6092E-02 7.8995E-03 3.9006E-03 1.9320E-03 ≈ 1.03

0.5 -0.1 1.0049E-03 4.0389E-04 1.6766E-04 7.1469E-05 3.1188E-05 ≈ 1.25

-0.3 6.8081E-03 3.1971E-03 1.5226E-03 7.3162E-04 3.5376E-04 ≈ 1.07

-0.5 1.6924E-02 8.2275E-03 4.0464E-03 2.0030E-03 9.9517E-04 ≈ 1.02

0.7 -0.1 8.2958E-04 2.1682E-04 2.8495E-05 1.9119E-05 2.3754E-05 ≈ 1.28

-0.2 4.7144E-03 2.1506E-03 9.9154E-04 4.5987E-04 2.1400E-04 ≈ 1.12

-0.3 1.0252E-02 5.0163E-03 2.4778E-03 1.2303E-03 6.1272E-04 ≈ 1.02

where Γθ
ε ∪ Sε is defined by (2.7) and

Ûh(s) = (sα −∆h)
−1
(
F̂h(s) + sα−2uh(0)

)
. (4.12)

In addition, in view of the definition of Fh satisfying (4.3) and Assumption 1, we get

‖F̂h(s)‖ = |s|−1‖f̂h(s)‖ = |s|−1‖Phf̂(s)‖ ≤ |s|−1‖f̂(s)‖ ≤ c|s|−µ−2. (4.13)

Since Ũh(t) and ũh(t) are solutions of (4.6) and (4.8), respectively, we have the representa-

tions Ũh(x, t) =
M−1∑
j=1

Ũh
j (t)ϕ

h
j (x) and ũh(x, t) =

M−1∑
j=1

ũhj (t)ϕ
h
j (x), where ϕ

h
j is the eigenfunction

corresponding to the eigenvalue λhj of the operator −∆h such that −(∆hϕ
h
j , ψ) = λhj (ϕ

h
j , ψ) for

any ψ ∈ Xh and each 1 ≤ j ≤ M − 1. Then substituting expressions of ũh and Ũh into (4.6)

and (4.8) yields that

ũhj (t) =

∞∑

k=0

pkH(t− tk)
(
Fj(t− tk) + vj(t− tk)

)
, 1 ≤ j ≤M − 1, t > 0, (4.14)

where Fj(t) = (Fh(t), ϕ
h
j ), vj(t) = v(t)(u0, ϕh

j ) with v(t) = t1−α/Γ(2−α), and H(t) denotes the

Heaviside function which equals to one for t ≥ 0 and zero otherwise. The coefficients {pk}∞k=0

are generated by the power series of ω(z)
(
ω(z)α + λhj

)−1
with the notation ω(z) := τ−1(1− z).

From the fact that Fh(t) and v(t) are both continuous functions in time and zero at t = 0, it

follows that ũhj (t) is continuous for each j when t > 0. Therefore, we can rewrite ũh in (4.8) as

ũh(t) =
1

2πi

∫

Γ
estω(e−sτ )̂̃Uh(s)ds, (4.15)

where Γ is given by (2.6). Moreover, with Ũh(t) = 0 for t ≤ 0, we have from (4.7) that

̂Dα
τ Ũh(s) = τ−α

∞∑

j=0

σj

∫ +∞

0
e−stŨh(t− jτ)dt = ω(e−sτ )α̂̃Uh(s),

and then it yields from (4.6) that

̂̃Uh(s) =
(
ω(e−sτ )α −∆h

)−1(
F̂h(s) + sα−2uh(0)

)
. (4.16)

Theorem 4.1. Assume that u0(x) ≡ 0 and f(x, t) in (1.1) satisfies Assumption 1. Let uh and

ũnh be the solutions to (3.3) and (4.9), respectively. Then we have

‖uh(tn)− ũnh‖ ≤ c
(
tα+µ−1
n τ + tα−2

n τ2+µ
)
, − 1 < µ < 0, 1 ≤ n ≤ N. (4.17)
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Proof. From (4.6), (4.8), (4.9) and (4.15), we can represent the solution ũnh to (4.9) as

ũnh = ũh(tn) = lim
L→+∞

1

2πi

∫ σ+iL

σ−iL
estnω(e−sτ )̂̃Uh(s)ds. (4.18)

Then for any L > 0 and fixed τ > 0, there exists N̄ ∈ N+ such that
(
2N̄ + 1

)
π/τ ≤ L ≤

(2N̄ + 3)π/τ , and the integral in (4.18) can be divided into three parts

∫ σ+iL

σ−iL

estnω(e−sτ )̂̃Uh(s)ds =
( ∫ σ+iL

σ+i(2N̄+1)π

τ

+

∫ σ+i(2N̄+1)π

τ

σ−i(2N̄+1)π

τ

+

∫ σ−i(2N̄+1)π

τ

σ−iL

)
estnω(e−sτ )̂̃Uh(s)ds.

(4.19)

For the first integral in (4.19), it follows from (4.16), (4.13), Lemmas B.1 and B.2 that

‖
∫ σ+iL

σ+i(2N̄+1)π/τ
estnω(e−sτ )̂̃Uh(s)ds‖ ≤ c

∫ σ+i(2N̄+3)π/τ

σ+i(2N̄+1)π/τ
|estn ||ω(e−sτ )|1−α|s|−µ−2|ds|

≤ c

∫ (2N̄+3)π/τ

(2N̄+1)π/τ
eσtn(σ + y − 2N̄π/τ)1−αy−µ−2dy

≤ c
τα+µ

(2N̄ + 1)µ+2
eσtn ,

where σ = t−1
n is chosen. Then the above bound tends to zero when L → +∞ (N̄ → +∞).

Analogous result holds for the third integral in (4.19) as well.

Next we consider the estimate of the second integral in (4.19). First, some integral curves

are introduced as follows:

Γθ
ε,τ = {ρe±iθ : ε ≤ ρ ≤ π/(τ sin θ)}, (4.20)

Γ+ = {x+ i(2N̄ + 1)π/τ : π/τ cot θ ≤ x ≤ σ}, (4.21)

Γ− = {x− i(2N̄ + 1)π/τ : π/τ cot θ ≤ x ≤ σ}. (4.22)

As shown in (4.16), ̂̃Uh(s) is analytic in the sector Σθ. Using the Cauchy’s theorem and the

periodic property of exponential function, we obtain

∫ σ+i(2N̄+1)π/τ

σ−i(2N̄+1)π/τ
estnω(e−sτ )̂̃Uh(s)ds

=

∫

Γ−∪Γ+

estnω(e−sτ )̂̃Uh(s)ds+

∫

Γθ
ε,τ∪Sε

estnω(e−sτ )̂̃Uh(s)ds

+
N̄∑

p=−N̄
p 6=0

∫

Γθ
0,τ

e(s+i2pπ/τ)tnω(e−sτ )
(
ω(e−sτ )α −∆h

)−1
F̂h(s+ i2pπ/τ)ds.

