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Abstract Based on the auxiliary subspace techniques, a hierarchical basis a posteriori error estimator
is proposed for the Stokes problem in two and three dimensions. For the error estimator, we need to
solve only two global diagonal linear systems corresponding to the degree of freedom of velocity and
pressure respectively, which reduces the computational cost sharply. The upper and lower bounds up to
an oscillation term of the error estimator are also shown to address the reliability of the adaptive method
without saturation assumption. Numerical simulations are performed to demonstrate the effectiveness
and robustness of our algorithm.
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1 Introduction

In this paper, we propose an a posteriori error estimator based on the auxiliary subspace techniques
for the Taylor-Hood finite element method (FEM) [8,9] to solve Stokes equations [18,25] with Dirichlet
boundary condition

−∆u+∇p = f in Ω, (1.1)

∇ · u = 0 in Ω, (1.2)

u = g on Γ, (1.3)

where Ω ⊂ R
d(d = 2, 3) is a bounded polygonal or polyhedral domain with the boundary Γ . The

function u is a vector velocity field and p is the pressure. The functions f and g are given Lebesgue
square-integrable functions on Ω and Γ , respectively. The problem (1.1)-(1.3) has a unique solution in
the sense that p is only determined up to an additive constant. In the later sections, we will analyze the
case of g = 0, and the case g 6= 0 is similar.

A posteriori error estimators and adaptive FEM can be used to solve the problems with local singu-
larities effectively. Hierarchical basis a posteriori estimator is a popular approach and has been proven
to be robust and efficient, whose origins can be traced back to [26,27]. In this approach, let Vk and Wk+d

be the approximation space and auxiliary space, respectively, where Vk ∩Wk+d = {0} (to be specified in
Section 2). The solution of approximation problem (2.8) is denoted by (û, p̂) ∈ Vk. Then the approxima-
tion error ‖(u− û, p− p̂)‖V can be estimated in auxiliary space Wk+d with the help of the error problem
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(2.15). Traditionally, the upper and lower bounds of error estimations need to make use of a saturation
assumption, i.e. the best approximation of (u, p) in Vk ∪Wk+d is strictly better than its best approx-
imation in Vk. Although saturation assumption is widely accepted in a posteriori error analysis [16,1]
and satisfied in the case of small data oscillation [13], it is not difficult to construct counter-examples
for particular problems on particular meshes [11]. To remove the saturation assumption, Araya et al.
presented an adaptive stabilized FEM combined with a hierarchical basis a posteriori error estimator in
a special auxiliary bubble function spaces for generalized Stokes problem and Navier-Stokes equations.
The error analysis of upper and lower bounds avoids the use of saturation assumption. Although the
construction of auxiliary space needs a transformation operator in the reference element, it provides a
novel idea for removing saturation assumption in reliability analysis [2,3,4,5]. Hakula et al. constructed
the auxiliary space directly on each element for the second order elliptic problem and elliptic eigenvalue
problem and proved that the error is bounded by the error estimator up to oscillation terms without the
saturation assumption [17,15].

The contribution of this paper is twofold. Firstly, we extend the auxiliary subspace techniques in [17]
to the Stokes problem in two and three dimensions. More specifically, we construct auxiliary spaces for
velocity and pressure, respectively and prove that these auxiliary spaces satisfy the inf-sup condition
shown in Lemma 2.2. The error ‖(u − û, p− p̂)‖V can be bounded by the solution of the error problem
(2.15), the term ‖∇ · û‖ and the oscillation term osc(f ) (Theorem 3.1). We emphasize that the error
analysis does not use the saturation assumption. The other contribution of the present work is the
diagonalization of the error problem to reduce the computational cost. Considering that the Stokes
problem is a saddle point problem, we replace part of the matrix, which is related to velocity only,
with a diagonal matrix in (4.4) to construct the second error problem shown in (4.8). Then the solution
of (4.8) combined with the term ‖∇ · û‖ and the oscillation term osc(f ) can be used to bound the
error ‖(u− û, p− p̂)‖V (Theorem 4.2). Here, obtaining the pressure and velocity requires solving a non-
diagonal and diagonal linear system, respectively. To further reduce the computation, the diagonal matrix
is obtained by multiplying the diagonal matrix of pressure correlation matrix by a constant cs related to
the number of the bases of pressure in each element. Now, the linear systems of pressure and velocity are
both diagonal, which is the third error problem shown in (4.25) whose solution combined with the term
‖∇ · û‖ and the oscillation term osc(f ) can be used to bound the error ‖(u− û, p− p̂)‖V (Theorem 4.4).

The rest of the work is organized as follows. In Section 2, the FEM spaces, the approximation problem,
and the first error problem are introduced. Section 3 presents a quasi-interpolant based on moment
conditions and develops a posteriori error estimation related to the first error problem for the Stokes
equation. In Section 4, to reduce the computational cost, the system diagonalization techniques are
developed for velocity (the second error problem) and pressure (the third error problem), respectively.
The a posteriori error estimates of the corresponding error problems are shown. In Section 5, we obtained
the local and global a posteriori error estimators, and an adaptive FEM is proposed based on the solution
of the third error problem and term ‖∇ · û‖. In Section 6, numerical experiment results are presented to
verify the effectiveness of our adaptive algorithm. The last section is devoted to some concluding remarks.

2 Approximation Problem and Error Problem

The following notations are used in this paper

a(w,v) =

∫

Ω

∇w : ∇v,

b(v, q) =

∫

Ω

q∇ · v,

a1((w, r), (v, q)) = a(w,v)− b(v, r) + b(w, q),

f(v) =

∫

Ω

f · v,

for all (v, q), (w, r) ∈ V := [H1
0 (Ω)]d × L2

0(Ω), where

H1
0 (Ω) = {v ∈ H1(Ω)

∣∣ v = 0 on Γ},

L2
0(Ω) = {q ∈ L2(Ω)

∣∣
∫

Ω

q = 0}.

The variational formulation of (1.1)-(1.3) is: Find (u, p) ∈ V such that
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a1((u, p), (v, q)) = f(v), (2.1)

for all (v, q) ∈ V .
We denote by ‖ · ‖m,Ω and | · |m,Ω the standard norm and semi-norm of Sobolev space with m ≥ 0,

respectively. For the sake of convenience, we will use ‖ · ‖ and | · | for ‖ · ‖0,Ω and | · |0,Ω, respectively. For
the coupling space V , we define

‖(v, q)‖V =
√
‖∇v‖2 + ‖q‖2. (2.2)

From Cauchy-Schwarz inequality, a1(·, ·) is continuous, i.e.

|a1((w, r), (v, q))| ≤ C1‖(w, r)‖V ‖(v, q)‖V . (2.3)

From Proposition 4.69 in [25], a1(·, ·) satisfies the estimates

inf
(v,q)∈V \{0}

sup
(w,r)∈V \{0}

a1((v, q), (w, r))

‖(v, q)‖V ‖(w, r)‖V
≥ c1. (2.4)

We refer to C1 and c1 as the continuity and inf-sup constant, respectively.

2.1 Approximation Problem

Let T be a family of conforming, shape-regular simplicial partition of Ω. Let F denote the set of (d− 1)-
dimensional sub-simplices, the “faces” of T , and further decompose it as F = FI ∪ FD, where FI

comprises those faces in the interior of Ω, and FD comprises those faces in Γ . To ensure that the Taylor-
Hood element satisfies the stability condition (inf-sup condition), we make the following assumptions for
T :

Assumption 1. T contains at least three triangles in the case of d = 2.
Assumption 2. Every element T ∈ T has at least one vertex in the interior of Ω in the case of d = 3.

In our scheme, in order to have a conforming approximation we shall choose the finite-dimensional
spaces V Vk+1 and V Pk with k ≥ 1 (called Hood-Taylor or Taylor-Hood element)

V Vk+1 = {v̂ ∈ [H1
0 (Ω)]d

∣∣ v̂|T ∈ [Pk+1]
d, ∀T ∈ T } ⊂ [H1

0 (Ω)]d, (2.5)

V Pk = {q̂ ∈ H1(Ω)
∣∣ q̂|T ∈ Pk(K), ∀T ∈ T ,

∫

Ω

q̂ = 0} ⊂ L2
0(Ω), (2.6)

Vk = V Vk+1 × V Pk. (2.7)

A mixed finite element method to approximate (2.1) is called an approximation problem: Find
(û, p̂) ∈ Vk such that

a1((û, p̂), (v̂, q̂)) = f(v̂), (2.8)

for all (v̂, q̂) ∈ Vk.

Remark 2.1 The solvability of the approximation problem (2.8) can be found in [8,9,10].

2.2 Error Problem

Given a simplex T ⊂ R
d of diameter hT , we define Sj(T ), 0 ≤ j ≤ d to be the set of sub-simplices of

T of dimension j. The cardinality is |Sj(T )| =
(
d+1
j+1

)
. We denote by Sj the set of sub-simplices of the

triangulation of dimension j, in particular, Sd−1 = FI ∪ FD and Sd = T . Recall that Pm(S) is the set
of polynomials of total degree ≤ m with domain S, and note that dim Pm(S) =

(
m+j
j

)
for S ∈ Sj(T ).

Denoting the vertices of T by {z0, · · · , zd}, we let λi ∈ P1(T ), 0 ≤ i ≤ d, be the corresponding barycentric
coordinates, uniquely defined by the relation λi(zi) = δij . We denote by Fj ∈ Sd−1(T ) the sub-simplex
not containing zj.

The fundamental element and face bubbles for T are given by (j = 0, 1, · · · , d)
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bT =
d∏

k=0

λk ∈ Pd+1(T ), bFj
=

d∏

k=0
k 6=j

λk ∈ Pd(T ).

We also define general element and face bubbles of degree m,

Qm(T ) = {v̂ = bT ŵ ∈ Pm(T ) | ŵ ∈ Pm−d−1(T )}, (2.9)

Qm(Fj) = {v̂ = bFj
ŵ ∈ Pm(T ) | ŵ ∈ Pm−d(T )} ⊖Qm(T ). (2.10)

From now on, we use the shorthandW1⊖W2 = span{W1\W2} for vector spacesW1 andW2. SoW1⊖W2

is the largest subspace of W1 such that W1 ∩ W2 = {0}. The functions in Qm(T ) are precisely those
in Pm(T ) that vanish on ∂T , and the functions in Qm(Fj) are precisely those in Pm(T ) that vanish on
∂T \Fj. It is clear that Qm(T ) ∩Qm(Fj) = {0} and Qm(Fi) ∩Qm(Fj) = {0} for i 6= j. The collection of
face bubbles of degree m can be denoted by

Qm(∂T ) =

d⊕

j=0

Qm(Fj).

Then we define the local space

Rm(T ) = Qm(T )⊕Qm(∂T ),

which contains all element and face bubbles of degree m related to T defined in (2.9) and (2.10), and the
corresponding global finite element spaces

Rm = {v̂ ∈ H1
0 (Ω) | v̂|T ∈ Rm(T ) for each T ∈ T }.

