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Abstract

The finite element method, finite difference method, finite volume method and spectral method have achieved great success in
solving partial differential equations. However, the high accuracy of traditional numerical methods is at the cost of high efficiency.
Especially in the face of high-dimensional problems, the traditional numerical methods are often not feasible in the subdivision of
high-dimensional meshes and the differentiability and integrability of high-order terms. In deep learning, neural network can deal
with high-dimensional problems by adding the number of layers or expanding the number of neurons. Compared with traditional
numerical methods, it has great advantages. In this article, we consider the Deep Galerkin Method (DGM) for solving the general
Stokes equations by using deep neural network without generating mesh grid. The DGM can reduce the computational complexity
and achieve the competitive results. Here, depending on the L2 error we construct the objective function to control the performance
of the approximation solution. Then, we prove the convergence of the objective function and the convergence of the neural network
to the exact solution. Finally, the effectiveness of the proposed framework is demonstrated through some numerical experiments.
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1. Introduction

Partial Differential Equations (PDEs) can mathematically
model and describe certain objective laws in the fields of phys-
ical chemistry, finance, natural phenomenon and engineering
technology et al. However, most of them are difficult to ob-
tain the analytical solution. Consequently, numerical methods
such as finite element method have been flourishing in the past
decades for modeling mechanics problems via solving PDEs
[1]. Alternatively, the other methods, just like generalized finite
element basis functions [2] and construction of multiple differ-
ence schemes [3] have broad applications in the same way. Al-
though these methods are well used in PDEs and achieved good
results, almost all of them have obvious drawbacks, complexity
in general problems and no longer apparent since lots of mesh
grid are generated especially for high dimensional problems.
Besides, there has many large problems in computational fluid
dynamics, such as uncertainty quantification, Bayesian inver-
sion, data assimilation and constrained optimization of partial
differential equations, which are considered to be very challeng-
ing because they require a large number of numerical solutions
of the corresponding PDEs.

Inspired by machine learning, the deep learning method can
learn the parameters of neural network from the sampled data
which can avoid mesh generation to some certain extent. Deep
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Partly supported by the NSF of China 11771259 and Shaanxi special support
plan for regional development of talents. Department of Mathematics, Shaanxi
University of Science and Technology, Xi’an 710021, China.

learning method has certain adaptability for unknown data,
guarantee the high accuracy through training the models and
currently gains a lot of interests for efficiently solving PDEs.
It has been considered in various forms previously since the
1990s. Cellular Neural Network and Distributed Parameter
Neural Network are used for one-dimensional PDEs [4, 5, 6].
Apart from these, single layer chebyshev neural network [7],
recurrent neural network and ansatz method [8, 9] can also
solve the PDEs similarly. More generally, Sun et al. [10, 11]
used Bernstein neural network and extreme learning machine to
solve first and second order ordinary differential equations and
elliptic PDEs.

Due to the rapid development of computer and gradient op-
timization methods in recent decades, many approaches for
solving high-dimensional problems are actively proposed based
on deep learning techniques. Raissi etc. [12] solved the
Black-Scholes-Barenblatt and Hamilton-Jacobi-Bellman equa-
tions, both in 100 dimensions. Besides, they proposed and
developed a typical method physics-informed neural networks
which combines observed data with PDE models [13, 14, 15]
in many problems [16, 17, 18, 19, 20, 21]. As for higher-
dimensional parametric PDEs system, Sirignano and Spiliopou-
los proposed a continuous time stochastic gradient descent
method [22] and DGM [23] for PDEs both in 200 dimensions.
They applied a deep neural network instead of a linear com-
bination of basis functions. Recently, Zhu et al. and Xu et al.
[24, 25, 26, 27] proposed Bayesian deep convolutional encoder-
decoder network and the combination of genetic algorithm and
adaptive method to solve the problems with high-dimensional
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random inputs and sparse noisy data. As we all know, there has
mathematical guarantees called universal approximation theo-
rems [28] which stating that a single layer neural network could
approximate many functions in Sobolev spaces. It still lack the-
oretical method to explain the effectiveness of multilayer neural
networks.

In this paper, the DGM is first applied to solve the general d-
dimentional incompressible Stokes problems, which is trained
on batches of randomly sampled points satisfying the differen-
tial operator, initial condition and boundary condition without
generating mesh grid. The optimal solution is obtained by us-
ing the stochastic gradient descent method instead of a linear
combination of basic functions. In particular, this method over-
comes the infeasibility and limitations of the traditional numeri-
cal methods especially for the high dimensional incompressible
Stokes equations. Based on the objective function, the DGM
numerically manifests the efficiency and flexibility. Moreover,
we prove the convergence of the objective function and the con-
vergence of the neural network and the exact solution.