(4.23)

Moreover, by taking σ = t−1
n , we have

‖
∫

Γ−∪Γ+

estnω(e−sτ )̂̃Uh(s)ds‖ ≤ c
( ∫

Γ−

|estn ||ω(e−(s+i2N̄π/τ)τ )|1−α|s|−µ−2|ds|

+

∫

Γ+

|estn ||ω(e−(s−i2N̄π/τ)τ )|1−α|s|−µ−2|ds|
)

≤ c

∫ σ

π/τ cot θ
extn(|x|+ π/τ)1−α|(2N̄ + 1)π/τ |−µ−2dx

≤ c
τα+µ

(2N̄ + 1)µ+2
eσtn ,
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which tends to zero for L → +∞ (N̄ → +∞). Hence, from (4.11), (4.18) and (4.23), it follows

that

uh(tn)− ũnh =

∫

Γθ
ε\Γ

θ
ε,τ

estnsÛh(s)ds+

∫

Γθ
ε,τ∪Sε

estn
(
sÛh(s)− ω(e−sτ )̂̃Uh(s)

)
ds

−
+∞∑

p=−∞
p 6=0

∫

Γθ
0,τ

e(s+i2πp/τ)tnω(e−sτ )(ω(e−sτ )α −∆h)
−1F̂h(s + i2πp/τ)ds

:= I1 + I2 + I3.

(4.24)

The estimation of the first item I1 in (4.24) is given by

‖I1‖ ≤ c

∫

Γθ
ε\Γ

θ
ε,τ

|estn ||s|−α−µ−1|ds| ≤ c

∫ +∞

π
τ sin θ

eρtn cos θρ−α−µ−1dρ

≤ cτ

∫ +∞

π
τ sin θ

eρtn cos θρ−α−µdρ ≤ ctα+µ−1
n τ.

To estimate I2 in (4.24), we rewrite it as the summation of two parts, i.e., I2 = I ′2 + I ′′2 , where

I ′2 =

∫

Γθ
ε,τ∪Sε

estn
(
s− ω(e−sτ )

)
Ûh(s)ds and I ′′2 =

∫

Γθ
ε,τ∪Sε

estnω(e−sτ )
(
Ûh(s)− ̂̃Uh(s)

)
ds.

Let ε = t−1
n , then the result in Lemma B.2 implies that

‖I ′2‖ ≤ cτ

∫

Γθ
ε,τ∪Sε

|estn ||s|−α−µ|ds|

≤ cτ

(∫ π
τ sin θ

ε
eρtn cos θρ−α−µdρ+

∫ θ

−θ
eεtn cos ξε−α−µ+1dξ

)

≤ ctα+µ−1
n τ.

(4.25)

On the other hand, using Lemmas B.1 and B.2 arrives at

‖(sα −∆h)
−1 −

(
ω(e−sτ )α −∆h

)−1 ‖
≤‖
(
ω(e−sτ )α −∆h

)−1 ‖‖ω(e−sτ )α − sα‖‖ (sα −∆h)
−1 ‖

≤τ |s||ω(e−sτ )|−α

for s enclosed by curves Γθ
0,τ , ℑ(s) = ±π/τ and Γ. This yields

‖I ′′2 ‖ ≤ cτ

∫

Γθ
ε,τ∪Sε

|estn ||ω(e−sτ )|1−α|s|−µ−1|ds|

≤ τ

(∫ π
τ sin θ

ε
eρtn cos θρ−α−µdρ+

∫ θ

−θ
eεtn cos ξε−α−µ+1dξ

)

≤ ctα+µ−1
n τ,

(4.26)

where ε = t−1
n is taken. In addition, for any µ > −1, from the inequality

+∞∑

p=1

p−µ−2 ≤ 1 +

∫ +∞

1
p−µ−2dp ≤ 1 +

1

1 + µ
,
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it follows that the third item I3 in (4.24) satisfies

‖I3‖ ≤ c

+∞∑

p=1

∫

Γθ
0,τ

|estn ||ω(e−sτ )|1−α|s+ i2pπ/τ |−µ−2|ds|

≤ cτ2+µ
+∞∑

p=1

p−µ−2

∫ π
τ sin θ

0
eρtn cos θρ1−αdρ

≤ ctα−2
n τ2+µ.

Therefore, the result (4.17) can be obtained.

For the case u0(x) ∈ L2(Ω) and f(x, t) ≡ 0, we can also obtain the following error estimate

by the approach analogous to the proof of Theorem 4.1.

Theorem 4.2. Assume u0(x) ∈ L2(Ω) and f(x, t) ≡ 0 in (1.1)-(1.2). Let uh and ũnh be the

solutions to (3.3) and the GLBE scheme (4.9), respectively. Then it holds that

‖uh(tn)− ũnh‖ ≤ c
(
t−1
n τ + tα−2

n τ2−α
)
‖u0‖, 1 ≤ n ≤ N. (4.27)

In addition, if u0(x) ∈ L2(Ω) and f(x, t) satisfies Assumption 1, then we have

‖uh(tn)− ũnh‖ ≤ c
(
(tα+µ−1

n + t−1
n ‖u0‖)τ + tα−2

n τ2+µ + ‖u0‖tα−2
n τ2−α

)
,

where −1 < µ < 0.

Remark 1. The error estimates in Theorems 4.1 and 4.2 shows that the GLBE scheme (4.9)

is of first order as 0 < α < 1 and −1 < µ < 0. In addition, the results also hold for µ ≥ 0 from

the proof of Theorems 4.1.

4.2 FBDF22 scheme

In this subsection, we continue to investigate an alternative fully discrete scheme based on the

second-order BDF in order to improve the order of accuracy in time. Throughout this subsection,

the same notations Ũh(t) and ũh(t) are used to denote the solutions of the new scheme discussed

as follows.