Lemma 2.1 A function v̂ ∈ Rm(T ) is uniquely determined by the moments
∫

S

v̂κ, ∀κ ∈ Pm−ℓ−1(S), ∀S ∈ Sℓ(T ), d− 1 ≤ ℓ ≤ d. (2.11)

Proof As is shown in [6], a function v ∈ Pm(T ) is uniquely determined by the moments
∫

S

v̂κ, ∀κ ∈ Pm−ℓ−1(S), ∀S ∈ Sℓ(T ), 0 ≤ ℓ ≤ d,

where
∫
S
v̂κ with S ∈ S0(T ) is understood to be the evaluation of v̂ at the vertex S. Since v̂ ∈ Rm(T ) is

uniquely determined by its moments on T and Fj , j = 0, · · · , d, the result is clear. �

Given k ∈ N, we define the local error space for velocity by element and face bubbles

WVk+d+1(T ) = [Rk+d+1(T )⊖Rk+1(T )]
d,

and for pressure by element bubbles

WPk+d(T ) = Qk+d(T )⊖Qk(T ).

The velocity and pressure error spaces are constructed this way to satisfy the inf-sup condition shown in
Lemma 2.3.

The corresponding global finite element spaces, defined by the degrees of freedom and local spaces,
are given by

WVk+d+1 = {ŵ ∈ [H1
0 (Ω)]d | ŵ|T ∈ WVk+d+1(T ) for each T ∈ T }, (2.12)

WPk+d = {r̂ ∈ L2
0(Ω) ∩H1(Ω) | r̂|T ∈WPk+d(T ) for each T ∈ T }, (2.13)

Wk+d =WVk+d+1 ×WPk+d, (2.14)

where Vk ∩Wk+d = {0}. Then the error problem is: Find (êu, êp) ∈ Wk+d such that

a1((êu, êp), (v̂, q̂)) = f(v̂)− a1((û, p̂), (v̂, q̂)), (2.15)

for any (v̂, q̂) ∈ Wk+d.



A Posteriori Estimates of Taylor-Hood Element for Stokes Problem Using Auxiliary Subspace Techniques 5

2.3 Solvability of Error Problem

The error problem is stable (in the sense of inf-sup condition) in Wk+d from the following Lemma 2.2
and Lemma 2.3. Let P k be the set of homogeneous polynomials of degree k ≥ 1. Then we define

WV k+j+1 =WVk+d+1 ∩ [P k+j+1]
d, WP k+j =WPk+d ∩ P k+j ,

where 1 ≤ j ≤ d.

Lemma 2.2 Under Assumptions 1 and 2, there exist positive constants µj (1 ≤ j ≤ d) independent of h
such that

sup
v̂∈WV k+j+1

b(v̂, q̂)

‖v̂‖1,Ω
≥ µj‖q̂‖, ∀q̂ ∈ P k+j ,

where k ≥ 1.

Proof The proof can be found in Appendix A. �

Lemma 2.3 There exists a positive constant µ independent of h such that

sup
v̂∈WVk+d+1

b(v̂, q̂)

‖v̂‖1,Ω
≥ µ‖q̂‖, ∀q̂ ∈WPk+d, (2.16)

where k ≥ 1.

Proof It follows from WP k+j ⊂ P k+j and Lemma 2.2 that

sup
v̂∈WV k+j+1

b(v̂, q̂)

‖v̂‖1,Ω
≥ µj‖q̂‖, ∀q̂ ∈WP k+j ,

for k ≥ 1 and 1 ≤ j ≤ d. Then set µ = min
1≤j≤d

µj and complete the proof from the facts

WVk+d+1 =
d⊕

j=1

WV k+j+1, WPk+d =
d⊕

j=1

WP k+j .

�

From Lemma 2.3, the proof of the following lemma is similar to that of Proposition 4.69 in [25]. For
the sake of completeness, we give the proof here.

Lemma 2.4 The bilinear form a1((v̂, q̂), (ŵ, r̂)) satisfies the estimate

inf
(v̂,q̂)∈Wk+d\{0}

sup
(ŵ,r̂)∈Wk+d\{0}

a1((v̂, q̂), (ŵ, r̂))

‖(v̂, q̂)‖V ‖(ŵ, r̂)‖V
≥ µ2

(1 + µ)2
(2.17)

where µ is a constant defined in Lemma 2.3.

Proof Let (v̂, q̂) ∈Wk+d\{0} be an arbitrary but fixed function. The definition of a1(·, ·) immediately
implies that

a1((v̂, q̂), (v̂, q̂)) = ‖∇v̂‖.

Due to Lemma 2.3, there is a velocity field ŵq̂ ∈WVk+d+1 with ‖∇ŵq̂‖ = 1 such that
∫

Ω

q̂∇ · ŵq̂ ≥ µ‖q̂‖.

We therefore obtain for every δ > 0

a1((v̂, q̂), (v̂ − δ‖q̂‖ŵq̂, q̂)) =a1((v̂, q̂), (v̂, q̂))− δ‖q̂‖a1((v̂, q̂), (ŵq̂, 0))

=‖∇v̂‖2 − δ‖q̂‖
∫

Ω

∇v̂ : ∇ŵq̂ + δ‖q̂‖
∫

Ω

q̂∇ · ŵq̂

≥‖∇v̂‖2 − δ‖∇v̂‖‖q̂‖+ δµ‖q̂‖2

≥(1− δ

2µ
)‖∇v̂‖2 + 1

2
δµ‖q̂‖2.
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The choice of δ = 2µ
1+µ2 yields

a1((v̂, q̂), (v̂ − δ‖q̂‖ŵq̂, q̂)) ≥
µ2

1 + µ2
‖(v̂, q̂)‖2V .

On the other hand, we have

‖(v̂ − δ‖q̂‖ŵq̂, q̂)‖V ≤‖(v̂, q̂)‖V + ‖(δ‖q̂‖ŵq̂, 0)‖V
=‖(v̂, q̂)‖V + δ‖q̂‖‖∇ŵq̂‖
=‖(v̂, q̂)‖V + δ‖q̂‖
≤(1 + δ)‖(v̂, q̂)‖V

=
1 + µ2 + 2µ

1 + µ2
‖(v̂, q̂)‖V .

Combining these estimates we arrive at

sup
(ŵ,r̂)∈Wk+d\{0}

a1((v̂, q̂), (ŵ, r̂))

‖(v̂, q̂)‖V ‖(ŵ, r̂)‖V
≥ a1((v̂, q̂), (v̂ − δ‖q̂‖ŵq̂, q̂))

‖(v̂, q̂)‖V ‖(v̂ − δ‖q̂‖ŵq̂, q̂)‖V

≥ µ2

1 + µ2
.

Since (v̂, q̂) ∈Wk+d\{0} was arbitrary, this completes the proof. �

Theorem 2.1 The error problem (2.15) has a unique solution.

Proof For the system (2.15), one can easily check that a1(·, ·) is a continuous bilinear form on
Wk+d ×Wk+d ⊂ V × V by (2.3) and satisfies the inf-sup condition by Lemma 2.4. In addition, f(v̂) −
a1((û, p̂), (v̂, q̂)) is a continuous linear functional on Wk+d and the bilinear form a1(·, ·) satisfies

a1((v̂, q̂), (v̂, q̂)) = ‖∇v̂‖2 ≥ C‖v̂‖2 > 0, v̂ 6= 0,

by Poincare’s inequalities. So by Theorem 5.2.1 in [7], the scheme (2.15) has a unique solution. �

3 A Posteriori Error Estimation

In this section, a quasi-interpolant based on moment conditions will be shown in Lemma 3.1, which is
used to get the a posteriori error estimate shown in Theorem 3.1.

Lemma 3.1 Given v ∈ [H1(Ω)]d, there exits a v̂ ∈ V Vk+1 and ŵ ∈WVk+d+1 such that

(1)
∫
T (v − v̂ − ŵ) · κ = 0 for all κ ∈ [Pk(T )]

d and T ∈ T .

(2)
∫
F
(v − v̂ − ŵ) · κ = 0 for all κ ∈ [Pk+1(F )]

d and F ∈ FI .

(3) |v − v̂ − ŵ|m,T ≤ CT h
1−m
T |v|1,ΩT

for m = 0, 1, where ΩT is a local patch of elements containing T .

(4) |v − v̂ − ŵ|0,F ≤ CT h
1/2
F |v|1,ΩF

, where hF is the diameter of F ∈ F , and ΩF = ΩT for some T ∈ T
with F ⊂ ∂T .

(5) |ŵ|1,T ≤ CT |v|1,ΩT
for each T ∈ T .

where CT depends only on the dimension d, polynomial degree k, and the shape-regularity of T .

Proof Since functions in Rk+d+1(T ) are uniquely determined by the moments (2.11), for m = 0, 1 the
function 〈〈·〉〉m,T : [Rk+d+1(T )]

d → R
+ defined by

〈〈φ〉〉m,T = max
S∈Sℓ(T )

d−1≤ℓ≤d

sup
κ∈[Pk+d−ℓ(S)]d

h
d/2−ℓ/2−m
T

‖κ‖0,S

∫

S

φ · κ

is a norm on [Rk+d+1(T )]
d.

Let T̃ = {y = h−1
T x : x ∈ T }, and for each ψ : T → R, define ψ̃ : T̃ → R by ψ̃(y) = ψ(hT y). Analogous

definitions are given for the sub-simplices of T and T̃ and functions defined on them. It is clear that

|φ|m,T = h
d/2−m
T |φ̃|m,T̃ , where | · |0,T = ‖ · ‖0,T . We also have for any S ∈ Sℓ(T )
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h
d/2−ℓ/2−m
T

‖κ‖0,S

∫

S

φ · κ =
h
d/2−ℓ/2−m
T

h
ℓ/2
T ‖κ̃‖0,S̃

∫

S̃

φ̃ · κ̃hℓT =
h
d/2−m
T

‖κ̃‖0,S̃

∫

S̃

φ̃ · κ̃.

Since hT̃ = 1, we set that 〈〈φ〉〉m,T = h
d/2−m
T 〈〈φ̃〉〉m,T̃ . Therefore there exists a scale-invariant constant

CT > 0 that depends solely on k, d, and m such that

|φ|m,T = h
d/2−m
T |φ̃|m,T̃ ≤ CT h

d/2−m
T 〈〈φ̃〉〉m,T̃ = CT 〈〈φ〉〉m,T . (3.1)

At this stage, we see that the local constant CT in (3.1) may depend on the shape of T , but not its
diameter. For the rest of the argument, we make a shape-regularity assumption on T .

Next, denote by v̂1 ∈ V Vk+1 the Scott-Zhang interpolant of v satisfying [21]

‖v − v̂1‖m,T ≤ CT h
1−m
T |v|1,ΩT

, m = 0, 1, (3.2)

‖v − v̂1‖0,∂T ≤ CT h
1/2
T |v|1,ΩT

, (3.3)

on each T ∈ T . Set v̂2 ∈ [Rk+d+1]
d such that

∫

S

v̂2 · κ =

∫

S

(v − v̂1) · κ, ∀κ ∈ [Pk+d−ℓ(S)]
d, ∀S ∈ Sℓ, d− 1 ≤ ℓ ≤ d.

By (3.1)-(3.3) we get

|v̂2|m,T ≤ CT max
S∈Sℓ(T )

d−1≤ℓ≤d

sup
κ∈[Pk+d−ℓ(S)]d

h
d/2−ℓ/2−m
T

‖κ‖0,S

∫

S

v̂2 · κ

= CT max
S∈Sℓ(T )

d−1≤ℓ≤d

sup
κ∈[Pk+d−ℓ(S)]d

h
d/2−ℓ/2−m
T

‖κ‖0,S

∫

S

(v − v̂1) · κ

≤ CT (h
1/2−m
T ‖v − v̂1‖0,∂T + h−m

T ‖v − v̂1‖0,T ) ≤ Ch1−m
T |v|1,ΩT

.