The rest of the paper is developed into four sections. In the
next section, we provide the preliminaries of methodology. In
Section III, we prove the convergence of the objective function
and the convergence of the neural network to the exact solution.
In Section IV, numerical examples demonstrate the efficiency
of the proposed framework and justify our theoretical analysis.
Finally, we summarize our paper with a short discussion.

2. Methodology

Let Ω be a bounded, compact and open subset of Rd(d =

2, 3, ...). With regular boundary ∂Ω ⊂ Rd-1. We consider the
general Stokes equations with Dirichlet boundary condition.

αu − ν∇2u + ∇p = f , in Ω, (1)
∇ · u = 0, in Ω, (2)

u = g, on ∂Ω, (3)

where α > 0 is a positive constant, ν denotes the viscosity co-
efficient, u and p represent velocity and pressure respectively, f
and g are source terms. For notational brevity, we set u = (u, p)
and define

G[u] = αu − ν∇2u + ∇p − f . (4)

Here, we recall the classical Sobolev spaces

Hk(Ω) =
{
υ ∈ L2(Ω) : Dα

wυ ∈ L2(Ω),∀α :| α |≤ k
}
,

Hk
0(Ω) =

{
υ ∈ Hk(Ω) : υ |∂Ω= 0

}
,

and their norm

‖ υ ‖k=
√

(υ, υ)k =

{ k∑
|α|=0

∫
Ω

(Dα
wυ)2dx

} 1
2

,

where k > 0 is a positive integer, Dα
wυ is the generalized deriva-

tive of υ, and (·, ·) represents the inner product.
In order to obtain a well-posedness of the general Stokes

equations, we have the following result.

Lemma 2.1. Assume that Ω is a bounded and connected open
subset of Rd with a Lipschitz-continuous boundary Γ, f ∈
[L2(Ω)]d and g ∈ [H1/2(Γ)]d such that∫

Γ

g · −→n ds = 0,

there exists a unique pair u ∈ [H1
0(Ω)]d × L2

0(Ω) of the general
Stokes equations (1)-(3). Furthermore, we have∥∥∥u

∥∥∥
2 +

∥∥∥p
∥∥∥

1 ≤ C(
∥∥∥ f

∥∥∥
−1 +

∥∥∥g
∥∥∥

3/2,∂Ω
). (5)

Generally, assuming that U =
(
U(x; θ1), P(x; θ2)

)
is the neu-

ral network solution to the general Stokes equations (1)-(3), θ1
and θ2 are the stacked components of the neural network’s pa-
rameters θ for velocity and pressure respectively. Define the
objective function

J(U) =
∥∥∥∥G[U](x; θ) − G[u](x)

∥∥∥∥2

0,Ω,ω1
+

∥∥∥∥∇ · U(x; θ1)
∥∥∥∥2

0,Ω,ω1

+
∥∥∥∥U(x; θ1) − g(x)

∥∥∥∥2

0,∂Ω,ω2
.

(6)

It should be noted that J(U) can measure how well the ap-
proximate solution satisfies differential operator, divergence
condition and boundary condition. Notice that

∥∥∥ f (y)
∥∥∥

0,Y,ω =

∫
Y

∣∣∣ f (y)
∣∣∣2ω(y)dy,

where ω(y) is the probability density of y in Y.
Our goal is to find the parameters θ such that U minimizes the

objective function J(U). Especially, if J(U) = 0 then U is the
solution to the general Stokes equations (1)-(3). However, it is
computationally infeasible to estimate θ by directly minimizing
J(U) when integrated over a higher dimensional region. Here,
we apply a sequence of random sampled points from Ω and ∂Ω

to avoid forming mesh grid. The algorithm of the DGM for the
general Stokes equations are presented as Algorithm 1.

In this process, the “learning rate” αn ∈ (0, 1) decreases
as n → ∞. The term ∇θG(θn, sn) is unbiased estimate of
∇θJ

(
U(·; θn)

)
because we can estimate the population param-

eters by sample mathematical expectations such as

E
[
∇θG(θn, sn) | θn

]
= ∇θJ

(
U(·; θn)

)
. (7)

In order to illustrate more vividly, the flowchart displayed in
Figure 1.