In analogy to (4.6), by introducing F̃ (t) =
∫ t
0 Fh(ξ)dξ, we define Ũh(t) as an approximate

solution to the semidiscrete scheme (4.5) that satisfies

τ−α
∞∑

j=0

wjŨh(t− jτ) = ∆hŨh(t) +Dτ F̃h(t) +Dτ
t2−α

Γ(3− α)
u0h(x) (4.28)

for t > 0, and prescribe Ũh(t) = 0 for t ≤ 0, where F̃h(t) satisfies

DF̃h(t) = Fh(t), F̃h(0) = 0 (4.29)

with Fh(t) given by (4.3). The sequence {wj , j ≥ 0} in (4.28) satisfies
∞∑
j=0

wjξ
j = (32−2ξ+ 1

2ξ
2)α,

and Dτ denotes the second-order backward difference operator such that

Dτv(t) = τ−1
(3
2
v(t)− 2v(t− τ) +

1

2
v(t− 2τ)

)
. (4.30)

Furthermore, we define ũh(t) as

ũh(t) := Dτ Ũh(t) = τ−1
(3
2
Ũh(t)− 2Ũh(t− τ) +

1

2
Ũh(t− 2τ)

)
. (4.31)
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This indicates ũh(t) = 0 for t ≤ 0 as well. Then, by taking t = tn = nτ with τ = T/N for

n = 1, · · · , N in (4.28) and (4.31), we propose a fully discrete scheme, called FBDF22, in the

following form

τ−α
n∑

j=0

wjŨ
n−j
h = ∆hŨ

n
h +Dτ F̃

n
h +Dτ

t2−α
n

Γ(3− α)
u0h(x),

ũnh = τ−1
(3
2
Ũn
h − 2Ũn−1

h +
1

2
Ũn−2
h

)
,

(4.32)

where ũnh := ũh(tn), Ũ
n
h := Ũh(tn) and F̃

n
h := F̃h(tn) with F̃ (·) satisfying (4.29).

We first apply the above method to solving the problem in Example 4.1 numerically to

illustrate its effectiveness for problems with singular source terms. The discrete scheme for the

fODE in Example 4.1 is of the form

τ−α
n∑

j=0

wjUn−j = λUn+Dτ F̃ (tn)+Dτ
t2−α
n

Γ(3− α)
u0, un = τ−1

(3
2
Un− 2Un−1+

1

2
Un−2

)
(4.33)

for 1 ≤ n ≤ N with Nτ = T . Table 4 shows the errors and average rates of convergence with

different time step sizes and various α ∈ (0, 1) and ν − α ∈ [−1, 0), where an improved order of

O(τ2) is achieved compared with that of the uncorrected SBD scheme in Table 2 and the GLBE

scheme in Table 3.

Table 4: Errors and convergence rates for Example 4.1 at T = 1 by the scheme (4.33).
α ν N =160 320 640 1280 2560 rate

0.1 -0.1 2.7838E-06 6.9249E-07 1.7276E-07 4.3298E-08 1.3361E-08 ≈ 1.93(2.0)

-0.5 1.9267E-05 4.7876E-06 1.1934E-06 2.9698E-07 7.6388E-08 ≈ 1.99(2.0)

-0.9 4.6794E-05 1.1611E-05 2.8947E-06 7.2358E-07 1.9135E-07 ≈ 1.98(2.0)

0.5 -0.1 1.4784E-06 3.6535E-07 9.0645E-08 2.2547E-08 5.5332E-09 ≈ 2.02(2.0)

-0.3 8.0490E-06 1.9935E-06 4.9528E-07 1.2328E-07 3.0805E-08 ≈ 2.01(2.0)

-0.5 1.8146E-05 4.5109E-06 1.1244E-06 2.8072E-07 7.0270E-08 ≈ 2.00(2.0)

0.7 -0.1 1.8151E-07 3.5697E-08 6.8178E-09 1.2529E-09 2.1549E-10 ≈ 2.43(2.0)

-0.2 3.1158E-06 7.6400E-07 1.8785E-07 4.6271E-08 1.1422E-08 ≈ 2.02(2.0)

-0.3 7.1901E-06 1.7901E-06 4.4659E-07 1.1153E-07 2.7887E-08 ≈ 2.00(2.0)

Next we devote to the error estimate of the FBDF22 scheme (4.32).

Theorem 4.3. Assume that u0(x) ≡ 0 and f(x, t) in (1.1) satisfies Assumption 1. Let uh(t)

and ũnh be the solutions to (3.3) and (4.32), respectively. Then it holds that

‖uh(tn)− ũnh‖ ≤ c
(
tα+µ−2
n τ2 + tα−3

n τ3+µ
)
, −1 < µ < 0 (4.34)

for 1 ≤ n ≤ N .

Proof. Taking the Laplace transform on (4.28) and (4.31) yields

̂̃Uh(s) =
(
ω2(e

−sτ )α −∆h

)−1
ω2(e

−sτ )
( ˆ̃Fh(s) + sα−3uh(0)

)
(4.35)

and ̂̃uh(s) = ω2(e
−sτ )̂̃Uh(s), where ω2(z) = τ−1(32 − 2z + 1

2z
2), and ˆ̃Fh(s) denotes the Laplace

transform of F̃h(t). By the definition of F̃h satisfying (4.29), it yields

‖ ˆ̃Fh(s)‖ = |s|−2‖f̂h(s)‖ = |s|−2‖Phf̂(s)‖ ≤ |s|−2‖f̂(s)‖ ≤ c|s|−µ−3. (4.36)
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In analogy to (4.24) in Theorem 4.1, we can obtain

uh(tn)− ũnh =

∫

Γθ
ε/Γ

θ
ε,τ

estnsÛh(s)ds+

∫

Γθ
ε,τ∪Sε

estn
(
sÛh(s)− ω2(e

−sτ )̂̃Uh(s)
)
ds

−
+∞∑

p=−∞
p 6=0

∫

Γθ
0,τ

estnω2(e
−sτ )(ω2(e

−sτ )α −∆h)
−1ω2(e

−sτ ) ˆ̃Fh(s+ i2πp/τ)ds

:= II1 + II2 + II3.

(4.37)

For tn ≥ τ , we get the estimate

‖II1‖ ≤ cτ2
∫ +∞

π
τ sin θ

eρtn cos θρ−α−µ+1dρ ≤ ctα+µ−2
n τ2.

From Lemmas B.1 and B.2, it follows that

‖(sα −∆h)
−1 −

(
ω2(e

−sτ )α −∆h

)−1 ‖ ≤ cτ2|s|2|ω2(e
−sτ )|−α

for s enclosed by curves Γθ
0,τ , ℑ(s) = ±π/τ and Γ. Furthermore, we can obtain

‖(sα −∆h)
−1s−

(
ω2(e

−sτ )α −∆h

)−1
ω2(e

−sτ )‖
≤ ‖(sα −∆h)

−1(s− ω2(e
−sτ )‖+ ‖

(
(sα −∆h)

−1 −
(
ω2(e

−sτ )α −∆h

)−1 )
ω2(e

−sτ )‖
≤ cτ2

(
|s|3−α + |ω2(e

−sτ )|1−α|s|2
)
.