Uniquely decomposing v̂2 as v̂2 = v̂3+ŵ with v̂3 ∈ V Vk+1 and ŵ ∈WVk+d+1, and setting v̂ = v̂1+v̂3

so that v̂ + ŵ = v̂1 + v̂2, we see that properties (1)-(2) clearly hold, and

‖v − v̂ − ŵ‖m,T ≤ ‖v − v̂1‖m,T + ‖v̂2‖m,T ≤ CT h
1−m
T |v|1,ΩT

.

Therefore by the standard trace inequalities and the shape regularity of the mesh, we also have on F ⊂ ∂T

‖v − v̂ − ŵ‖0,F ≤ CT (h
−1/2
F ‖v − v̂ − ŵ‖0,T + h

1/2
F ‖v − v̂ − ŵ‖1,T ) ≤ CT h

1/2
F |v|1,ΩF

.

Hence, properties (3)-(4) are satisfied.
Finally, since V Vk+1(T )∩WVk+d+1(T ) = {0}, the strengthened Cauchy-Schwarz inequality [14] gives

the existence of a constant γ ∈ [0, 1) such that
∫

T

∇ŵ · ∇v̂3 ≤ γ|ŵ|1,T |v̂3|1,T .

Consequently, we have

|v̂2|21,T = |ŵ|21,T + |v̂3|21,T + 2

∫

T

∇ŵ : ∇v̂3

≥ |ŵ|21,T + |v̂3|21,T − 2γ|ŵ|1,T |v̂3|1,T ≥ (1 − γ2)|ŵ|21,T .

Therefore we find |ŵ|1,T ≤
√
(1 − γ2)−1|v̂2|1,T ≤ CT |v|1,ΩT

. �

For (v, q) ∈ V , we have

a1((u − û, p− p̂), (v, q)) = f(v)− a1((û, p̂), (v, q)), (3.4)

where (u, p) and (û, p̂) are the solutions of (2.1) and (2.8), respectively. So,

a1((u− û, p− p̂), (v, q)) =
∑

T∈T

∫

T

(f · v −∇û : ∇v +∇ · vp̂−∇ · ûq)

=
∑

T∈T

∫

T

(f · v − (−∆û · v +∇p̂ · v −∇ · ûq))

+
∑

T∈T

∫

∂T

(−∇û · nT · v + p̂v · nT )
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Lemma 3.2 For any (v, q) ∈ V , (ŵ, r̂) ∈ Wk+d, and (v̂, q̂) ∈ Vk, it holds that

a1((u− û, p− p̂), (v, q)) = a1((êu, êp), (ŵ, r̂)) +R(v − ŵ − v̂, q − r̂ − q̂) (3.5)

where (u, p) and (û, p̂) are the solutions of (2.1) and (2.8), respectively, and

R(w, r) = f(w)− a1((û, p̂), (w, r))

=
∑

T∈T

∫

T

((f −RT ) ·w +∇ · ûr) +
∑

F∈FI

∫

F

rF ·w,

for any (w, r) ∈ [H1
0 (Ω)]d × L2

0(Ω) and

RT = (−∆û+∇p̂)|T ,
rF = (−∇û · nT + p̂nT )|T − (−∇û · nT ′ + p̂nT ′)|T ′ .

Here, T and T ′ are the simplices sharing the face F , and nT and nT ′ are their outward unit normals.

Proof From (2.8), (2.15), and (3.4), we obtain

R(v − ŵ − v̂, q − r̂ − q̂)

=R(v, q)−R(ŵ, r̂)−R(v̂, q̂)

=f(v)− a1((û, p̂), (v, q))− (f(ŵ)− a1((û, p̂), (ŵ, r̂)))− (f(v̂)− a1((û, p̂), (v̂, q̂)))

=a1((u − û, p− p̂), (v, q))− a1((êu, êp), (ŵ, r̂)),

which completes the proof. �

We define the local oscillation for each T ∈ T by

osc(f , T )2 = h2T inf
κ∈[Pk(T )]d

‖f − κ‖20,T .

Then define

osc(f )2 =
∑

T∈T
osc(f , T )2. (3.6)

Theorem 3.1 Let (u, p), (û, p̂), and (êu, êp) be the solutions of (2.1),(2.8), and (2.15), respectively.

There are constants Ĉ∗ = µ2

2C1(1+µ)2 and Ĉ
∗ = C1

c1
such that

Ĉ∗‖(êu, êp)‖V +
1

2
√
d
‖∇ · û‖ ≤ ‖(u− û, p− p̂)‖V ≤ Ĉ

∗‖(êu, êp)‖V +
1

c1
‖∇ · û‖+ CT

c1
osc(f ), (3.7)

where constants C1, c1, µ, and CT are defined in (2.3), (2.4), (2.16), and Lemma 3.1.

Proof Given q ∈ L2
0(Ω), there exists r̂ ∈ WPk+d such that ‖q − r̂‖ ≤ ‖q‖ since WPk+d ⊂ L2

0(Ω).
Then combining Lemma 3.1, Lemma 3.2, and noting RT ∈ [Pk(T )]

2, rF ∈ [Pk(F )]
2, we determine that

|a1((u− û, p− p̂), (v, q))| ≤|a1((êu, êp), (ŵ, r̂))|+
∑

T∈T
‖v − v̂ − ŵ‖0,T inf

κ∈[Pk(T )]d
‖f − κ‖0,T

+
∑

T∈T
‖v − v̂ − ŵ‖0,T inf

κ∈[Pk(T )]d
‖RT − κ‖0,T

+
∣∣ ∑

T∈T

∫

T

(q − q̂ − r̂)∇ · û
∣∣+

∑

F∈FI

‖v − v̂ − ŵ‖0,F inf
κ∈[Pk+1(F )]d

‖rF − κ‖0,F

≤C1‖(êu, êp)‖V ‖(ŵ, r̂)‖V + CT
∑

T∈T
hT ‖v‖1,ΩT

inf
κ∈[Pk(T )]d

‖f − κ‖0,T

+
∑

T∈T
‖q‖‖∇ · û‖

≤C1‖(êu, êp)‖V ‖(v, q)‖V + CT osc(f )‖(v, q)‖V + ‖∇ · û‖‖(v, q)‖V ,

for any ŵ ∈ WVk+d+1 and (v̂, q̂) ∈ Wk+d. Then the right inequality of (3.7) follows from the inf-sup
condition (2.4) of continuous problem:
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c1‖(u− û, p− p̂)‖V ≤ sup
(w,r)∈V \{0}

a1((u − û, p− p̂), (w, r))

‖(w, r)‖V
.

From (2.17),(2.15), and (2.1),

µ2

(1 + µ)2
‖(êu, êp)‖V ≤ sup

(ŵ,r̂)∈Wk+d\{0}

a1((êu, êp), (ŵ, r̂))

‖(ŵ, r̂)‖V

= sup
(ŵ,r̂)∈Wk+d\{0}

f(v̂)− a1((û, p̂), (ŵ, r̂))

‖(ŵ, r̂)‖V

= sup
(ŵ,r̂)∈Wk+d\{0}

a1((u − û, p− p̂), (ŵ, r̂))

‖(ŵ, r̂)‖V
≤C1‖(u− û, p− p̂)‖V .

Since ∇ · u = 0, we have

‖∇ · û‖ = ‖∇ · (u− û)‖ ≤
√
d‖∇(u− û)‖ ≤

√
d‖(u− û, p− p̂)‖V .

Then we get the left inequality of (3.7). �

4 System Diagonalization

As stated, the computation of (êu, êp) requires the formation and solution of a global system, so one
might naturally be concerned that this approach is too expensive for practical consideration. Generally
speaking, the hierarchical basis forWk+d is typically made up of highly oscillatory functions with compact
support, therefore we may approximate the stiffness matrix by a diagonal matrix, which reduces the cost
of computation.

4.1 Diagonalization with respect to Velocity

Let {φj}Nj=1 be the bases for Wk+d, i.e.

Wk+d = span{φj}Nj=1.

Let {ϕj}Nv

j=1 and {ψj}Np

j=1 be the bases in Wk+d for velocity and pressure, respectively. It is clear that

N = Nv +Np and {φj}Nj=1 = {ϕj}Nv

j=1 ∪ {ψj}Np

j=1.
Define an Nv × Nv matrix A by Aℓ,j = a(ϕj , ϕℓ) and an Nv × Np matrix B by Bℓ,j = −b(ψj , ϕℓ).

Then we can rewrite (2.15) in a matrix form
[
A B

−BT 0

] [
xu

xp

]
=

[
Fv

Fp

]
, (4.1)

where xu and xp are the coefficients of êu and êp with respect to the bases, respectively; Fv and Fp

are the vectors formed by the right-hand function of (2.15) acting on the bases of velocity and pressure,

respectively. For any (v̂, q̂) =
N∑
j=1

xjφj , (ŵ, r̂) =
N∑
j=1

yjφj ∈Wk+d, we have

a1((v̂, q̂), (ŵ, r̂)) = yTMx, (4.2)

where

x = (x1, · · · , xN )T , y = (y1, · · · , yN )T , and M =

[
A B

−BT 0

]
. (4.3)

Let xv be a vector composed of elements related to velocity in x, then it holds

‖(v̂, q̂)‖2V = |v̂|21,Ω + ‖q̂‖2 = xT
v Axv + ‖q̂‖2.

Let Dv be the diagonal matrix with the same diagonal as A and Mv be
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Mv =

[
Dv B
−BT 0

]
. (4.4)

Define

a2((v̂, q̂), (ŵ, r̂)) = yTMvx (4.5)

and norms

‖(v̂, q̂)‖2D = xT
vDvxv + ‖q̂‖2, (4.6)

|v̂|2D = xT
vDvxv. (4.7)

Now, we are at the stage to present the second error problem: Find (ẽu, ẽp) ∈Wk+d such that

a2(ẽu, ẽp), (v̂, q̂)) = f(v̂)− a1((û, p̂), (v̂, q̂)), ∀ (v̂, q̂) ∈Wk+d, (4.8)

where a2(·, ·) is specified in (4.5).

For any T ∈ T and (v̂, q̂) ∈ Wk+d, denote by {ϕT,j}Nv,T

j=1 the basis functions of velocity related to

T , then v̂T := v̂|T =
Nv,T∑
j=1

xT,jϕT,j with {xT,j}Nv,T

j=1 being the coefficients. Let v̂T,j := xT,jϕT,j , then

v̂T =
Nv,T∑
j=1

v̂T,j . We can rewrite |v̂|1,Ω and |v̂|D as follows:

|v̂|21,Ω =
∑

T∈T
|v̂T |21,T ,

|v̂|2D =
∑

T∈T

Nv,T∑

j=1

|v̂T,j |21,T .

We define the local norm of | · |D by

|v̂|D,T =

√√√√
Nv,T∑

j=1

|v̂T,j |21,T , (4.9)

where Nv,T is the number of basis functions of velocity in element T .

Lemma 4.1 There exist two positive constants β1 and β2 independent of h such that

β1 ≤
|ŵ|21,T
|ŵ|2D,T

≤ β2, β1 ≤
|ŵ|21,Ω
|ŵ|2D

≤ β2, (4.10)

for all T ∈ T and ŵ ∈ WVk+d+1.

