Skip to main content
Log in

The Stabilized Nonconforming Virtual Element Method for Linear Elasticity Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present the stabilized nonconforming virtual element method for linear elasticity problem in two dimensions. The jump penalty term is introduced to guarantee the stability of the discrete formulation as the stabilization term, which is obtained based on the discrete Korn’s inequality. In order to obtain the computability of jump penalty term, we reconstruct the lowest-order nonconforming virtual element by imposing some restrictions on the conforming virtual element space of order 2. We prove the interpolation error estimate for the virtual element and the ellipticity of the discrete bilinear form, so the resulting stabilized method is well-posed. Then we show the optimal convergence in the \(L^2\) and \(H^1\) norms. Moreover, this method is locking-free, i.e. the convergence is uniform with respect to the Lamé constant. Numerical results are provided to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

The codes during the current study are available from the corresponding author on reasonable request.

References

  1. Arnold, D.N., Awanou, G., Winther, R.: Nonconforming tetrahedral mixed finite elements for elasticity. Math. Models Methods Appl. Sci. 24, 783–796 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Douglas, J., Gupta, C.P.: A family of higher order mixed finite element methods for plane elasticity. Numer. Math. 45, 1–22 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Winther, R.: Nonconforming mixed elements for elasticity. Math. Models Methods Appl. Sci. 13, 295–307 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Artioli, E., de Miranda, S., Lovadina, C., Patruno, L.: A family of virtual element methods for plane elasticity problems based on the Hellinger-Reissner principle. Comput. Methods Appl. Mech. Eng. 340, 978–999 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Awanou, G.: A rotated nonconforming rectangular mixed element for elasticity. Calcolo 46, 49–60 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50, 879–904 (2016)

  7. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., Russo, A.,Basic principles of virtual element methods, Math. Models Methods Appl. Sci., (2012)

  8. Beirão da Veiga, L., Brezzi, F., Marini, L.D.: Virtual elements for linear elasticity problems. SIAM J. Numer. Anal. 51, 794–812 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Beirão da Veiga, L., Lovadina, C., Mora, D.: A virtual element method for elastic and inelastic problems on polytope meshes. Comput. Methods Appl. Mech. Eng. 295, 327–346 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Boffi, D., Brezzi, F., Fortin, M.: Mixed finite element methods and applications. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  11. Brenner, S.C.: Poincaré-Friedrichs inequalities for piecewise \({H}^1\) functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    MathSciNet  MATH  Google Scholar 

  12. Brenner, S.C.: Korn’s inequalities for piecewise \(H^1\) vector fields. Math. Comput. 73, 1067–1087 (2004)

    MATH  Google Scholar 

  13. Brenner, S.C., Sung, L.Y.: Linear finite element methods for planar linear elasticity. Math. Comput. 59, 321–338 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Brenner, S.C., Sung, L.Y.: Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28, 1291–1336 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cáceres, E., Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for a pseudostress-based formulation of linear elasticity. Appl. Numer. Math. 135, 423–442 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, L., Hu, J., Huang, X.: Stabilized mixed finite element methods for linear elasticity on simplicial grids in \({\mathbb{R} }^n\), Comput. Methods. Appl. Math. 17, 17–31 (2017)

    MATH  Google Scholar 

  17. Chen, S., Ren, G., Mao, S.: Second-order locking-free nonconforming elements for planar linear elasticity. J. Comput. Appl. Math. 233, 2534–2548 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ciarlet, P.G., Oden, J.T.: The finite element method for elliptic problems. J. Appl. Mech. 45, 968–969 (1978)