Then we have

‖II2‖ ≤ ‖
∫

Γθ
ε,τ∪Sε

estn
(
s− ω2(e

−sτ )
)
Ûh(s)ds‖+ ‖

∫

Γθ
ε,τ∪Sε

estnω2(e
−sτ )

(
Ûh(s)− ̂̃Uh(s)

)
ds‖

≤ cτ2
∫

Γθ
ε,τ∪Sε

|estn |
(
|s|1−α−µ + |ω2(e

−sτ )|2−α|s|−µ−1
)
|ds|

≤ ctα+µ−2
n τ2.

In addition, it follows from Lemmas B.3 and B.4 that

‖II3‖ ≤ c

+∞∑

p=1

∫

Γθ
0,τ

|estn ||ω2(e
−sτ )|2−α|s+ i2pπ/τ |−µ−3|ds|

≤ cτ3+µ
+∞∑

p=1

p−µ−3

∫ π
τ sin θ

0
eρtn cos θρ2−αdρ

≤ ctα−3
n τ3+µ.

This completes the proof.

The error estimate of the FBDF22 scheme (4.32) with u0(x) ∈ L2(Ω) and f(x, t) ≡ 0 can

also be derived by the similar approach as the proof of Theorem 4.3 just replacing ˆ̃Fh(s) by

sα−3uh(0).

Theorem 4.4. Assume u0(x) ∈ L2(Ω) and f(x, t) ≡ 0 in (1.1)-(1.2). Let uh and ũnh be the

solutions to (3.3) and the FBDF22 scheme (4.32), respectively. Then we have

‖uh(tn)− ũnh‖ ≤ c
(
t−2
n τ2 + tα−3

n τ3−α
)
‖u0‖, 1 ≤ n ≤ N. (4.38)

Furthermore, if u0(x) ∈ L2(Ω) and f(x, t) satisfies Assumption 1, then it holds

‖uh(tn)− ũnh‖ ≤ c
(
(tα+µ−2

n + t−2
n ‖u0‖)τ2 + tα−3

n τ3+µ + ‖u0‖tα−3
n τ3−α

)
.
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Remark 2. The error estimates in Theorems 4.3 and 4.4 show that the convergence rate of

the FBDF22 scheme (4.32) depends on the parameters α and µ, and is second-order when

−1 < µ < 0. Additionally, the estimate is also valid for µ ≥ 0.

5 Numerical examples

In this section, we report some numerical results to verify the convergence rates of the semidis-

crete FEM and fully discrete schemes in Sections 3 and 4.

5.1 Numerical results by semidiscrete FEM

In this subsection, we present two numerical examples by the lumped mass FEM to illustrate

the theoretical convergence results in Section 3, where it shows that the convergence rate of the

Galerkin FEM is the same as that of the lumped mass FEM if the mesh is symmetric. Since the

exact solutions are unknown, we apply the following formula to calculate the convergence rate

rate = log4(‖ū2h(t)− ūh(t)‖/‖ūh(t)− ūh/2(t)‖).

Example 5.1. Let T = 1 and Ω = (0, 1). Consider the one dimensional problem (1.1)-(1.2)

with u0(x) ≡ 0 and f(x, t) = (1 + tµ)x−
1

4 , where −1 < µ < 0.

To generate the finite element discretization, the interval Ω = (0, 1) is equally divided intoM

subintervals with a mesh size h = 1/M . As mentioned in [12], the eigenvalues and eigenfunctions

(λ̄hk , ϕ̄
h
k(x))

M−1
k=1 of the corresponding one dimensional discrete Laplacian −∆̄h defined by (3.9)

satisfies (−∆̄hϕ̄
h
k , ψ)h = λ̄hk(ϕ̄

h
k , ψ)h, ∀ ψ ∈ Xh, and

λ̄hk =
4

h2
sin2

πk

2M
, ϕ̄h

k(xi) =
√
2 sin(kπxi), k = 1, · · · ,M − 1,

where xi is a mesh point. Then, the solution to the lumped mass FEM scheme (3.8) with

u0(x) ≡ 0 and f(x, t) = tµg(x) can be represented as

ūh(t) =
M−1∑

k=1

(P̄hg, ϕ̄
h
k)hϕ̄

h
k

∫ t

0
(t− s)α−1Eα,α(−λ̄hk(t− s)α)sµds,

where Eα,β(x) denotes the Mittag-Leffler function, which can be evaluated by the algorithm

developed by [9].

Table 5: Errors and convergence rates by the scheme (3.8) for Example 5.1.

α µ h = 1/16 1/32 1/64 1/128 1/256 rate

0.1 -0.1 2.84935E-03 7.12046E-04 1.76860E-04 4.37131E-05 1.07539E-05 2.01

-0.5 2.85305E-03 7.12874E-04 1.77054E-04 4.37589E-05 1.07647E-05 2.01

-0.9 2.87807E-03 7.18463E-04 1.78363E-04 4.40686E-05 1.08378E-05 2.01

0.5 -0.1 2.87595E-03 7.18032E-04 1.78268E-04 4.40474E-05 1.08331E-05 2.01

-0.5 2.89008E-03 7.21148E-04 1.78992E-04 4.42177E-05 1.08730E-05 2.01

-0.9 2.96267E-03 7.37084E-04 1.82691E-04 4.50867E-05 1.10767E-05 2.02

0.9 -0.1 2.90264E-03 7.23869E-04 1.79618E-04 4.43634E-05 1.09068E-05 2.01

-0.5 2.90927E-03 7.25113E-04 1.79876E-04 4.44175E-05 1.09178E-05 2.01

-0.9 2.89900E-03 7.21658E-04 1.78908E-04 4.41565E-05 1.08482E-05 2.02
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Table 5 presents convergence rates by the lumped mass FEM scheme (3.8) for Example 5.1.

Second-order accuracy is observed, which is consistent with the theoretical estimate (3.12) in

Theorem 3.3.

Example 5.2. Let T = 1 and Ω = (0, 1)2. Consider the two dimensional problem (1.1)-(1.2)

with u0(x) ≡ 0 and f(x, t) = (1+ tµ)χ[ 1
4
, 3
4
]×[ 1

4
, 3
4
](x), where −1 < µ < 0 and χ[ 1

4
, 3
4
]×[ 1

4
, 3
4
](x) is the

indicator function over [14 ,
3
4 ]× [14 ,

3
4 ].