Proof We claim that there exist two positive constants β1T and β2T independent of h such that

β1T

Nv,T∑

j=1

|ŵT,j |21,T ≤ |ŵT |21,T ≤ β2T

Nv,T∑

j=1

|ŵT,j |21,T , T ∈ Th. (4.11)

where Nv,T is the number of basis functions of velocity in element T .
For the first inequality in (4.11), divide Λ = {j ∈ N+|1 ≤ j ≤ Nv,T } into two subsets Λ = Λ1 ∪ Λ2

with Λ1 ∩ Λ2 = ∅. From Theorem 1 in [14], it gets that

(
∑

j1∈Λ1

∇ŵT,j1 ,
∑

j2∈Λ2

∇ŵT,j2) ≤ γv,T |
∑

j1∈Λ1

ŵT,j1 |1,T |
∑

j2∈Λ2

ŵT,j2 |1,T , (4.12)

where 0 ≤ γv,T < 1 is independent of h. Using the strengthened Cauchy inequality (4.12) and Cauchy-
Schwarz inequality, we deduce
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|ŵT |21,T = |
Nv,T∑

j=1

ŵT,j |21,T = (

Nv,T∑

j=1

∇ŵT,j ,

Nv,T∑

j=1

∇ŵT,j)

= |ŵT,1|21,T + |
Nv,T∑

j=2

ŵT,j |21,T + 2(∇ŵT,1,

Nv,T∑

j=2

∇ŵT,j)

≥ |ŵT,1|21,T + |
Nv,T∑

j=2

ŵT,j |21,T − 2γv,T |ŵT,1|1,T |
Nv,T∑

j=2

ŵT,j |1,T

≥ (1− γv,T )|ŵT,1|21,T + (1− γv,T )|
Nv,T∑

j=2

ŵT,j |21,T .

By a similar argument, we obtain

|ŵT |21,T = |
Nv,T∑

j=1

ŵT,j |21,T ≥
Nv,T∑

j=1

(1− γv,T )
j |ŵT,j |21,T ≥ (1− γv,T )

Nv,T

Nv,T∑

j=1

|ŵT,j |21,T ,

which implies the first inequality in (4.11) with β1T = (1− γv,T )
Nv,T .

The second inequality in (4.11) follows from the Cauchy-Schwarz inequality with β2T = Nv,T . There-
fore, the claim (4.11) holds. Summing up (4.11) overall T ∈ T and noting

|ŵ|2W
|ŵ|2D

=

∑
T∈Th

|ŵT |21,T
∑
T∈T

∑Nv,T

j=1 |ŵT,j |21,T
,

we arrive at the conclusion (4.10) with β1 = min
T∈T

(1 − γv,T )
Nv,T and β2 = max

T∈T
Nv,T . �

Lemma 4.2 For any (v̂, q̂), (ŵ, r̂) ∈Wk+d, we have

a2((v̂, q̂), (ŵ, r̂)) ≤ C2‖(ŵ, r̂)‖V ‖(v̂, q̂)‖V , (4.13)

where C2 is a positive constant.

Proof For any (v̂, q̂) =
N∑
j=1

xjφj , (ŵ, r̂) =
N∑
j=1

yjφj ∈ Wk+d, define x = (x1, · · · , xN )T and y =

(y1, · · · , yN )T . Let xv and yv be vectors composed of elements related to velocity in x and y, respectively.
Similarly, Let xp and yp be vectors composed of elements related to pressure in x and y, respectively.
Then using (4.5)∼(4.7), Cauchy-Schwarz inequality, and Lemma 4.1, we have

a2((v̂, q̂), (ŵ, r̂)) = yTMvx =
[
yT
v yT

p

] [ Dv B
−BT 0

] [
xv

xp

]

= yT
vDvxv − yT

pB
Txv + yT

vBxp

≤ |v̂|D|ŵ|D − (∇ · v̂, r̂) + (∇ · ŵ, q̂)
≤ |v̂|D|ŵ|D + ‖∇ · v̂‖‖r̂‖+ ‖∇ · ŵ‖‖q̂‖
≤ |v̂|D|ŵ|D +

√
d|v̂|1,Ω‖r̂‖+

√
d|ŵ|1,Ω‖q̂‖

≤ |v̂|D|ŵ|D +
√
d
√
β2|v̂|D‖r̂‖+

√
d
√
β2|ŵ|D‖q̂‖

≤
√
d|v̂|2D|ŵ|2D + d2β2(|v̂|2D‖r̂‖2 + |ŵ|2D‖q̂‖2)

≤ C2‖(v̂, q̂)‖D‖(ŵ, r̂)‖D,

where C2 = max (
√
d, d

√
β2). �

Lemma 4.3 The bilinear form a2((v̂, q̂), (ŵ, r̂)) satisfies the estimate

inf
(v̂,q̂)∈Wk+d\{0}

sup
(ŵ,r̂)∈Wk+d\{0}

a2((v̂, q̂), (ŵ, r̂))

‖(v̂, q̂)‖D‖(ŵ, r̂)‖D
≥ (µβ1)

2

(1 + µβ1)2
,

where µ and β1 are the constants in Lemma 2.3 and Lemma 4.1, respectively.
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Proof To prove the inequality, we choose an arbitrary but fixed element (v̂, q̂) ∈WPk+d\{0}. Due to
Lemma 2.3, there is a velocity field ŵq̂ ∈ WVk+d+1 with |ŵq̂|D = 1 such that

∑

T∈T

∫

T

q̂∇ · ŵq̂dx =

∫

Ω

q̂∇ · ŵq̂dx ≥ µ‖q̂‖.

By using Cauchy-Schwartz inequality, Lemma 4.1, Lemma 2.3, and noting |ŵq̂|D = 1, we therefore obtain
for every δ > 0,

a2((v̂, q̂), (v̂ − δ‖q̂‖ŵq̂, q̂))

=a2((v̂, q̂), (v̂, q̂))− δ‖q̂‖a2((v̂, q̂), (ŵq̂, 0))

=|v̂|2D − δ‖q̂‖yT
vDvxv + δ‖q̂‖

∑

T∈T

∫
q̂∇ · ŵq̂

≥|v̂|2D − δ|v̂|D‖q̂‖+ δµ‖q̂‖2|ŵq̂|1,Ω
≥|v̂|2D − δ|v̂|D‖q̂‖+ δµβ1‖q̂‖2

≥(1− δ

2µβ1
)|v̂|2D +

1

2
δµβ1‖q̂‖2,

where xv = (x1, x2, · · · , xNv
)T and yv = (y1, y2, · · · , yNv

)T are such that v̂ =
Nv∑
j=1

xjϕj , ŵq̂ =
Nv∑
j=1

yjϕj ∈
WVk+d+1.

Similar to the proof in Lemma 2.4, the choice of δ = 2µβ1

1+(µβ1)2
yields

a2((v̂, q̂), (v̂ − δ‖q̂‖ŵq̂, q̂)) ≥
(µβ1)

2

1 + (µβ1)2
‖(v̂, q̂)‖2D,

and

‖(v̂ − δ‖q̂‖ŵq̂, q̂)‖D ≤ (1 + µβ1)
2

1 + (µβ1)2
‖(v̂, q̂)‖D.

Then we arrive at

sup
(ŵ,r̂)∈Wk+d\{0}

a2((v̂, q̂), (ŵ, r̂))

‖(v̂, q̂)‖D‖(ŵ, r̂)‖D
≥ a2((v̂, q̂), (v̂ − δ‖q̂‖ŵq̂, q̂))

‖(v̂, q̂)‖D‖(v̂ − δ‖q̂‖ŵq̂, q̂)‖D
≥ (µβ1)

2

(1 + µβ1)2
.

Since (v̂, q̂) ∈Wk+d\{0} is arbitrary, this completes the proof. �

Using Lemma 4.2, Lemma 4.3, and a proof similar to that of Theorem 2.1, we have the following
conclusion.

Theorem 4.1 The finite element scheme (4.8) has a unique solution.

Lemma 4.4 Let (êu, êp) and (ẽu, ẽp) be the solutions of (2.15) and (4.8), respectively.

(µβ1)
2

C1(1 + µβ1)2
√
β2 + 1

‖(ẽu, ẽp)‖D ≤ ‖(êu, êph)‖V ≤ C2

√
1 + β1(1 + µ)2√

β1µ2
‖(ẽu, ẽp)‖D, (4.14)

where ‖ · ‖V and ‖ · ‖D are defined in (2.2) and (4.6), respectively. The constants C1,C2, β1, β2, and µ are
defined in (2.3), (4.13), (4.11), and (2.16).

Proof It follows from (2.15) and (4.8) that

a2((ẽu, ẽp), (v̂, q̂)) = a1((êu, êph), (v̂, q̂)), ∀ (v̂, q̂) ∈ Wk+d. (4.15)

Using (4.15), Lemma 4.1, and Lemma 4.3, we obtain
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(µβ1)
2

(1 + µβ1)2
‖(ẽu, ẽp)‖D ≤ sup

(v̂,q̂)∈Wk+d\{0}

a2((ẽu, ẽp), (v̂, q̂))

‖(v̂, q̂)‖D

= sup
(v̂,q̂)∈Wk+d\{0}

a1((êu, êp), (v̂, q̂))

‖(v̂, q̂)‖D

≤ sup
(v̂,q̂)∈Wk+d\{0}

C1‖(êu, êp)‖V ‖(v̂, q̂)‖V
‖(v̂, q̂)‖D

≤ sup
(v̂,q̂)∈Wk+d\{0}

C1‖(êu, êp)‖V
√
|v̂|21,Ω + ‖q̂‖2

√
|v̂|2D + ‖q̂‖2

≤ sup
(v̂,q̂)∈Wk+d\{0}

C1‖(êu, êp)‖V
√
β2|v̂|2D + ‖q̂‖2√

|v̂|2D + ‖q̂‖2

≤ C1

√
β2 + 1‖(êu, êp)‖V ,

which implies the first inequality in (4.14).
Similarly, using (4.15) and Lemma 2.3, we have

µ2

(1 + µ)2
‖(êu, êp)‖V ≤ sup

(v̂,q̂)∈Wk+d\{0}

a1((êu, êp), (v̂, q̂))

‖(v̂, q̂)‖V

= sup
(v̂,q̂)∈Wk+d\{0}

a2((ẽu, ẽp), (v̂, q̂))

‖(v̂, q̂)‖V

≤ sup
(v̂,q̂)∈Wk+d\{0}

C2‖(ẽu, ẽp)‖D‖(v̂, q̂)‖D
‖(v̂, q̂)‖V

≤ sup
(v̂,q̂)∈Wk+d\{0}

C2‖(ẽu, ẽp)‖D
√
|v̂|2D + ‖q̂‖2√

|v̂|21,Ω + ‖q̂‖2

≤ sup
(v̂,q̂)∈Wk+d\{0}

C2‖(ẽu, ẽp)‖D
√

|v̂|21,Ω
β1

+ ‖q̂‖2
√
|v̂|21,Ω + ‖q̂‖2

≤ C2

√
1 + β1√
β1

‖(ẽu, ẽp)‖D,

which implies the second inequality in (4.14). �

Combining Theorem 3.1 and Lemma 4.4, we obtain the following lower and upper bounds related to
‖(ẽu, ẽp)‖D.

Theorem 4.2 Let (u, p), (û, p̂), and (ẽu, ẽp) be the solutions of (2.1),(2.15), and (4.8), respectively.