3. Convergence

Undoubtedly, the objective function J(U) can measure how
well the neural network U satisfies the differential operator,
boundary condition and divergence condition. As we known
from [28], if there is only one hidden layer and one output, then
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Algorithm 1: Deep Learning Galerkin Method
Input: sn = (xn, rn), Max Iterations M, learning rate αn

Output: θn+1
Randomly generated sample points sn = (xn, rn);
Initialize the parameters θ;
while iterations ≤ M do

read current;

G(θn, sn) =
(
G[U](xn; θ)

)2

+
(
∇ · U(xn; θ1)

)2
+

(
U(rn; θ1) − g(x)

)2

and

θn+1 = θn − αn∇θG(θn, sn).

if lim
n→∞
‖∇θG(θn, sn)‖ = 0 then

return the parameters θn+1;
else

go back to the beginning of current section;

the set of all functions implemented by such a network with m
and n hidden units for velocity and pressure are

[Cm
u (ϕ)]d

=
{
Φ(x) : Rd 7→ Rd

∣∣∣∣Φ`(x) =

m∑
i=1

βiϕ
( d∑

j=1

σ jix j + ci
)}
,

and

C
n
p(ψ) =

{
Ψ(x) : Rd 7→ R

∣∣∣∣Ψ(x) =

n∑
i=1

β′iψ
( d∑

j=1

σ′jix j + c′i
)}
,

where ` = 1, 2, . . . , d, Φ(x) =
(
Φ1(x),Φ2(x), · · · ,Φd(x)

)
, ϕ

and ψ are the shared activation functions of the hidden units
in C2(Ω), bounded and non-constant. x j is input, βi, β

′
i , σ ji and

σ′ji are weights, ci and c′i are thresholds of neural network.
More generally, we still use the similar notation

[Cu(ϕ)]d × Cp(ψ)

for the multilayer neural networks with an arbitrarily large num-
ber of hidden units m and n respectively. In particular, we use
the same parameters βi, σ ji, ci and common activation function
ϕ in each dimension of [Cm

u (ϕ)]d. The parameters can be written
as follows

θ`1 = (β1, · · · , βm, σ11, · · · , σdm, c1, · · · , cm),
θ2 = (β′1, · · · , β

′
n, σ

′
11, · · · , σ

′
dn, c

′
1, · · · , c

′
n),

(8)

where ` = 1, 2, . . . , d, θ1 ∈ R(2+d)md and θ2 ∈ R(2+d)n.
In this section, we show that the neural network U

n
with

n hidden units for U and P satisfies the differential operator,
boundary condition and divergence condition arbitrarily well
for sufficiently large n. Moreover, we prove that there exists

U
n
∈ [Cn

u(ϕ)]d×Cn
p(ψ) such that J(U

n
)→ 0 as n→ ∞. Another

significant consideration, we give the convergence of U
n
→ u

as n → ∞ where u is the exact solution to the general Stokes
equations (1)-(3).

Figure 1: Flowchart of the DGM for the general Stokes equations.

3.1. Convergence of the objective function J(U)

A particularly important processing, we use the multilayer
feed forward networks U to universally approximate the solu-
tion to the general Stokes equations. Certainly, the neural net-
work U can make the objective function J(U) arbitrarily small.
Thus, using the results of [28] and the following lemma, we ob-
tain the convergence of the objective function J(U). First, we
give the following assumption.

Lemma 3.1. Assume that ∇u(x),4u(x) and ∇p(x) are locally
Lipschitz with Lipschitz coefficient that they have at most poly-
nomial growth on u(x) and p(x). Then, for some constants
0 ≤ qi ≤ ∞(i = 1, 2, 3, 4) we have

| 4U − 4u |≤ (| ∇U |q1/2 + | ∇u |q2/2) | ∇U − ∇u |, (9)

| ∇P − ∇p |≤ (| P |q3/2 + | p |q4/2) | P − p | . (10)

Theorem 3.1. Under the assumption of Lemma 3.1, there exists
a neural network U ∈ [Cu(ϕ)]d × Cp(ψ), satisfying

J(U) ≤ Cε, ∀ε > 0, (11)

where C depends on the data {Ω, α, ν, ω1, ω2, f }.