We partition the domain Ω = (0, 1)2 by a uniform symmetric triangulation mesh, where

the boundary of Ω is equally divided into M subintervals with a size h = 1/M . Then the

convergence rates of the Galerkin and lumped mass FEMs are the same. We know from [11]

that the eigenpairs (λ̄hn,m, ϕ̄
h
n,m(x))M−1

n,m=1 of the corresponding two dimensional discrete Laplacian

−∆̄h defined by (3.9) satisfies (−∆̄hϕ̄
h
n,m, ψ)h = λ̄hn,m(ϕ̄h

n,m, ψ)h, ∀ ψ ∈ Xh, and

λ̄hn,m =
4

h2
(
sin2

nπ

2M
+ sin2

mπ

2M

)
, ϕ̄h

n,m(xi, yk) = 2 sin(nπxi) sin(mπyk)

for n,m = 1, · · · ,M−1, where (xi, yk) is a mesh point. In addition, the approximate solution by

the lumped mass FEM scheme (3.8) in two dimensional case with u0(x) ≡ 0 and f(x, t) = tµg(x)

can be obtained by

ūh(t) =

M−1∑

n,m=1

(P̄hg, ϕ̄
h
n,m)hϕ̄

h
n,m

∫ t

0
(t− s)α−1Eα,α(−λ̄hn,m(t− s)α)sµds.

Table 6: Errors and convergence rates by the scheme (3.8) for Example 5.2.

α µ h = 1/16 1/32 1/64 1/128 1/256 rate

0.1 -0.1 1.49059E-03 3.85242E-04 9.72914E-05 2.43964E-05 6.10447E-06 1.98

-0.5 1.49322E-03 3.85890E-04 9.74526E-05 2.44366E-05 6.11452E-06 1.98

-0.9 1.51096E-03 3.90269E-04 9.85416E-05 2.47084E-05 6.18242E-06 1.98

0.5 -0.1 1.50830E-03 3.89613E-04 9.83783E-05 2.46676E-05 6.17224E-06 1.98

-0.5 1.51937E-03 3.92345E-04 9.90577E-05 2.48372E-05 6.21461E-06 1.98

-0.9 1.57967E-03 4.07238E-04 1.02763E-04 2.57618E-05 6.44563E-06 1.98

0.9 -0.1 1.53039E-03 3.95065E-04 9.97343E-05 2.50060E-05 6.25679E-06 1.98

-0.5 1.54219E-03 3.97978E-04 1.00459E-04 2.51868E-05 6.30197E-06 1.98

-0.9 1.57305E-03 4.05591E-04 1.02352E-04 2.56593E-05 6.42003E-06 1.98

In Table 6, the convergence rates obtained by the lumped mass FEM scheme (3.8) for

Example 5.2 are shown. It shows the second-order accuracy of the semi-discrete scheme (3.8)

with symmetric finite element mesh as predicted in the estimate (3.12) in Theorem 3.3.

5.2 Numerical results by fully discrete schemes

In this subsection, two numerical examples are presented to verify the theoretical results of two

fully discrete schemes in Section 4. The numerical results are obtained by the GLBE scheme

(4.9) and the FBDF22 scheme (4.32). In the following numerical examples, the exact solutions

are unknown, then a reference solution obtained with very small time step size is utilized to

evaluate the error eτh := ‖ũNh,τ − u(T )‖L2(Ω), where ũ
N
h,τ represents the numerical solutions at

time T by the fully discrete schemes with the time step size τ and spatial mesh size h. Then

the convergence orders of the two schemes can be verified by the formula log2(|e2τh |/|eτh|).
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Example 5.3. Let T = 1 and Ω = (0, 1). Consider the one dimensional problem (1.1)-(1.2)

with the following data:

(a) u0(x) ≡ 0 and f(x, t) = tµx−
1

4 with −1 < µ < 0;

(b) u0(x) = χ[ 1
4
, 3
4
](x) and f(x, t) ≡ 0, where χ[ 1

4
, 3
4
](x) is the indicator function over [14 ,

3
4 ].

Table 7: Errors and convergence rates for case (a) of Example 5.3.
Method α µ τ =1/40 1/80 1/160 1/320 rate

GLBE 0.1 -0.1 1.1513E-04 5.7668E-05 2.8683E-05 1.4133E-05 1.01 (1.00)

0.1 -0.5 6.2900E-04 3.1575E-04 1.5719E-04 7.7483E-05 1.01 (1.00)

0.1 -0.9 1.2347E-03 6.2138E-04 3.0966E-04 1.5269E-04 1.01 (1.00)

0.5 -0.1 7.6705E-05 3.8558E-05 1.9212E-05 9.4743E-06 1.01 (1.00)

0.5 -0.5 6.7565E-04 3.3928E-04 1.6893E-04 8.3269E-05 1.01 (1.00)

0.5 -0.9 1.9317E-03 9.7039E-04 4.8314E-04 2.3814E-04 1.01 (1.00)

0.9 -0.1 1.1910E-04 6.0162E-05 3.0042E-05 1.4830E-05 1.00 (1.00)

0.9 -0.5 9.4222E-04 4.7128E-04 2.3418E-04 1.1531E-04 1.01 (1.00)

0.9 -0.9 2.9369E-03 1.4524E-03 7.1750E-04 3.5228E-04 1.02 (1.00)

FBDF22 0.1 -0.1 4.4149E-06 1.0789E-06 2.6352E-07 6.1982E-08 2.05 (2.00)

0.1 -0.5 3.3506E-05 8.1754E-06 2.0116E-06 4.9145E-07 2.03 (2.00)

0.1 -0.9 8.5065E-05 2.0738E-05 5.1534E-06 1.3195E-06 2.00 (2.00)

0.5 -0.1 2.4546E-06 6.0433E-07 1.4965E-07 3.6935E-08 2.02 (2.00)

0.5 -0.5 3.5840E-05 8.7531E-06 2.1618E-06 5.3632E-07 2.02 (2.00)

0.5 -0.9 1.3690E-04 3.3254E-05 8.1879E-06 2.0308E-06 2.02 (2.00)

0.9 -0.1 3.7018E-06 9.1485E-07 2.2762E-07 5.6738E-08 2.01 (2.00)

0.9 -0.5 5.3813E-05 1.3104E-05 3.2321E-06 8.0203E-07 2.02 (2.00)

0.9 -0.9 2.3420E-04 5.6570E-05 1.3878E-05 3.4321E-06 2.03 (2.00)

Table 8: Errors and convergence rates for case (b) of Example 5.3.
Method α τ =1/40 1/80 1/160 1/320 rate

GLBE 0.1 6.1206E-05 3.0657E-05 1.5248E-05 7.5128E-06 1.01 (1.00)

0.5 2.1663E-04 1.0878E-04 5.4162E-05 2.6698E-05 1.01 (1.00)

0.9 1.7560E-04 8.6843E-05 4.2901E-05 2.1063E-05 1.02 (1.00)

FBDF22 0.1 2.3469E-06 5.7351E-07 1.4007E-07 3.2928E-08 2.05 (2.00)

0.5 1.1491E-05 2.8066E-06 6.9333E-07 1.7217E-07 2.02 (2.00)

0.9 1.4004E-05 3.3826E-06 8.2982E-07 2.0523E-07 2.03 (2.00)

The spatial interval Ω = (0, 1) in Example 5.3 is equally divided into subintervals with a

mesh size h = 1/128 for the finite element discretization. The reference solution is obtained

with a time step size τ = 1/(10 × 210). In Table 7, the errors and convergence rates of the

GLBE and FBDF22 schemes for case (a) of Example 5.3 are presented with α = 0.1, 0.5, 0.9 and

µ = −0.1,−0.5,−0.9. From the results, we observe that the proposed GLBE scheme converges

with rate O(τ) and the FBDF22 scheme exhibits convergence rate of O(τ2) for µ ∈ (−1, 0).