There are constants C̃∗ =
µ4β2

1

2C2
1(1+µ)2(1+β1µ)2

√
1+β2

and C̃
∗ = C1C2

√
1+β1(1+µ)2

c1

√
β1µ2 such that

C̃∗‖(ẽu, ẽp)‖D +
1

2
√
d
‖∇ · û‖ ≤ ‖(u− û, p− p̂)‖V ≤ C̃

∗‖(ẽu, ẽp)‖D +
1

c1
‖∇ · û‖+ CT

c1
osc(f ), (4.16)

where ‖ · ‖V and ‖ · ‖D are defined in (2.2) and (4.6), respectively. The constants C1,C2, c1, µ, β1, β2, and
CT are defined in (2.3), (4.13) (2.4), (2.16), (4.11), and Lemma 3.1, respectively.

4.2 Diagonalization with respect to Pressure

Recall that {ϕj}Nv

j=1 and {ψj}Np

j=1 are the bases in space Wk+d for velocity and pressure, respectively. For

ẽu =
∑Nv

j=1 x̃u,jϕj and ẽp =
∑Np

j=1 x̃p,jψj , rewrite (4.8) in a matrix form

[
Dv B
−BT 0

] [
x̃u

x̃p

]
=

[
Fv

Fp

]
, (4.17)

where
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x̃u = (x̃u,1, x̃u,2, · · · , x̃u,Nv
)T , Fv = (Fv,1, Fv,2, · · · , Fv,Nv

)T ,

x̃p = (x̃p,1, x̃p,2, · · · , x̃p,Np
)T , Fp = (Fp,1, Fp,2, · · · , Fp,Nv

)T .

Here, Fv,j and Fp,j are defined by

Fv,j = f(ϕj)− a1((û, p̂), (ϕj , 0)), j = 1, 2, · · · , Nv, (4.18)

Fp,j = −a1((û, p̂), (0, ψj)), j = 1, 2, · · · , Np. (4.19)

After a simple calculation, we have

Dvx̃u +Bx̃p = Fv, (4.20)

BTD−1
v Bx̃p = Fp +BTD−1

v Fv. (4.21)

The inverse of the matrix Dv is easy to calculate because it is a diagonal matrix. If we get x̃p by
solving (4.21), x̃u is easy to get by (4.20). Let Dp = diag(BTD−1

v B), which is the diagonal matrix with
the same diagonal as BTD−1

v B. Let cs = max
T∈T

Np,T , which is the maximum number of basis functions of

pressure for each element. Then replacing BTD−1
v B with csDp in (4.21), we get

Dvx̄u +Bx̄p = Fv, (4.22)

csDpx̄p = Fp +BTD−1
v Fv, (4.23)

where x̄u = (x̄u,1, x̄u,2, · · · , x̄u,Nv
) and x̄p = (x̄p,1, x̄p,2, · · · , x̄p,Np

).
Equations (4.22) and (4.23) are equivalent to

Dvx̄u +Bx̄p = Fv,

−BT x̄u + (csDp −BTD−1
v B)x̄p = Fp,

whose matrix form is

[
Dv B
−BT csDp −BTD−1

v B

] [
x̄u

x̄p

]
=

[
Fv

Fp

]
.

For any (v̂, q̂) =
N∑
j=1

xjφj and (ŵ, r̂) =
N∑
j=1

yjφj ∈ Wk+d, we define

a3((v̂, q̂), (ŵ, r̂)) = yTMvpx, (4.24)

where

y = (y1, · · · , yN )T , Mvp =

[
Dv B
−BT csDp −BTD−1

v B

]
, and x = (x1, · · · , xN )T .

It is time to present the third error problem: Find {ēu, ēp} ∈ Wk+d with ēu =
∑Nv

j=1 x̄u,jϕj and

ēp =
∑Np

j=1 x̄p,jψj such that

a3((ēu, ēp), (v̂, q̂)) = f(v̂)− a1((û, p̂), (v̂, q̂)), ∀ (v̂, q̂) ∈Wk+d. (4.25)

Remark 4.1 Equations (4.22) and (4.23) are equivalent to (4.25), but they are used in different ways.
Obviously, (4.22) and (4.23) are easier to calculate. In section 5, the global and local estimators will be
generated from (4.22) and (4.23). However, (4.25) is essential in the proof of equivalence. Therefore, we
use (4.22) and (4.23) for the numerical computation and (4.25) for the theoretical analysis.

Because matrix Dv and Dp are diagonal matrices in (4.22) and (4.23), the existence and uniqueness
of finite element scheme (4.25) are obvious.

Theorem 4.3 The finite element scheme (4.25) has a unique solution.
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Next, we turn our attention to the discrete pressure space. Two new norms will be defined. We still

use {ψj}Np

j=1 to denote the basis functions of pressure in Wk+d. For q̂ =
∑Np

j=1 x
j
pψj and r̂ =

∑Np

j=1 y
j
pψj ,

define two bilinear forms

E31(q̂, r̂) = yT
pB

TD−1
v Bxp, E32(q̂, r̂) = yT

pDpxp,

and norms

‖q̂‖2B =
√
E31(q̂, q̂), ‖q̂‖2P =

√
E32(q̂, q̂),

where xp = (xp,1, · · · , xp,Np
)T and yp = (yp,1, · · · , yp,Np

)T . The next two lemmas will establish some
inequalities related to the three pressure norms ‖ · ‖B, ‖ · ‖P , and ‖ · ‖.
Lemma 4.5 There exist two positive constants ci and cs independent of h such that

ci ≤
‖q̂‖2B
‖q̂‖2P

≤ cs, ∀q̂ ∈WPk+d, (4.26)

where cs is the same as in (4.23).

Proof For any T ∈ T , denote by {ψT,j}Np,T

j=1 the basis functions of pressure related to T , then

q̂T := q̂|T =
Np,T∑
j=1

xT,jψT,j with {xT,j}Np,T

j=1 being the coefficients. Let q̂T,j := xT,jψT,j , then q̂T =
Np,T∑
j=1

q̂T,j .

We claim that there exist two positive constants ciT and csT , independent of h, such that

ciT

Np,T∑

j=1

‖q̂T,j‖2B ≤ ‖q̂T ‖2B ≤ csT

Np,T∑

j=1

‖q̂T,j‖2B, T ∈ T . (4.27)

For the first inequality in (4.27), devide Λ = {j ∈ N+
∣∣ 1 ≤ j ≤ Np,T } into two subsets Λ = Λ1 ∪ Λ2

with Λ1 ∩ Λ2 = ∅. From Theorem 1 in [14], it gets that

E31(
∑

j∈Λ1

q̂T,j ,
∑

ℓ∈Λ2

q̂T,ℓ) ≤ γp,T ‖
∑

j∈Λ1

q̂T,j‖B‖
∑

ℓ∈Λ2

q̂T,ℓ‖B, (4.28)

where 0 ≤ γp,T < 1 is independent of h. Using the strengthened Cauchy inequality (4.28), we deduce

‖
Np,T∑

j=1

q̂T,j‖2B = ‖q̂T ‖2B = E31(

Np,T∑

j=1

q̂T,j ,

Np,T∑

j=1

q̂T,j)

= ‖q̂T,1‖2B + ‖
Np,T∑

j=2

q̂T,j‖2B + 2E31(q̂T,1,

Np,T∑

j=2

q̂T,j)

≥ ‖q̂T,1‖2B + ‖
Np,T∑

j=2

q̂T,j‖2B − 2γp,T ‖q̂T,1‖B‖
Np,T∑

j=2

q̂T,j‖B

≥ (1− γp,T )‖q̂T,1‖2B + (1− γp,T )‖
Np,T∑

j=2

q̂T,j‖2B.

By a similar argument, we obtain

‖q̂T ‖2B = ‖
Np,T∑

j=1

q̂T,j‖2B ≥
Np,T∑

j=1

(1 − γp,T )
j‖q̂T,j‖2B ≥ (1 − γp,T )

Np,T

Np,T∑

j=1

‖q̂T,j‖2B,

which implies the first inequality in (4.27) with ciT = (1− γp,T )
Np,T .

The second inequality in (4.11) follows from the Cauchy-Schwarz inequality with csT = Np,T . There-
fore, the claim (4.11) holds. Summing up (4.11) over all T ∈ T and noting

‖q̂‖2B
‖q̂‖2P

=

∑
T∈T

‖q̂T ‖2B
∑
T∈T

∑Np,T

j=1 ‖q̂T,j‖2B
,

we arrive at the conclusion (4.10) with ci = min
T∈T

(1− γp,T )
Np,T and cs = max

T∈T
Np,T . �
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Lemma 4.6 For any (v̂, q̂) ∈ Wk+d, we have

‖q̂‖B ≤ d(d+ 1)β2‖q̂‖

where d is the dimension and β2 is defined in (4.10).

Proof We continue to use {ϕj}Nv

j=1 and {ψj}Np

j=1 as the bases in Wk+d for velocity and pressure,

respectively. Define a diagonal matrix D̃ whose elements are the square roots of the corresponding elements

of D−1
v , and it is clear that D−1

v = D̃D̃. Let q =
∑Np

j=1 xjψj and x = (x1, x2, · · · , xNp
)T , then

‖q̂‖2B = xTBTD−1
v Bx = xTBT D̃D̃Bx. (4.29)

Let {dj}Nv

j=1 denote the diagonal elements of the matrix D̃ whose dimension is Nv. Let dj denote the j-th

column of matrix D̃ and v̂j = djϕj and denoted by T1, · · · , TjT the elements related to ϕj respectively.
Then

jT∑

i=1

|v̂j |2D,Ti
= |v̂j |2D = dT

j Dvdj = 1. (4.30)

From (4.29), (4.30), Cauchy-Schwartz inequality, and Lemma 4.1, we have

‖q̂‖2B =

Nv∑

j=1

(xTBTdj)(d
T
j Bx) =

Nv∑

j=1

(b(v̂j , q̂))
2 =

Nv∑

j=1

(
∑

T∈Th

(∇ · v̂j , q̂)T )
2

=

Nv∑

j=1

(

jT∑

i=1

(∇ · v̂j , q̂)Ti
)2 ≤

Nv∑

j=1

jT∑

i=1

‖∇ · v̂j‖20,Ti
‖q̂‖20,Ti

≤
Nv∑

j=1

jT∑

i=1

d|v̂j |21,Ti
‖q̂‖20,Ti

≤
Nv∑

j=1

jT∑

i=1

dβ2|v̂j |2D,Ti
‖q̂‖20,Ti

≤
Nv∑

j=1

jT∑

i=1

dβ2‖q̂‖20,Ti
= d(d+ 1)β2

∑

T∈T
‖q̂‖20,T = d(d + 1)β2‖q̂‖

�

Lemma 4.7 The bi-linear form a3((v̂, q̂), (ŵ, r̂)) satisfies the estimates

inf
(v̂,q̂)∈Wk+d\{0}

sup
(ŵ,r̂)∈Wk+d\{0}

a3((v̂, q̂), (ŵ, r̂))

‖(v̂, q̂)‖D‖(ŵ, r̂)‖D
≥ (µβ1)

2

(1 + µβ1)2
,

where µ and β1 are the constants in Lemma 2.3 and Lemma 4.1, respectively.

Proof To prove the inequality, we choose an arbitrary but fixed element (v̂, q̂) ∈ Wk+d\{0}. Due to
Lemma 2.3, there is a velocity field ŵq̂ ∈ WPk+d with |ŵq̂|D = 1 such that

∑

T∈T

∫

T

q̂∇ · ŵq̂ =

∫

Ω

q̂∇ · ŵq̂ ≥ µ‖q̂‖.