Proof. By Theorem 3 of [28], we can conclude that there exists
U ∈ [Cu(ϕ)]d×Cp(ψ) which are uniformly 2-dense on compacts
of C2(Ω̄)×C1(Ω̄). It means that for u ∈ C2(Ω̄)×C1(Ω̄),∀ε > 0,
it follows that

max
a≤2

sup
x∈Ω
| ∂a

xU(x) − ∂a
xu(x) |< ε, (12)

sup
x∈Ω
| P(x) − p(x) |< ε. (13)

According to the Lemma 3.1, using the Hölder inequality and
Young inequality, setting r1 and r2 are conjugate numbers such

3



that 1
r1

+ 1
r2

= 1, we find that∫
Ω

| 4U − 4u |2 dω1(x)

≤

∫
Ω

(
| ∇U |q1 + | ∇u |q2

)(
∇U − ∇u

)2
dω1(x)

≤
[ ∫

Ω

(
| ∇U |q1 + | ∇u |q2

)r1
dω1(x)

]1/r1

×
[ ∫

Ω

(
∇U − ∇u

)2r2
dω1(x)

]1/r2

≤
[ ∫

Ω

(
| ∇U − ∇u |q1 + | ∇u |q1∨q2

)r1
dω1(x)

]1/r1

×
[ ∫

Ω

(
∇U − ∇u

)2r2
dω1(x)

]1/r2

≤Cε2,

(14)

where q1 ∨ q2 = max{q1, q2}.
Similarly,∫

Ω

| ∇P − ∇p |2 dω1(x)

≤

∫
Ω

(
| P |q3 + | p |q4

)(
P − p

)2
dω1(x)

≤
[ ∫

Ω

(
| P |q3 + | p |q4

)r3
dω1(x)

]1/r3

×
[ ∫

Ω

(P − p) |2r4 dω1(x)
]1/r4

≤
[ ∫

Ω

(
| P − p |q3 + | p |q3∨q4

)r3
dω1(x)

]1/r3

×
[ ∫

Ω

(
P − p

)2r4
dω1(x)

]1/r4

≤Cε2,

(15)

where 1
r3

+ 1
r4

= 1 and q3 ∨ q4 = max{q3, q4}.
For the boundary condition, we have∫

∂Ω

| U − u |2 dω2(x) ≤ Cε2. (16)

Thanks to (14)-(16), we obtain

J(U) =
∥∥∥G[U](x; θ) − G[u](x)

∥∥∥2
Ω,ω1

+
∥∥∥∇ · U(x; θ)

∥∥∥2
Ω,ω1

+
∥∥∥U(x; θ) − g(x)

∥∥∥2
∂Ω,ω2

=
∥∥∥G[U](x; θ)

∥∥∥2
Ω,ω1

+
∥∥∥∇ · U(x; θ)

∥∥∥2
Ω,ω1

+
∥∥∥U(x; θ) − g(x)

∥∥∥2
∂Ω,ω2

=

∫
Ω

| 4U − 4u |2 dω1(x) +

∫
Ω

| ∇P − ∇p |2 dω1(x)

+

∫
Ω

| αU − αu |2 dω1(x) +

∫
Ω

| ∇ · u |2 dω1(x)

+

∫
Ω

| ∇ · (U − u) |2 dω1(x) +

∫
∂Ω

| U − u |2 dω2(x)

≤Cε2,
(17)

which implies (11).

3.2. Convergence of the neural network to the general Stokes
solution

We have discussed the convergence of the objective function
J(U) in the last subsection. Next we give the convergence of
the neural network U

n
to the exact solution u for the general

Stokes equations with homogeneous boundary condition

αu − ν∇2u + ∇p = f , in Ω, (18)
∇ · u = 0, in Ω, (19)

u = 0, on ∂Ω. (20)

Recall the form of the objective function with

J(U) = ‖G[U]‖20,Ω + ‖∇ · U‖20,Ω + ‖U‖20,∂Ω.

By Theorem 3.1, we obtain

J(U
n
)→ 0 as n→ ∞.

Furthermore, each neural network U
n

= (Un, Pn) satisfies the
following equations

G[U
n
] = hn, in Ω, (21)

∇ · Un = 0, in Ω, (22)
Un = gn, on ∂Ω, (23)

for some hn and gn such that

‖hn‖20,Ω + ‖gn‖20,∂Ω → 0 as n→ ∞. (24)

In this subsection, we do not explore more discussions on
inhomogeneous problems since the inhomogeneous problems
can be solved by the corresponding homogeneous method (See
Section 4 of Chapter V in [29] or Chapter 8 of [30] for details).
For convenience, we provide a theorem to guarantee the con-
vergence of the neural network U

n
and the exact solution u to

the equations (18)-(20).

Theorem 3.2. Under the assumptions of Lemma 3.1, Theorem
3.1 and (24), the neural network Un can converge strongly to
u in L2(Ω), and the Pn converges strongly to p in H−1(Ω). In
addition, if the sequences {Un}n∈N and {Pn}n∈N are uniformly
bounded and equicontinuous in Ω, they can converge to u and
p uniformly in Ω respectively.