These are consistent with our theoretical analyses and show the effectiveness of the schemes for

solving the problem (1.1)-(1.2) with the singular source term f(x, t). In Table 8, we list the

errors and convergence rates of the GLBE and FBDF22 schemes for case (b) of Example 5.3

with α = 0.1, 0.5, 0.9, which verify the theoretical results for the two schemes as well.

Example 5.4. Let T = 1 and Ω = (0, 1)2. Consider the two dimensional problem (1.1)-(1.2)

with the following data:
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(a) u0(x) ≡ 0 and f(x, t) = (1 + tµ)χ[ 1
4
, 3
4
]×[ 1

4
, 3
4
](x), where −1 < µ < 0 and χ[ 1

4
, 3
4
]×[ 1

4
, 3
4
](x) is

the indicator function over [14 ,
3
4 ]× [14 ,

3
4 ].

(b) u0(x) = χ[ 1
4
, 3
4
]×[ 1

4
, 3
4
](x) and f(x, t) ≡ 0.

Table 9: Errors and convergence rates for case (a) of Example 5.4.
Method α µ τ =1/80 1/160 1/320 1/640 rate

GLBE 0.2 -0.2 1.9249E-06 9.5759E-07 4.7187E-07 2.2852E-07 1.02 (1.00)

0.2 -0.5 4.8396E-06 2.4092E-06 1.1875E-06 5.7515E-07 1.02 (1.00)

0.2 -0.8 7.7741E-06 3.8729E-06 1.9096E-06 9.2496E-07 1.02 (1.00)

0.5 -0.2 1.9130E-06 9.5166E-07 4.6894E-07 2.2709E-07 1.02 (1.00)

0.5 -0.5 4.8520E-06 2.4154E-06 1.1905E-06 5.7658E-07 1.02 (1.00)

0.5 -0.8 7.8591E-06 3.9151E-06 1.9303E-06 9.3499E-07 1.02 (1.00)

0.8 -0.2 1.9364E-06 9.6328E-07 4.7463E-07 2.2982E-07 1.02 (1.00)

0.8 -0.5 4.9017E-06 2.4400E-06 1.2026E-06 5.8237E-07 1.02 (1.00)

0.8 -0.8 7.9375E-06 3.9538E-06 1.9493E-06 9.4410E-07 1.02 (1.00)

FBDF22 0.2 -0.2 3.9656E-08 9.6940E-09 2.2927E-09 4.5475E-10 2.15 (2.00)

0.2 -0.5 1.2548E-07 3.0819E-08 7.4747E-09 1.6791E-09 2.07 (2.00)

0.2 -0.8 2.4331E-07 5.9928E-08 1.4778E-08 3.5753E-09 2.03 (2.00)

0.5 -0.2 3.9386E-08 9.6692E-09 2.3283E-09 5.0521E-10 2.09 (2.00)

0.5 -0.5 1.2594E-07 3.1005E-08 7.5927E-09 1.7802E-09 2.05 (2.00)

0.5 -0.8 2.4631E-07 6.0676E-08 1.4974E-08 3.6349E-09 2.03 (2.00)

0.8 -0.2 3.9989E-08 9.8822E-09 2.4450E-09 5.9732E-10 2.02 (2.00)

0.8 -0.5 1.2752E-07 3.1490E-08 7.8090E-09 1.9293E-09 2.02 (2.00)

0.8 -0.8 2.4921E-07 6.1460E-08 1.5239E-08 3.7724E-09 2.02 (2.00)

Table 10: Errors and convergence rates for case (b) of Example 5.4.
Method α τ =1/80 1/160 1/320 1/640 rate

GLBE 0.2 1.6614E-06 8.2643E-07 4.0719E-07 1.9715E-07 1.03 (1.00)

0.5 2.7484E-06 1.3682E-06 6.7433E-07 3.2655E-07 1.02 (1.00)

0.8 1.7322E-06 8.6283E-07 4.2539E-07 2.0603E-07 1.02 (1.00)

FBDF22 0.2 3.4380E-08 8.5296E-09 2.1440E-09 5.5712E-10 1.98 (2.00)

0.5 7.1369E-08 1.7630E-08 4.3770E-09 1.0865E-09 2.01 (2.00)

0.8 5.4360E-08 1.3405E-08 3.3225E-09 8.2119E-10 2.02 (2.00)

For the finite element approximation, the domain Ω = (0, 1)2 in Example 5.4 is uniformly

partitioned into triangles with the mesh size h = 1/128. The reference solution is obtained with

a time step size τ = 1/(10× 210). In Tables 9-10, the errors and convergence rates of the GLBE

and FBDF22 schemes for cases (a) and (b) of Example 5.4 are shown, respectively. It reveals

that the proposed GLBE and FBDF22 schemes perform effectively and converge numerically by

the theoretical rates for the problem (1.1)-(1.2) with the singular source term f(x, t).

6 Conclusions

In this paper, we investigate the numerical discretization of sub-diffusion equations with certain

type of singular source terms, for which the existing time-stepping schemes lost their optimal

convergence order far below one. We first discuss the well-posedness of solutions to inhomo-

geneous problems with zero initial value. Furthermore, we construct the spatially semidiscrete
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schemes using linear FEM and lumped mass FEM. In terms of discretizations in time, two fully

discrete schemes for the problem, namely GLBE and FBDF22 schemes are proposed and dis-

cussed in details, which have first- and second-order accuracy in time, respectively. In addition,

we develop the Laplace transform technique to establish the error estimates both in space and

time.