By using Cauchy-Schwartz inequality, Lemma 4.1, Lemma 2.3, and Lemma 4.5, we therefore obtain for
every δ > 0

a3((v̂, q̂), (v̂ − δ‖q̂‖ŵq̂, q̂))

=a3((v̂, q̂), (v̂, q̂))− δ‖q̂‖a3((v̂, q̂), (ŵq̂, 0))

=|v̂|2D + cs‖q̂‖p − ‖q̂‖B − δ‖q̂‖yT
vDvxv + δ‖q̂‖

∑

T∈Th

∫

T

q̂∇ · ŵq̂

≥|v̂|2D − δ|v̂|D‖q̂‖+ δµ‖q̂‖2|ŵq̂|1,Ω
≥|v̂|2D − δ|v̂|D‖q̂‖+ δµβ1‖q̂‖2

≥(1 − δ

2µβ1
)|v̂|2D +

1

2
δµβ1‖q̂‖2,
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where xv = (xv,1, · · · , xv,Nv
)T , xq = (xq,1, · · · , xq,Np

)T , and yv = (yv,1, · · · , yv,Nv
)T . Let v̂ =

Nv∑
j=1

xv,jϕj ,

q̂ =
Nv∑
j=1

xq,jψj , and ŵq̂ =
Nv∑
j=1

yv,jϕj .

Similar to the proof of Lemma 2.4, the choice of δ = 2µβ1

1+(µβ1)2
yields

a3((v̂, q̂), (v̂ − δ‖q̂‖ŵq̂, q̂)) ≥
(µβ1)

2

1 + (µβ1)2
‖(v̂, q̂)‖2D,

and

‖(v̂ − δ‖q̂‖ŵq̂, q̂)‖D ≤ (1 + µβ1)
2

1 + (µβ1)2
‖(v̂, q̂)‖D.

Then we arrive at

sup
(ŵ,r̂)∈Wk+d\{0}

a3((v̂, q̂), (ŵ, r̂))

‖(v̂, q̂)‖D‖(ŵ, r̂)‖D
≥ a3((v̂, q̂), (v̂ − δ‖q̂‖ŵq̂, q̂))

‖(v̂, q̂)‖D‖(v̂ − δ‖q̂‖ŵq̂, q̂)‖D
≥ (µβ1)

2

(1 + µβ1)2
.

Since (v̂, q̂) ∈Wk+d\{0} is arbitrary, this completes the proof. �

Lemma 4.8 For any (v̂, q̂), (ŵ, r̂) ∈Wk+d, we have

a3((v̂, q̂), (ŵ, r̂)) ≤ C3‖(ŵ, r̂)‖D‖(v̂, q̂)‖D, (4.31)

where C3 is a positive constant independent of h.

Proof We continue to use {ϕj}Nv

j=1 and {ψj}Np

j=1 as the bases in space Wk+d for velocity and pressure,
respectively.

Let

v̂ =

Nv∑

j=1

xv,jϕj , xv = (xv,1, xv,2, · · · , xv,Nv
)T ,

q̂ =

Np∑

j=1

xp,jψj , xp = (xp,1, xp,2, · · · , xp,Np
)T ,

ŵ =

Nv∑

j=1

yv,jϕj , yv = (yv,1, yv,2, · · · , yv,Nv
)T ,

r̂ =

Np∑

j=1

yp,jψj , yp = (xp,1, yp,2, · · · , yp,Np
)T .

Then, using (4.24), Cauchy-Schwarz inequality, Lemma 4.5, Lemma 4.1, and Lemma 4.6

a3((v̂, q̂), (ŵ, r̂))

= yT
vDvxv + yT

vBxp − yT
pB

Txv + yT
p (csDp −BTD−1

v B)xp

≤ |v̂|D|ŵ|D + ‖q̂‖‖∇ · ŵ‖+ ‖r̂‖‖∇ · v̂‖+ ‖q̂‖P ‖r̂‖P + ‖q̂‖B‖r̂‖B
≤ |v̂|D|ŵ|D + d‖q̂‖|ŵ|1,Ω + d‖r̂‖|v̂|1,Ω + (c−1

i + 1)‖q̂‖B‖r̂‖B
≤ |v̂|D|ŵ|D + dβ2‖q̂‖|ŵ|D + dβ2‖r̂‖|v̂|D + (c−1

i + 1)d(d+ 1)β2‖q̂‖‖r̂‖
≤ C3‖(v̂, q̂)‖D‖(ŵ, r̂)‖D,

with C3 =
√
2max {1, dβ2, (c−1

i + 1)d(d+ 1)β2}. �

Lemma 4.9 Let (ẽu, ẽp) and (ēu, ēp) be the solutions of (4.8) and (4.22)-(4.23), respectively. Then,

(µβ1)
2

C2(1 + µβ1)2
‖(ēu, ēp)‖D ≤ ‖(ẽu, ẽp)‖D ≤ C3(1 + µβ1)

2

(µβ1)2
‖(ēu, ēp)‖D, (4.32)

where ‖ · ‖D is defined in (4.6). The constants C2,C3, β1, and µ are defined in (4.13), (4.31), (4.11), and
(2.16), respectively.
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Proof It follows from (4.8) and (4.25) that

a3((ēu, ēp), (v̂, q̂)) = a2((ẽu, ẽp), (v̂, q̂)), ∀ (v̂, q̂) ∈Wk+d. (4.33)

Using (4.33) and Lemma 4.7, we obtain

(µβ1)
2

(1 + µβ1)2
‖(ēu, ēp)‖D ≤ sup

(v̂,q̂)∈Wk+d\{0}

a3((ēu, ēp), (v̂, q̂))

‖(v̂, q̂)‖D

= sup
(v̂,q̂)∈Wk+d\{0}

a2((ẽu, ẽp), (v̂, q̂))

‖(v̂, q̂)‖D

≤ sup
(v̂,q̂)∈Wk+d\{0}

C2‖(ẽu, ẽp)‖D‖(v̂, q̂)‖D
‖(v̂, q̂)‖D

= C2‖(ẽu, ẽp)‖D,

which implies the first inequality in (4.32).
Similarly, using (4.33) and Lemma 4.3, we have

(µβ1)
2

(1 + µβ1)2
‖(ẽu, ẽp)‖D ≤ sup

(v̂,q̂)∈Wk+d\{0}

a2((ẽu, ẽp), (v̂, q̂))

‖(v̂, q̂)‖D

= sup
(v̂,q̂)∈Wk+d\{0}

a3((ēu, ēp), (v̂, q̂))

‖(v̂, q̂)‖D

≤ sup
(v̂,q̂)∈Wk+d\{0}

C3‖(ēu, ēp)‖D‖(v̂, q̂)‖D
‖(v̂, q̂)‖D

= C3‖(ēu, ēp)‖D,

which implies the second inequality in (4.32). �

Combining Theorem 4.2 and Lemma 4.9, we obtain the following lower and upper bounds for the
estimator ‖(ēu, ēp)‖D.

Theorem 4.4 Let (u, p), (û, p̂) and (ēu, ēp) be the solutions of (2.1),(2.15), and (4.25), respectively.

There are constants C̄∗ =
µ6β4

1

2C2
1C2(1+µ)2(1+β1µ)4

√
1+β2

, and C̄
∗ = C1C2C3

√
1+β1(1+µ)2(1+µβ1)

2

c1β2
1

√
β1µ4 such that

C̄∗‖(ẽu, ẽp)‖D +
1

2
√
d
‖∇ · û‖ ≤ ‖(u− û, p− p̂)‖V ≤ C̄

∗‖(ẽu, ẽp)‖D +
1

c1
‖∇ · û‖+ CT

c1
osc(f ), (4.34)

where ‖ · ‖V and ‖ · ‖D are defined in (2.2) and (4.6), respectively. The constants C1,C2,C3, c1, µ, β1, β2,
and CT are defined in (2.3), (4.13), (4.31), (2.4), (2.16), (4.11), and Lemma 3.1, respectively.

5 Adaptive Algorithm

In this section, we construct an adaptive FEM to solve (1.1)-(1.3) based on the local and global a posteriori
error estimators, denoted by ηL,T and ηG(Tm), defined in (5.1) and (5.2), which produce a sequence of
discrete solutions (ûm, p̂m) in nested spaces Vk,m over triangulation Tm. The index m indicates the
underlying mesh with size hm. Assume that an initial mesh T0, a Döfler parameter θ ∈ (0, 1), and a
targeted tolerance ε are given.

Actually, a common adaptive refinement scheme involves a loop structure of the form:

SOLVE → ESTIMATE→ MARK → REFINE

with the initial triangulation T0 of Ω (cf. [19,18]). SOLVE refers to solving the FEM scheme (2.8) on a
relatively coarse mesh Tm. ESTIMATE relies on an efficient and reliable a posteriori error estimate, and
the local and global estimators are defined in (5.1) and (5.2). With the help of the error estimators, MARK
determines the elements to be refined, hence creating a subset Sm of Tm for refinement. Finally, REFINE
generates a finer triangulation Tm+1 by dividing those elements in Sm, and an updated numerical solution
will be computed on Tm+1.

For the first and the last step, there have been rapid advances for solving the linear system (2.8) and
refinement implementation, respectively in recent years, and we refer to [8,9,25] for the details. Here, we
focus on the interplay between the error estimator and the marking strategy. The error estimator consists
of local and global estimates for a given triangulation. The local estimator provides the information for



A Posteriori Estimates of Taylor-Hood Element for Stokes Problem Using Auxiliary Subspace Techniques 19

the marking strategy to determine the triangles to be refined, while the global error estimator provides
the measure for the reliable stop condition of the loops.

Recall that {ϕj}Nv

j=1 and {ψj}Np

j=1 are the bases in Wk+d for velocity and pressure, respectively. The

matrix form of the third error problem is: Find (ēu, ēp) ∈ Wk+d with ēu =
∑Nv

j=1 x̄u,jϕj and ēp =
∑Np

j=1 x̄p,jψj satisfying (4.22) and (4.23). The definitions of matrix Dv and B are similar to (4.17). The
elements of Dv and B are as follows

(Dv)j,j = a(ϕj , ϕj), j = 1, · · · , Nv,

Bℓ,j = −b(ψj, ϕℓ), ℓ = 1, · · · , Nv and j = 1, · · · , Np.

Let Dp be the diagonal matrix with the same diagonal as BTD−1
v B. Then the elements of Dp are

(Dp)j,j =

Nv∑

ℓ=1

B2
ℓ,j

(Dv)ℓ,ℓ
, j = 1, · · · , Np.

From (4.23), we can get

x̄p,j =

Fp,j +
Nv∑
ℓ=1

Bℓ,jFv,ℓ

(Dv)ℓ,ℓ

cs
Nv∑
ℓ=1

B2
ℓ,j

(Dv)ℓ,ℓ

, j = 1, · · · , Np,

where Fv,ℓ and Fp,j can be find in (4.18) and (4.19). For any T ∈ Tm, set Λp
T = {j

∣∣ supp(ψj) ∩ T 6=
∅, j = 1, · · · , Np}, then

ēp,T := (ēp)|T =
∑

j∈Λp

T

x̄p,jψj .