Proof. The existence and uniqueness for the solution of (18)-
(20) are proved by the Saddle point theorem (See Lemma 2.1).

Note that Û
n

satisfies the equations (21)-(23) with gn = 0.
Firstly, we know that the variational formulation of the equa-
tions (21)-(23) is to find (Ûn, P̂n) ∈ [Cn

u(ϕ)]d × Cn
p(ψ) for

∀(V̂ , Q̂) ∈ [Cn
u(ϕ)]d × Cn

p(ψ) such that

α(Ûn, V̂) + ν(∇Ûn,∇V̂) + (∇P̂n, V̂) + (∇ · Ûn, Q̂)

= ( f , V̂) + (hn, V̂),
(25)

in addition, we have

(∇P̂n, V̂) = −(∇ · V̂ , P̂n). (26)

4



Taking V̂ = Ûn and Q̂ = P̂n in (25), it follows that

α(Ûn, Ûn) + ν(∇Ûn,∇Ûn) = ( f , Ûn) + (hn, Ûn). (27)

Using the definition of the H1 norm, (24) and setting α0 =

min{α, ν}, we obtain

α0 ‖ Ûn ‖1,Ω ≤ C(‖ f ‖0,Ω + ‖ hn ‖0,Ω)
≤ C ‖ f ‖0,Ω .

(28)

The convergence of Û
n

and U
n

is desirable to discuss yet.
By using the uniformly boundedness of Ûn, we can extract
a subsequence {Ûn}n∈N of Ûn which can converge weakly in
H1(Ω). Due to the compact embedding H1(Ω) ↪→ L2(Ω), we
have lim

n→∞
‖ Ûn − u ‖0,Ω= 0.

Nevertheless, we remain to discuss lim
n→∞

‖ Un − Ûn ‖0,Ω=

0, where Un and Ûn satisfy (21)-(23) with homogeneous
and inhomogeneous boundary respectively. Afterwards, since
lim
n→∞
‖gn‖0,∂Ω = 0, Un converges to zero at least along a subse-

quence on the boundary. Besides, it will be identical with Ûn

almost everywhere. Indeed, define Fn = |Un − Ûn|2.
{
Fn(x)

}
n∈N

is uniformly bounded in L2(Ω) by the reason of the uniformly
boundedness of

{
Un}

n∈N and
{
Ûn}

n∈N. In addition,
{
Fn(x)

}
n∈N

can be integrated on domain Ω̄ and converges to zero almost
everywhere. By the definition of Fn, the uniformly bounded-
ness and equicontinuity of

{
Un}

n∈N and
{
Ûn}

n∈N, for ∀x, y ∈ Ω̄,
∀ε′ > 0, ∃δ > 0, if |x − y| < δ, there holds that∣∣∣∣Fn(x) − Fn(y)

∣∣∣∣
=
∣∣∣∣∣∣∣Un(x) − Ûn(x)

∣∣∣2 − ∣∣∣Un(y) − Ûn(y)
∣∣∣2∣∣∣∣

=
∣∣∣∣∣∣∣Un(x) − Ûn(x)

∣∣∣ +
∣∣∣Un(y) − Ûn(y)

∣∣∣∣∣∣∣
×

∣∣∣∣∣∣∣Un(x) − Ûn(x)
∣∣∣ − ∣∣∣Un(y) − Ûn(y)

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣Un(x) − Ûn(x)
∣∣∣ +

∣∣∣Un(y) − Ûn(y)
∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣Un(x) − Ûn(x) − Un(y) − Ûn(y)
∣∣∣∣∣∣∣

≤

∣∣∣∣∣∣∣Un(x) − Ûn(x)
∣∣∣ +

∣∣∣Un(y) − Ûn(y)
∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣Un(x) − Un(y)
∣∣∣ +

∣∣∣Ûn(x) − Ûn(y)
∣∣∣∣∣∣∣

<Cε′,

(29)

where ε′ > 0 is an arbitrarily small constant. In conclusion,{
Fn(x)

}
n∈N is equicontinous. Based on the above preparation,

we can obtain lim
n→∞
‖ Un− Ûn ‖0,Ω= 0 by using Vitali’s theorem.

Thus through a triangle inequality there holds that

lim
n→∞
‖ Un − u ‖0,Ω

≤ lim
n→∞
‖ Un − Ûn ‖0,Ω + lim

n→∞
‖ Ûn − u ‖0,Ω

=0

(30)

since {Ûn}n∈N strongly converges to u in L2(Ω).