A Proofs of Theorems 3.1 and 3.3

A.1 Proof of Theorem 3.1

Proof of Theorem 3.1. We obtain from (2.5) and (3.5) that

u(t)− uh(t) =
1

2πi

∫

Γθ
ε∪Sε

estĜh(s)f̂(x, s)ds, (A.1)

where

Ĝh(s) = (sα −∆)−1 − (sα −∆h)
−1Ph. (A.2)

By the similar estimate in the proof of Theorem 2.1 in [23], it holds that ‖Ĝh(s)‖ ≤ Ch2. Then

for ε = t−1, together with the condition ‖f̂(s)‖ ≤ c|s|−µ−1 in Assumption 1, we have

‖u(t)− uh(t)‖ ≤ ch2
∫

Γθ
ε∪Sε

|est||s|−µ−1|ds|

≤ ch2
(∫ ∞

ε
eρt cos θρ−µ−1dρ+

∫ θ

−θ
eεt cos ξε−µdξ

)

≤ ctµh2,

(A.3)

which completes the proof.

A.2 Proof of Theorem 3.3

For the convergence analysis of the lumped mass FEM, the quadrature error operator Qh : Xh →
Xh was introduced in [4], which is defined by

(∇Qhv,∇w) = (v,w)h − (v,w), ∀ w ∈ Xh. (A.4)

It was analyzed in [4] that the quadrature error operator Qh due to mass lumping satisfies the

following estimates.

Lemma A.1 ([4]). Let the operators ∆̄h and Qh defined by (3.9) and (A.4), respectively. Then

it holds that

‖∇Qhψ‖+ h‖∆̄hQhψ‖ ≤ Chp+1‖∇pψ‖, ∀ ψ ∈ Xh, p = 0, 1. (A.5)

Furthermore, if the mesh is symmetric, then it satisfies

‖Qhψ‖ ≤ ch2‖ψ‖, ∀ ψ ∈ Xh. (A.6)

With the quadrature error operator defined by (A.4), it yields from (3.1) and (3.8) that the

error eh(t) = uh(t)− ūh(t) satisfies

CDα
t eh(t)− ∆̄heh(t) = −∆̄hQh

CDα
t uh(t), ∀ t > 0, eh(0) = 0. (A.7)

20



Taking the Laplace transform on (A.7) implies that

êh(s) = (sα − ∆̄h)
−1∆̄hQh

(
sα−1Phu

0 − sαûh(s)
)
. (A.8)

Since ∆h satisfies the resolvent estimate ‖
(
s−∆h

)−1‖ ≤M |s|−1, it is derived from (3.4) that

‖ûh(s)‖ =
∥∥(sα −∆h)

−1
(
sα−1Phu

0 + Phf̂(s)
)∥∥

≤ |s|−1‖u0‖+ |s|−α−µ−1.
(A.9)

In addition, the operator ∆̄h defined by (3.9) also satisfies the resolvent estimate, then it follows

from (A.5) that

‖sα−1(sα − ∆̄h)
−1∆̄hQhPhu

0‖ ≤ |s|−1‖u0‖,
‖sα(sα − ∆̄h)

−1∆̄hQhûh(s)‖ ≤ ‖ûh(s)‖.
(A.10)

Therefore, by (A.9), (A.10) and the Cauchy’s theorem, the inverse Laplace transform on (A.8)

implies that the error eh(t) for t > 0 can be represented by an integral over Γθ
ε ∪ Sε as follows

eh(t) =
1

2πi

∫

Γθ
ε∪Sε

est(sα − ∆̄h)
−1∆̄hQh

(
sα−1Phu

0 − sαûh(s)
)
ds. (A.11)

Now it is ready to establish the error estimate for the lumped mass finite element scheme

(3.8). The error is splitted into u(t)− ūh(t) = u(t)−uh(t)+eh(t) with uh(t) being the solution of

the standard Galerkin finite element scheme in (3.1). Since the error ‖u(t)−uh(t)‖ is estimated

in Theorems 3.1 and 3.2, then we next focus on the estimate of ‖eh(t)‖.

Proof of Theorem 3.3. As (sα−∆̄h)
−1∆̄h = sα(sα−∆̄h)

−1−I with I being the identity operator,

it follows from the resolvent estimate of ∆̄h that ‖(sα − ∆̄h)
−1∆̄h‖ ≤ M + 1. Then we derive

from (A.11) and (A.9) with u0(x) ≡ 0 that

‖eh(t)‖ ≤ c

∫

Γθ
ε∪Sε

|est||s|α‖Qhûh(s)‖|ds|. (A.12)

By the trivial inequality ‖ψ‖ ≤ c‖∇ψ‖ for ψ ∈ Xh and the estimate (A.5), it yields

‖Qhûh(s)‖ ≤ ‖∇Qhûh(s)‖ ≤ ch‖ûh(s)‖.

Together with (A.9), we obtain the estimate (3.11) by (3.6) and the following argument

‖eh(t)‖ ≤ ch

∫

Γθ
ε∪Sε

|est||s|−µ−1|ds|

≤ ch

(∫ ∞

ε
eρ cos θtρ−µ−1dρ+

∫ θ

−θ
eεt cos ξε−µdξ

)

≤ ctµh.

If the quadrature error operator Qh satisfies (A.6), then it follows the estimate (3.12) from

(3.6) and

‖eh(t)‖ ≤ c

∫

Γθ
ε∪Sε

|est||s|α‖ûh(s)‖|ds| ≤ ch2
∫

Γθ
ε∪Sε

|est||s|−µ−1|ds|

≤ ctµh2.

This completes the proof.
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B Four lemmas

We provide four preliminary lemmas for the error analysis of the GLBE scheme (4.9) and the

FBDF22 scheme (4.32).

Lemma B.1. If z ∈ Σπ/2, then (1−e−z)α ∈ Σαπ/2. Otherwise if z ∈ Σθ\Σπ/2 and its imaginary

part satisfying |ℑ(z)| ≤ π for θ ∈ (π/2, π), then (1− e−z)α ∈ Σαθ.

Proof. If z = x+ iy ∈ Σπ/2, then x > 0. This yields that the real part of (1− e−z) satisfies

ℜ(1− e−z) = 1− e−x cos y > 0

for all y ∈ R. Then we obtain (1− e−z) ∈ Σπ/2 and (1− e−z)α ∈ Σαπ/2.

Otherwise if z ∈ Σθ \Σπ/2, then x ≤ 0 and x tan θ ≤ |y| ≤ π. It suffices to consider the case

ℜ(1− e−z) < 0. We define

f(x, y) :=
∣∣∣ℑ(1− e−z)

ℜ(1− e−z)

∣∣∣ = | sin y|
cos y − ex

.

From
∂f(x, y)

∂y
=

1− ex cos y

(cos y − ex)2
≥ 0 for x tan θ ≤ y ≤ π

and
∂f(x, y)

∂y
=

ex cos y − 1

(cos y − ex)2
≤ 0 for − π ≤ y ≤ −x tan θ < 0,

it follows that f(x, y) ≥ f(x, x tan θ) for x ≤ 0. Taking the derivative of f̃(x, θ) := f(x, x tan θ)

with respect to x arrives at

∂f̃

∂x
=

tan θ + ex sin(x tan θ)− ex cos(x tan θ) tan θ

(cos(x tan θ)− ex)2
=:

g(x, θ)

(cos(x tan θ)− ex)2
.