Following [25], the local error estimator for pressure can be defined as

ηpL,T = ‖ēp,T‖0,T = ‖
∑

j∈Λp

T

x̄p,jψj‖T , T ∈ Tm.

From (4.22), we can get

x̄u,ℓ =
1

(Dv)ℓ,ℓ
(Fv,ℓ −

Np∑

j=1

Bℓ,jx̄p,j), ℓ = 1, · · · , Nv.

Set Λv
T = {j

∣∣ supp(ϕj) ∩ T 6= ∅, j = 1, · · · , Nv}, then

ēu,T := (ēu)|T =
∑

j∈Λv
T

x̄u,jϕj .

From (4.9), the local error estimator for velocity can be defined as

ηvL,T = |ēu,T |D,T =

√ ∑

j∈Λv
T

|x̄u,jϕj |21,T , T ∈ Tm.

The local error estimator for divergence term can be defined as

ηdL,T = ‖∇ · û‖0,T .

Then, the local error estimator can be defined as

ηL,T =
√
(ηpL,T )

2 + (ηvL,T )
2 + (ηdL,T )

2. (5.1)

Recall the third error problem (4.25) and the associated norm (4.6), we define the global error estimator
as
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ηG(Tm) =

√ ∑

k∈Tm

η2L,T =
√
‖(ēu, ēp)‖2D + ‖∇ · û‖2. (5.2)

Based on Theorem 4.4, the global error estimator ηG(Tm) provides an estimate of the discretization error
‖(u − û, p − p̂)‖V , which is frequently used to judge the quality of the underlying discretization. The
local error estimator ηL,T is an estimate of the error on element T . All elements T ∈ Tm are marked for
refinement, if ηL,T exceeds the certain tolerance. Denote the set of all marked elements by Sm ⊂ Tm .
The global error estimator associated with Sm is denoted by ηG(Sm).

The algorithm of adaptive FEM is listed in Algorithm 5.1.

Algorithm 5.1 Adaptive FEM
Input: Construct an initial mesh T0. Choose a parameter 0 < θ < 1 and a tolerance ε.
Output: Final triangulation TM and the finite element approximation (ûM , p̂M) on TM .
Set m = 0 and ηG(Tm) = 1.
While ηG(Tm) > ε

1. (SOLVE) Solve the FEM scheme (2.8) on Tm.
2. (ESTIMATE) Compute the local error estimator as defined in (5.1) for all elements T ∈ Tm.
3. (MARK) Construct a subset Sm ⊂ Tm with least number of elements such that

η2G(Sm) ≥ θη2G(Tm).

4. (REFINE) Refine elements in Sm together with the elements, which must be refined to make Tm+1 conforming.
5. Set m = m+ 1.

End

Set (ûM , p̂M ) = (ûm, p̂m) and TM = Tm.

In the MARK step, we adopt the Dörfler marking strategy which is a mature strategy and is widely used
in the adaptive algorithm [12]. Recently, it has been shown that Dörfler marking with minimal cardinality
is a linear complexity problem [20]. In this marking strategy the local error estimators {ηL,T}T∈Tm

are
sorted in descending order. The sorted local error estimators are denoted by {η̃L,T }T∈Tm

. Then, the set of
elements marked for refinement is given by {η̃L,T}T∈Sm

, where Sm contains the least number of elements
such that

η2G(Sm) =
∑

T∈Sm

η̃2L,T ≥ θη2G(Tm).

Generally speaking, a small value of θ leads to a small set Sm, while a large value of θ leads to a large
set Sm. In [12], θ is suggested to be adopted in [0.5, 0.8]. We emphasize that many auxiliary elements are
refined to eliminate the hanging nodes, which may have been created in the MARK step. There are many
mature toolkits to process the hanging nodes [25].

Finally, to show the effectiveness of the global error estimator defined in (5.2), we introduce the
effective index as follows

κeff =
ηG(Tm)

‖(u− û, p− p̂)‖V
, (5.3)

which is the ratio between the global error estimator and the FEM approximation error. According to
Theorem 4.4, the effective index is bounded from both above and below.

6 Numerical experiments

In this section, we present two-dimensional numerical examples to demonstrate the efficiency and reliabil-
ity of our adaptive FEM. All these simulations have been implemented on a 3.2GHz quad-core processor
with 16GB RAM by Matlab.

Example 1. This example is taken from page 113 in [24]. The solution is singular at the origin. Let Ω
be the L-shape domain (−1, 1)2\[0, 1) × (−1, 0], and select f = 0. Then, use (r, ϕ) to denote the polar
coordinates. We impose an appropriate inhomogeneous boundary condition for u so that
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u1(r, ϕ) = rλ((1 + λ)sin(ϕ)Ψ(ϕ) + cos(ϕ)Ψ ′(ϕ)),

u2(r, ϕ) = rλ(sin(ϕ)Ψ ′(ϕ)− (1 + λ)cos(ϕ)Ψ(ϕ)),

p(r, ϕ) = −rλ−1[(1 + λ)2Ψ ′(ϕ) + Ψ ′′′]/(1− λ),

where

Ψ(ϕ) = sin((1 + λ)ϕ) cos(λω)/(1 + λ)− cos((1 + λ)ϕ)− sin((1 − λ)ϕ) cos(λω)/(1− λ) + cos((1− λ)ϕ),

ω =
3π

2
.

The exponent λ is the smallest positive solution of

sin(λω) + λ sin(ω) = 0,

thereby, λ ≈ 0.54448373678246.
We emphasize that (u, p) is analytic in Ω\{0}, but both ∇u and p are singular at the origin; indeed,

here u /∈ [H2(Ω)]2 and p /∈ H1(Ω). This example reflects the typical (singular) behavior that solutions
of the two-dimensional Stokes problem exhibit in the vicinity of reentrant corners in the computational
domain.

We denote the finite element spaces by V1 and W3 in the approximation problem and the error
problem, respectively. The finite element space V1 consists of velocity space and pressure space. The
velocity space is the space of continuous piecewise quadratic polynomials and the pressure space is
the space of continuous piecewise linear polynomials associated with T . It is characterized in terms of
Lagrange basis. The hierarchical basis of any component with respect to velocity in any element T ∈ T
will be

λ1λ2λ3, λ
2
2λ3, λ2λ

2
3, λ

2
1λ3, λ1λ

2
3, λ

2
1λ2, λ1λ

2
2, λ

2
2λ

2
3, λ

2
1λ

2
3, λ

2
1λ

2
2, λ

2
1λ2λ3, λ1λ

2
2λ3, λ1λ

2
2λ3, λ1λ2λ

2
3.

The hierarchical basis of pressure in any element T ∈ T will be λ1λ2λ3, where λi(i = 1, 2, 3) are Lagrange
bases of the three vertices in T , respectively. These bases of W3 in any element are shown in Figure 6.1.

Fig. 6.1 The basis of velocity(left) and pressure(right) in any element for Example 1.

Figure 6.2(a) shows that for Example 1, ηG(Tm) has different convergent rates with respect to the
degrees of freedom (d.o.f) for different θ. Table 6.1 shows the computation cost for different θ when
‖(u − û, p − p̂)‖V < 0.25. From the comparison in Table 6.1, adaptive FEM is much faster than the
uniform refinement. In the MARK step, we set the Döfler parameter as θ = 0.7. In the REFINE step, the
refinement process is implemented using the MATLAB function REFINEMESH. The key is dividing the
marked element into four parts by regular refinement (dividing all edges of the selected triangles in half).

Figure 6.2(b) shows the convergent rates of ‖(u − û, p − p̂)‖V and ηG(Tm) for Algorithm 5.1. The
x-axes denotes the d.o.f in log scale, while y-axes denotes the errors in log scale. The squared line denotes
the error ‖(u − û, p − p̂)‖V of the uniform refinement. The asterisk line and the circled line denote the
error ‖(u− û, p− p̂)‖V and ηG(Tm) of adaptive FEM, respectively. It is obvious that ‖(u− û, p− p̂)‖V
and ηG(Tm) have the same convergence order and have a higher convergence order than the uniform
refinement.

Table 6.2 shows the error ‖(u− û, p− p̂)‖V , the global error estimator ηG(Tm), and the effective index
κeff of the adaptive FEM as the d.o.f increases. The results of effective index κeff defined in (5.3) are
shown in the sixth column. The effective index κeff is between 0.5 and 0.7 with adaptive refinement,



22 Jiachuan Zhang et al.

102 103 104 105 106

degrees of freedom in log scale

10-1

100
er

ro
rs

 in
 lo

g 
sc

al
e

C1N
−0.27

θ = 0.9

θ = 0.8

θ = 0.7

θ = 0.6

θ = 0.5

102 103 104 105 106

degrees of freedom in log scale

10-2

10-1

100

101

er
ro

rs
 in

 lo
g 

sc
al

e

C1N
−0.27

uniform

‖(u − û, p − p̂)‖V
ηG(Tm)

C2N
−0.55

(a) (b)

Fig. 6.2 The convergent rates of adaptive FEM for Example 1.

Table 6.1 Computation cost for different θ in Example 1.

θ refinement steps d.o.f ‖(u− û, p− p̂)‖V time(s)
0.9 7 31063 0.243 6.533
0.8 7 14935 0.243 4.339
0.7 7 9250 0.244 3.299
0.6 7 6148 0.244 3.018
0.5 7 4738 0.245 2.308

uniform 7 887299 0.243 130.463

Table 6.2 The errors, the global error estimator, and the effective index of the adaptive FEM in Example 1.

d.o.f ‖(u− û, p − p̂)‖V order ηG(Tm) order κeff

259 2.452E0 — 1.286E0 — 0.524
426 1.644E0 0.803 9.068E-1 0.702 0.551
738 1.116E0 0.705 6.526E-1 0.598 0.584
1523 7.595E-1 0.531 4.550E-1 0.497 0.599
2778 5.101E-1 0.662 3.151E-1 0.611 0.617
4871 3.559E-1 0.640 2.215E-1 0.627 0.622
9250 2.436E-1 0.590 1.557E-1 0.549 0.639
17707 1.670E-1 0.581 1.078E-1 0.565 0.645
35236 1.145E-1 0.547 7.492E-2 0.529 0.653
68949 7.846E-2 0.564 5.194E-2 0.545 0.661
138420 5.381E-2 0.535 3.590E-2 0.524 0.667
277820 3.687E-2 0.548 2.492E-2 0.529 0.675
557663 2.529E-2 0.540 1.728E-2 0.525 0.683
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Fig. 6.3 The meshes with d.o.f = 259 (left), 2778 (middle), and 17707 (right) for Example 1.

which shows the adaptive FEM is reliable. Figure 6.3 shows the initial mesh with d.o.f = 259, fourth
refinement mesh with d.o.f = 2778, and seventh refinement mesh with d.o.f = 17707. It has inserted
refinement elements around the singularity at (x, y) = (0, 0) as d.o.f increases to reduce the global error.
Example 2. In this case, we test the lid-driven cavity problem. The domain is taken as the square Ω =
(0, 1)×(0, 1), we set f = 0, and the boundary conditions u = 0 on [{0}×(0, 1)]∪[(0, 1)×{0}]∪[{1}×(0, 1)]
and u = (1, 0)T on (0, 1) × {1}. This problem has a corner singularity. The tangential component of
velocity u · τ has a discontinuity at the two top corners, where τ denotes the unit tangential vector on
the boundary. We use the proposed adaptive FEM algorithm to solve this problem. The finite element
space, Döfler parameter, and refinement criterion are the same as Example 1. Figure 6.4 shows that the
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refinement of mesh focuses on the two top corners. In Figure 6.5, we depict the discrete pressure field
obtained using the initial and adapted meshes where we note the improvement in the quality of the
computed solution since the singular nature of the pressure is better captured in the adapted mesh.
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Fig. 6.4 The initial mesh and tenth refinement mesh for Example 2.