In order to study the pressure of the general Stokes problem,
we define

L(̂v) = ( f , v̂) + (hn, v̂) − α(Ûn, v̂) − ν(∇Ûn, ∇̂v)
= 0,

(31)

where v̂ ∈ [Cn
u(ϕ)]d ∩ [H1

0(Ω)]d. Then

< L, v̂ >= 0, ∀̂v ∈ [Cn
u(ϕ)]d ∩ [H1

0(Ω)]d,

where < ·, · > stands for the duality pairing between [Cn
u(ϕ)]d ∩

[H1
0(Ω)]d and it’s dual space.
In addition, there exists P̂n ∈ Cn

p(ψ) ∩ L2(Ω), for ∀̂v ∈
[Cn

u(ϕ)]d ∩ [H1
0(Ω)]d such that

< L, v̂ >=

∫
Ω

P̂ndiv̂vdx = −(P̂n, div̂v) = d(̂v, P̂n).

Namely,

d(̂v, P̂n) = ( f , v̂) + (hn, v̂) − α(Ûn, v̂) − ν(∇Ûn, ∇̂v). (32)

What’s more, as in Theorem 3.3 of [31], we find that

∇Ûn → ∇u almost everywhere in Ω,

which concludes that P̂n can converge weakly to p since
d(̂v, P̂n) ⇀ d(̂v, p). Applying the same approach as for the
strong convergence of {Ûn}n∈N to u in L2(Ω). Consequently, due
to the compact embedding L2(Ω) ↪→ H−1(Ω), we can obtain

lim
n→∞
‖ P̂n − p ‖−1,Ω= 0.

Using a triangle inequality, it follows that

lim
n→∞
‖ Pn − p ‖−1,Ω

≤ lim
n→∞
‖ Pn − P̂n ‖−1,Ω + lim

n→∞
‖ P̂n − p ‖−1,Ω

=0.

(33)

For all these reasons, {Un}n∈N can converge strongly to u in
L2(Ω), {Pn}n∈N converges strongly to p in H−1(Ω). Noting that
{Un}n∈N and {Pn}n∈N are uniformly bounded and equicontinu-
ous in Ω, we can conclude that {Un}n∈N and {Pn}n∈N converge
uniformly to u and p by the well known Arzelà-Ascoli theo-
rem.

4. Numerical Experiments

In this section, we apply the DGM to solve the general Stokes
problems in both 2D and 3D case. The experimental results
show the high efficiency and precision of the DGM. Our nu-
merical experiments are based on Tensorflow [32] and the con-
figuration of the computer is 64-bit Intel Xeon Silver 4116 (2
processors). In the numerical simulation, we utilize six different
architectures to train the neural network and set the same num-
ber of network layers to solve U and P simultaneously. These
architectures include one to six hidden layers respectively, and
16 units on each hidden layer (Denoted as ARCH 1-6). We ap-
ply ARCH 1-3 in 2D case and apply ARCH 1-6 in 3D case. The
datasets in 2D case contain 1000, 2000, 4000 and 8000 samples
respectively (See Figure 2, denoted as 2D-DS 1-4). And in 3D
case, the datasets contain 1200, 2400, 4800 and 9600 samples
respectively (See Figure 3, denoted as 3D-DS 1-4).

5



Figure 2: The datasets in 2D case.

Figure 3: The datasets in 3D case.

4.1. The Stokes equations
In this subsection, we first consider the Stokes equations with

homogeneous boundary condition in both 2D and 3D cases. Set
ν = 0.025 and α = 0 in equations (1) - (3). Use the following
2D and 3D exact solutions,

u1(x1, x2) = 2sin(πx1)2sin(πx2)cos(πx2)π,

u2(x1, x2) = −2sin(πx1)sin(πx2)2cos(πx1)π,
p(x1, x2) = cos(πx1)cos(πx2),

(34)

in Ω = (0, 1)2 and

u1(x, y, z)

= sin(πx)2(sin(2πy)sin(πz)2 − sin(πy)2sin(2πz)),
u2(x, y, z)

= sin(πy)2(sin(2πz)sin(πx)2 − sin(πz)2sin(2πx)),
u3(x, y, z)

= sin(πz)2(sin(2πx)sin(πy)2 − sin(πx)2sin(2πy)),
p(x, y, z) = sin(πx)sin(πy)cos(πz),

(35)

in Ω = (0, 1)3. Then, the right hands f (x, y) and f (x, y, z) can
be determined by equation (1), respectively.