    Article  Google Scholar 

  19. Edoardo, A., Stefano, M., Carlo, L., Luca, P.: A dual hybrid virtual element method for plane elasticity problems, ESAIM: Math. Model. Numer. Anal. 54, 1725–1750 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gain, A.L., Talischi, C., Paulino, G.H.: On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Comput. Methods Appl. Mech. Eng. 282, 132–160 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gopalakrishnan, J., Guzmán, J.: Symmetric nonconforming mixed finite elements for linear elasticity. SIAM J. Numer. Anal. 49, 1504–1520 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hansbo, P., Larson, M.G.: Discontinuous Galerkin and the Crouzeix-Raviart element: application to elasticity. ESAIM Math. Model. Numer. Anal. 37, 63–72 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hu, J., Shi, Z.C.: Lower order rectangular nonconforming mixed finite elements for plane elasticity. SIAM J. Numer. Anal. 46, 88–102 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, C.O., Lee, J., Sheen, D.: A locking-free nonconforming finite element method for planar linear elasticity. Adv. Comput. Math. 19, 277–291 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mao, S., Chen, S.: A quadrilateral nonconforming finite element for linear elasticity problem. Adv. Comput. Math. 28, 81–100 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mascotto, L., Perugia, I., Pichler, A.: Non-conforming harmonic virtual element method: \(h\)- and \(p\)-versions. J. Sci. Comput. 77, 1874–1908 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Park, K., Chi, H., Paulino, G.H.: B-bar virtual element method for nearly incompressible and compressible materials. Meccanica 56, 1423–1439 (2021)

    Article  MathSciNet  Google Scholar 

  28. Peter, H., Mats, L.: A simple nonconforming bilinear element for the elasticity problem, Trends Comput. Struct. Mech., 317–327, (2001)

  29. Franca, L.P., Hughes, T.J.: Two classes of mixed finite element methods. Comput. Methods Appl. Mech. Eng. 69, 89–129 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. Talischi, C., Paulino, G.H., Pereira, A., Menezes, I.F.M.: PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct. Multidiscip. Optim. 45, 309–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Tang, X., Liu, Z., Zhang, B., Feng, M.: A low-order locking-free virtual element for linear elasticity problems. Comput. Math. Appl. 80, 1260–1274 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wriggers, P., Reddy, B.D., Rust, W., Hudobivnik, B.: Efficient virtual element formulations for compressible and incompressible finite deformations. Comput. Mech. 60, 253–268 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu, S., Gong, S., Xu, J.: Interior penalty mixed finite element methods of any order in any dimension for linear elasticity with strongly symmetric stress tensor. Math. Models Methods Appl. Sci. 27, 2711–2743 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, B., Feng, M.: Virtual element method for two-dimensional linear elasticity problem in mixed weakly symmetric formulation. Appl. Math. Comput. 328, 1–25 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, B., Yang, Y., Feng, M.: Mixed virtual element methods for elastodynamics with weak symmetry, Journal of. Comput. Appl. Math. 353, 49–71 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhang, B., Zhao, J.: A mixed formulation of stabilized nonconforming finite element method for linear elasticity. Adv. Appl. Math. Mech. 12, 278–300 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Zhang, B., Zhao, J., Chen, S., Yang, Y.: A locking-free stabilized mixed finite element method for linear elasticity: the high order case. CALCOLO 55, 1–17 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zhang, B., Zhao, J., Yang, Y., Chen, S.: The nonconforming virtual element method for elasticity problems. J. Comput. Phys. 378, 394–410 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, Z.: Analysis of some quadrilateral conconforming elements for incompressible elasticity. SIAM J. Numer. Anal. 34, 640–663 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was partially supported by National Natural Science Foundation of China (Nos. 11701522, 11971379) and Natural Science Foundation of Henan Province (No. 222300420553). The third author was partially supported by National Natural Science Foundation of China (No. 12001170) and Research Foundation for Advanced Talents of Henan University of Technology (No. 2018BS013).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Jikun Zhao.

Ethics declarations

Conflicts of interest

The authors have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Wang, T. & Zhang, B. The Stabilized Nonconforming Virtual Element Method for Linear Elasticity Problem. J Sci Comput 92, 68 (2022). https://doi.org/10.1007/s10915-022-01927-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01927-3

Keywords

Mathematics Subject Classification

Navigation