Fig. 6.5 The pressures in initial mesh and tenth refinement mesh for Example 2.

7 Conclusion

In this paper, we present an adaptive FEM for solving the Stokes problem with Dirichlet boundary
condition. Based on auxiliary subspace techniques, we proposed a hierarchical basis a posteriori error
estimator, which is most efficient and robust. We need to solve only two global diagonal linear systems. In
theory, The estimator is proved to have global upper and lower bounds without saturation assumption.
Numerical experiments are shown to illustrate the efficiency and reliability of our adaptive algorithm.
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Appendix A.

The proof of Lemma 2.2.
Proof The idea of proof is similar to [8] for d = 2 and [9] for d = 3. Next, we will give proofs for

d = 2 and d = 3, respectively.

Case d = 2: The idea is to consider a macroelement partition of the domain Ω in such a way that
each macroelement contains exactly three triangles. By virtue of Remark 3.3 in [8], it suffices to prove the
inf-sup condition for only one macroelement. We consider a macroelement Ωi = a∪ b∪ c as in Figure A.1

A

B

C

D

E

a

b

c

Fig. A.1 The macroelement partition containing three triangles.

Let us introduce some notations. We denote by λaAB by the barycentric coordinate related to the
triangle a, which vanishes on the edge AB (analogous notations for the other cases). we denote by La

i,x

the i-th Legendre polynomial with respect to the measure µa,x defined as

∫ 0

xA

f(x)dµa,x =

∫

a

λaABλ
a
AEf(x)dxdy ∀f(x) : [xA, 0] → R, (A.1)

where xA is the x-coordinate of the vertex A. A similar definition will hold for Lc
i,y using λBCλCD. On the

triangle b we shall use both Lb
i,x (using λEDλBD) and Lb

i,y (using λBEλED). These Legendre polynomials
are defined up to a constant factor so that we can normalize them by imposing that they assume the
same value at the origin. This is possible by virtue of Proposition 2.1 in [8].

Our approach to the stability condition will be related to the modified inf-sup condition that can be
written as

sup
v̂∈WV k+j+1

b(v̂, q̂)

‖v̂‖ ≥ µ‖∇q̂‖, ∀q̂ ∈ P k+j ,

which implies the standard one [23].

For every fixed q̂ ∈ P k+j we want to construct v̂ ∈WV k+j+1 such that

−
∫

Ω

v̂ · ∇q̂dx ≥ c1‖∇q̂‖2, (A.2)

‖v̂‖0,Ω ≤ c2‖∇q̂‖. (A.3)

Define:
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v̂(x, y) = (v̂1(x, y), v̂2(x, y)),

v̂1(x, y)|a = −λaABλ
a
AE‖∇q̂‖La

k−1,x · sign(Ha),

v̂2(x, y)|a = −λaABλ
a
AE

∂q̂

∂y
,

v̂1(x, y)|b = −λbEDλ
b
BD‖∇q̂‖Lb

k+d−1,x · sign(Hb)− λbEDλ
b
EB

∂q̂

∂x
,

v̂2(x, y)|b = −λbEBλ
b
BD

∂q̂

∂y
− λbEBλ

b
ED‖∇q̂‖Lk+d−1,y · sign(Kb),

v̂1(x, y)|c = −λcBCλ
c
CD

∂q̂

∂x
,

v̂2(x, y)|c = −λcBCλ
c
CD‖∇q̂‖Lk+d−1,y · sign(Kc),

where sign(x) is sign function defined as

sign(x) =






1, x > 0,

0, x = 0,

−1, x < 0.

and

Ha =

∫

a

λaABλ
a
AELk+d−1,x · ∂q̂

∂x
, Hb =

∫

b

λbEDλ
b
BDLk+d−1,x · ∂q̂

∂x
,

Ka =

∫

b

λbEBλ
b
EDLk+d−1,y ·

∂q̂

∂y
, Kb =

∫

c

λcBCλ
c
CDLk+d−1,y ·

∂q̂

∂y
.

First of all, we observe that v̂ is an element of WV k+j+1, by the virtue of the fact that the tangential
components of ∇q̂ along the interface EB and BD are continuous.

It is easy to verify that v̂ satisfies (A.3). In order to check the validity of (A.2), define |||∇q̂||| =
−
∫
Ω v̂ · ∇q̂. Then

|||∇q̂|||2 =

∫

a

λaABλ
a
AE(

∂q̂

∂y
)2 + ‖∇q̂‖(|Ha|+ |Hb|)

+

∫

b

(
λbEDλ

b
EB(

∂q̂

∂x
)2 + λbEDλ

b
BD(

∂q̂

∂y
)2
)

(A.4)

+ ‖∇q̂‖(|Ka|+ |Kb|) +
∫

c

λcBCλ
c
CD(

∂q̂

∂x
)2.

We verify that the expression ‖ ∂q̂
∂x‖H := |Ha|+ |Hb| is a norm of ∂q̂

∂x in a∪ b and ‖ ∂q̂
∂y‖K := |Ka|+ |Kb|

is a norm of ∂q̂
∂y in b ∪ c.

Step 1. We will show |Ha|+ |Hb| vanishes only when ∂q̂
∂x equals zero. From (A.1)

0 = ‖ ∂q̂
∂x

‖H = |
∫ 0

xA

Lk+d−1,x · ∂q̂
∂x

|+ |
∫ 1

0

Lk+d−1,x · ∂q̂
∂x

|

From the orthogonality of Legendre polynomials La
i,x, L

b
i,x and noting that ∂q̂

∂x is a homogeneous polyno-

mial of degree k + d− 1, we have ∂q̂
∂x = 0 in a ∪ b.

Step 2. We will get ‖k ∂q̂
∂x‖H = |k|‖ ∂q̂

∂x‖H from

‖k ∂q̂
∂x

‖H = |
∫ 0

xA

Lk+d−1,x · k
∂q̂

∂x
|+ |

∫ 1

0

Lk+d−1,x · k ∂q̂
∂x

|.

Step 3. We will show that ‖∂q̂1
∂x + ∂q̂2

∂x ‖H ≤ ‖∂q̂1
∂x ‖H + ‖∂q̂2

∂x ‖H .
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‖∂q̂1
∂x

+
∂q̂2
∂x

‖H = |
∫ 0

xA

Lk+d−1,x · (∂q̂1
∂x

+
∂q̂2
∂x

)|+ |
∫ 1

0

Lk+d−1,x · (∂q̂1
∂x

+
∂q̂2
∂x

)|

≤ |
∫ 0

xA

Lk+d−1,x · ∂q̂1
∂x

|+ |
∫ 0

xA

Lk+d−1,x · ∂q̂2
∂x

|+ |
∫ 1

0

Lk+d−1,x · ∂q̂2
∂x

|+ |
∫ 1

0

Lk+d−1,x · ∂q̂1
∂x

|

= ‖∂q̂1
∂x

‖H + ‖∂q̂2
∂x

‖H .

Similarly, ‖ ∂q̂
∂y‖K = |Kb| + |Kc| is a norm of ∂q̂

∂y in b ∪ c. From the equivalence of norms on a finite
dimensional space, there exists a constant Ca, Cb, Cc, CH , CK > 0 such that

∫

a

λaABλ
a
AE(

∂q̂

∂y
)2 ≥ Ca

∫

a

(
∂q̂

∂y
)2, ‖ ∂q̂

∂x
‖H ≥ CH

√∫

a

(
∂q̂

∂x
)2 +

∫

b

(
∂q̂

∂x
)2,

∫

b

(
λbEDλ

b
EB(

∂q̂

∂x
)2 + λbEDλ

b
BD(

∂q̂

∂y
)2
)
≥ Cb

∫

b

(
(
∂q̂

∂x
)2 + (

∂q̂

∂y
)2
)

∫

c

λcBCλ
c
CD(

∂q̂

∂x
)2 ≥ Cc

∫

c

(
∂q̂

∂x
)2, ‖∂q̂

∂y
‖H ≥ CK

√∫

b

(
∂q̂

∂y
)2 +

∫

c

(
∂q̂

∂y
)2.

Set c1 = min{Ca, Cb, Cc, CH , CK} and obtain (A.2).
Case d = 3: We use the macroelement described by Stenberg in [22] in order to check the inf-sup

condition. Let M be a macroelement partition of the domain decomposition of T . For a macroelement
M ∈ M we introduce the following usual notation:

WVM = {v̂|M | v̂ ∈Wk+d+1} ∩ [H1
0 (M)]3,

WPM = {q̂|M | q̂ ∈ WPk+d}.

Consider a generic macroelement M ∈ M. Let T0 ∈ T be a tetrahedron of M and denote by x0 the
internal vertex of T0 which also belongs to the other element of M . There are three edges ei, i = 1, · · · , 3
of T0 meeting at x0. Thanks to the fact that x0 is internal, none of the edges ei lie on the boundary ∂Ω.

Let q̂ ∈WPM be given and suppose that
∫

M

q̂∇ · v̂ = 0, ∀v̂ ∈WVM . (A.5)

We shall prove that ∇q̂ vanishes on T0, thus obtaining H1 condition described in Theorem 2.1 in [9] by
virtue of the fact that T0 is arbitrary and q is continuous.

First, we concentrate our attention on the edge e1 and fix an (x, y, z)-coordinate system in such a way
that e1 lies in the direction of the x-axis. We consider the collection A = {T0, · · · , Tn} of those elements
of T which share the edge e1 in common with T0 (including T0 itself). It is clear that Ti ∈ M and that
exactly two faces of Ti touch other elements of A of every i.

Define v̂ in the following way:

v̂|Ti
=

(
λiκi

∂q̂

∂x
, 0, 0

)
,

v̂|T = (0, 0, 0), if T ∈ T , T 6= Ti, ∀i,

where λi and κi are the equations of the two faces of Ti which are not in common with any other element
of A, normalized in order to assume the same value at the opposite vertex. It is worthwhile to observe
that these two vertices are x0 and the other extreme of the edge e1.

It is easily verified that v̂ is a polynomial of degree k+1 and that it is continuous inM . The continuity
of q̂ inM ensures that the gradient of q̂ is continuous between two elements in all the directions which are
contained in the plane of the interface; the x-axis is the direction of e1 which is the edge of all common
faces among the elements of A. Moreover, v̂ vanishes at the boundary ofM ; hence, the following inclusion
holds:

v̂ ∈ WVM .

Suppose now that (A.5) hold.
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0 =

∫

M

q̂∇v̂ = −
∫

M

∇q̂ · v̂ = −
n∑

i=1

∫

Ti

λiκi(
∂q̂

∂x
)2.

It follows that the component of ∇q̂ in the direction of the x-axis vanishes in Ti for every i.
The same argument applies to the edge e2 and e3, giving the result that ∇q̂ vanishes on T0 in the

direction of ei, for i = 1, · · · , 3. These three directions being independent, the final result

∇q̂ = (0, 0, 0), in T0

is obtained and the lemma is proved. Then the H1 condition of Theorem 2.1 in [9] is proved and the
H2-H3 conditions follow immediately from the regularity assumption of T .

�
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