From ∂g/∂x = ex sin(x tan θ)(1 + tan2 θ) ≥ 0, it follows that g(x, θ) ≤ g(0, θ) = 0. This leads to

f̃(x, θ) ≥ f̃(0, θ) = − tan θ for any θ ∈ (π/2, π). Therefore, we obtain (1 − e−z) ∈ Σθ and the

desired result.

Lemma B.2. If z ∈ C and |z| ≤ r for finite r > 0, then

|1− e−z| ≤ C|z| (B.1)

and

|zβ − (1− e−z)β | ≤ C|z|β+1 (B.2)

hold for 0 < β ≤ 1, where C denotes a generic constant dependent on the radius r.

Proof. Using Taylor’s expansion of e−z at 0, we derive

|1− e−z| = |1−
∞∑

n=0

(−z)n
Γ(n+ 1)

| ≤ e|z| − 1 ≤ er − 1

r
|z|

and similarly

|z − (1− e−z)| = |z − 1 +
∞∑

n=0

(−z)n
Γ(n+ 1)

| ≤ e|z| − 1− |z| ≤ er − 1− r

r2
|z|2.

Furthermore, for 0 < β < 1, by the result in [16, 23], we have

|zβ − (1− e−z)β | ≤ max{|z|β−1, |1 − e−z|β−1}|z − (1− e−z)|,

which completes the proof.
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Lemma B.3. Let |z| ≤ r for finite r. Then it holds that

|3
2
− 2e−z +

1

2
e−2z | ≤ C|z|,

|zβ − (
3

2
− 2e−z +

1

2
e−2z)β | ≤ C|z|β+2

(B.3)

for 0 < β ≤ 1, where C = C(r).

Proof. Using Taylor’s expansions of e−z and e−2z at z = 0 arrives at

∣∣∣3
2
− 2e−z +

1

2
e−2z

∣∣∣ =
∣∣∣− 2

∞∑

n=1

(−z)n
Γ(n+ 1)

+
1

2

∞∑

n=1

(−2z)n

Γ(n+ 1)

∣∣∣

≤ 2(e|z| − 1) +
1

2
(e2|z| − 1)

≤
(1
2
e2r + 2er − 5

2

)
r−1|z|

and

∣∣∣z − 3

2
+ 2e−z − 1

2
e−2z

∣∣∣ ≤ 2
(
e|z| − 1

2
|z|2 − |z| − 1

)
+

1

2

(
e2|z| − 2|z|2 − 2|z| − 1

)

≤
(1
2
e2r + 2er − 2r2 − 3r − 5

2

)
r−3|z|3.

Then the second estimate of (B.3) is derived from the approach proposed in [23, 16].

Lemma B.4. If z ∈ Σπ/2, then (32 − 2e−z + 1
2e

−2z)α ∈ Σαπ/2. Otherwise if z ∈ Σθ \ Σπ/2 for

θ ∈ (π/2, θ̃) with some θ̃ ∈ (π/2, π) and |ℑz| ≤ π, then there corresponds some ϑ ∈ (π/2, π)

such that (32 − 2e−z + 1
2e

−2z)α ∈ Σαϑ.

Proof. For z = x+ iy ∈ Σπ/2, it follows that x > 0 and then

ℜ
(3
2
− 2e−z +

1

2
e−2z

)
=

3

2
− 2e−x cos y +

1

2
e−2x cos(2y)

=
1

2
(1− e−2x) + (1− e−x cos y)2 > 0.

This yields
(
3
2 − 2e−z + 1

2e
−2z
)α ∈ Σαπ/2.

If z ∈ Σθ \ Σπ/2 and |ℑz| ≤ π, then x tan θ ≤ |y| ≤ π and x ∈ [π/ tan θ, 0]. It yields

ℑ(3
2
− 2e−z +

1

2
e−2z) = e−x sin y(2− e−x cos y).

Set g(x, y) = 2 − e−x cos y. We find that ∂g/∂y ≥ 0 for y ∈ [x tan θ, π] and ∂g/∂y ≤ 0

for y ∈ [−π,−x tan θ]. This leads to g(x, y) ≥ g(x, x tan θ). Then taking the derivative of

g(x, x tan θ) with respect to x, we get

g(x, y) ≥ 2− e−(θ−π/2)/ tan θ sin θ := g̃(θ) > g̃(θ̃) = 0

for θ ∈ (π/2, θ̃), where θ̃ is implicitly determined by g̃(θ̃) = 0 as dg̃/dθ < 0 for θ ∈ (π/2, π).

Next it suffices to consider the case θ ∈ (π/2, θ̃) and ℜ(32 − 2e−z + 1
2e

−2z) < 0. Let

f(x, y) :=
∣∣∣
ℑ(32 − 2e−z + 1

2e
−2z)

ℜ(32 − 2e−z + 1
2e

−2z)

∣∣∣ = e−x| sin y|(2− e−x cos y)

−3
2 + 2e−x cos y − 1

2e
−2x cos(2y)

.

23



For y ∈ [0, π], we obtain

∂f(x, y)

∂x
=

ex sin y
(
1− 3ex cos y + 3e2x

)
(
3
2e

2x − 2ex cos y + 1
2 cos(2y)

)2 ≥ 0

in view of

1− 3ex cos y + 3e2x ≥ 1− 3ex + 3e2x = 3(ex − 1

2
)2 +

1

4
> 0.

Together with f(x, y) = f(x,−y), it holds that

f(x,±y) ≥ f(y/ tan θ, y) := f̃(y, θ)

for 0 ≤ y ≤ π. Similarly, from the relation ∂f̃(y,θ)
∂θ = ∂f

∂x(y/ tan θ, y)
d(y/ tan θ)

dθ < 0 together with

f̃(0, θ) = − tan θ > 0 and ℜ(3/2− 2e−z + 1/2e−2z) > 0 for y = π, it follows that f̃(y, θ) > 0 for

any θ ∈ (π/2, θ̃). Then taking the derivative of f̃ with respect to y, we deduce that

f̃(y, θ) ≥ f̃(yθ, θ) > 0,

where yθ satisfies
∂f̃
∂y (yθ, θ) = 0. Thus there corresponds some ϑ ∈ (π/2, π), defined by f̃(yθ, θ) =

− tan(ϑ) such that (32 − 2e−z + 1
2e

−2z) ∈ Σϑ. This completes the proof.
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