In order to demonstrate the effectiveness and accuracy of the
DGM, we put forward the norms as follows

errL1 =
1
N

N∑
i=1

| Ui − ui |, (36)

errL2 =
1
N

N∑
i=1

| Ui − ui |
2, (37)

J(U) =
1
N

N∑
i=1

[∣∣∣G[Ui]
∣∣∣2 +

∣∣∣∇ · Ui

∣∣∣2 + |Ui − gi

∣∣∣2], (38)

where U i and ui are the neural network and exact solution on
each batch i = 1, 2, · · ·N of datasets, respectively. For sim-
plicity, we only calculate the error of velocity. The pressure is
similar.

Figure 4: The errL2 norm of the 2D Stokes equations.

Table 1: The performance of the DGM for the 2D Stokes equations.

ARCH 1 2D-DS-1 2D-DS-2 2D-DS-3 2D-DS-4
errL1 7.82 × 10−2 7.31 × 10−3 1.41 × 10−2 9.39 × 10−3

errL2 5.48 × 10−3 4.91 × 10−5 1.58 × 10−4 8.23 × 10−5

J(U) 1.52 × 10−2 2.05 × 10−3 1.75 × 10−3 1.79 × 10−3

ARCH 2 2D-DS-1 2D-DS-2 2D-DS-3 2D-DS-4
errL1 5.45 × 10−5 5.70 × 10−5 4.18 × 10−5 1.30 × 10−4

errL2 3.18 × 10−9 3.34 × 10−9 1.95 × 10−9 1.60 × 10−8

J(U) 9.60 × 10−8 2.71 × 10−7 1.02 × 10−7 5.14 × 10−7

ARCH 3 2D-DS-1 2D-DS-2 2D-DS-3 2D-DS-4
errL1 8.09 × 10−6 1.53 × 10−5 1.23 × 10−5 3.93 × 10−6

errL2 6.23 × 10−11 2.58 × 10−10 1.70 × 10−10 1.91 × 10−11

J(U) 1.77 × 10−8 4.36 × 10−8 1.15 × 10−8 2.59 × 10−9

Figures 4 - 5 demonstrate the errL2 norm in both 2D and 3D
cases (z = 0.5). Observed from Figures 4 - 5, the more red
areas, the better performance of the algorithm. Certainly, we

6



Figure 5: The errL2 norm of the 3D Stokes equations.

find that the subfigures b, d in Figure 4, f , g in Figure 5 are
stable than others. The numerical result of subfigure l in Figure
4 is 1.91 × 10−11, but it does not look stable, which is proba-
bly due to the influence of boundary points and corner points.
In addition, Figures 6 depict errL2 norm between u and U in
2D case. Tables 1 - 2 display three norms in both 2D and 3D
cases (z = 0.5), the best results for each ARCH are marked
out. From Tables 1 - 2, we can find that numerical results with
different datasets are less distinguishable. The precision of the
neural network is related to the number of layers and neurons,
and does not depend on the size of the datasets. The accuracy
of neural networks gets better and better only as the number of
hidden layers increases. In 2D case, an interesting phenomenon
can be found that the best result obtained by using ARCH-3 and
the network with more than three hidden layers will have over-
fitting. Obviously, for high-dimensional problems, fewer layers
neural network is not enough to achieve the required precision.
Therefore, it is indispensable to adopt deeper layers since the
non-deep neural network has great limitation for the expression
of nonlinear relationship. A particularly significant considera-
tion, there appears over-fitting phenomena by using 3D-DS-3
and ARCH-6, which shows that 6 hidden layers is enough to
solve the 3D problem.

4.2. The general Stokes equations

Encouraged by positive results in previous experiments, in
this subsection, we mainly consider the effect of the DGM for
the general Stokes equations with homogeneous boundary con-
dition in both 2D and 3D cases. Here, we set α = 1, ν = 1 in
equations (1) - (3), and apply the analytical solutions (34) and
(35) for 2D and 3D cases respectively. Consequently, the right
hands f (x, y) and f (x, y, z) can be derived by equation (1). The
plots of errL2 norm are shown in Figures 7 - 8. In the same
manner, the value of three different norms between the neural
network and the exact solution are displayed in Tables 3 - 4.

Figure 6: The three norms of the 2D Stokes equations by using ARCH-3.

Evidently, the errL2 norm is going to change by using differ-
ent ARCHs, as shown in Figures 7 - 8 and Tables 3 - 4. The
similar results just as for the 2D case can be derived by Figures
9. In the same way, the error decreases gradually as the num-
ber of hidden layers increases, especially by using ARCH-3 and
ARCH-6 in 2D and 3D case respectively.

4.3. The driven cavity flow
The driven cavity flows have been extensively applied as test

cases for validating the incompressible fluid dynamics algo-
rithm. The corner singularities for the 2D fluid flows are very
important since most examples of physical interest have cor-
ners. In these two examples, we consider the 2D driven flow
in a rectangular cavity when the top surface moves with a con-
stant velocity along its length. The upper corners where the
moving surface meets the stationary walls are singular points
of the flow at the multi-valued horizontal velocity. The lower
corners are also weakly singular points. Moreover, we also con-
sider the 3D driven flow in a cube of unit volume, centered at
x = y = z = 0.5 (Figure 10). A unit tangential velocity in the
x direction is prescribed at the top surface, while zero velocity
is prescribed on the remaining bounding surfaces in numerical
examples.

Figure 10: Diagram of 2D and 3D square cavity flow.

In order to explore how many neurons are enough to simu-
late the driven cavity flow, we apply 4, 8, 12 and 16 neurons for

7



Table 2: The performance of the DGM for the 3D Stokes equations, when
z = 0.5.

ARCH 2 3D-DS-1 3D-DS-2 3D-DS-3 3D-DS-4
errL1 6.28 × 10−2 1.01 × 10−1 5.91 × 10−2 5.82 × 10−2

errL2 2.18 × 10−3 5.53 × 10−3 2.01 × 10−3 1.93 × 10−3

J(U) 9.59 × 10−2 9.83 × 10−2 5.08 × 10−2 6.26 × 10−2

ARCH 3 3D-DS-1 3D-DS-2 3D-DS-3 3D-DS-4
errL1 1.75 × 10−2 7.68 × 10−3 9.69 × 10−3 1.32 × 10−2

errL2 1.99 × 10−4 4.14 × 10−5 6.34 × 10−5 1.00 × 10−4

J(U) 8.89 × 10−3 4.07 × 10−3 2.53 × 10−3 6.90 × 10−3

ARCH 4 3D-DS-1 3D-DS-2 3D-DS-3 3D-DS-4
errL1 1.15 × 10−2 4.44 × 10−3 9.69 × 10−3 4.23 × 10−3

errL2 1.02 × 10−4 1.31 × 10−5 6.34 × 10−5 1.27 × 10−5

J(U) 5.49 × 10−3 7.07 × 10−4 1.74 × 10−3 6.56 × 10−4

ARCH 5 3D-DS-1 3D-DS-2 3D-DS-3 3D-DS-4
errL1 2.20 × 10−3 1.60 × 10−3 1.63 × 10−3 2.10 × 10−3

errL2 3.23 × 10−6 1.91 × 10−6 2.38 × 10−6 3.77 × 10−6

J(U) 3.49 × 10−4 8.42 × 10−5 9.56 × 10−5 1.01 × 10−4

ARCH 6 3D-DS-1 3D-DS-2 3D-DS-3 3D-DS-4
errL1 1.23 × 10−3 1.75 × 10−3 − 9.75 × 10−4

errL2 1.33 × 10−6 2.34 × 10−6 − 7.10 × 10−7

J(U) 2.49 × 10−4 1.38 × 10−4 − 3.94 × 10−5

Table 3: The performance of the DGM for the 2D general Stokes equations.

ARCH 1 2D-DS-1 2D-DS-2 2D-DS-3 2D-DS-4
errL1 2.09 × 10−1 2.12 × 10−1 2.84 × 10−1 2.97 × 10−1

errL2 3.65 × 10−2 3.05 × 10−2 7.02 × 10−2 7.87 × 10−2

J(U) 1.4 × 10−1 7.74 × 10−2 2.38 × 10−1 2.30 × 10−1

ARCH 2 2D-DS-1 2D-DS-2 2D-DS-3 2D-DS-4
errL1 4.70 × 10−4 3.86 × 10−4 4.98 × 10−4 1.81 × 10−4

errL2 2.13 × 10−7 1.54 × 10−7 2.43 × 10−7 3.69 × 10−8

J(U) 1.68 × 10−5 1.70 × 10−5 9.57 × 10−6 2.06 × 10−6

ARCH 3 2D-DS-1 2D-DS-2 2D-DS-3 2D-DS-4
errL1 1.25 × 10−4 8.99 × 10−5 3.71 × 10−4 1.88 × 10−4

errL2 1.78 × 10−8 8.08 × 10−9 1.33 × 10−7 3.79 × 10−8

J(U) 3.04 × 10−6 1.94 × 10−6 2.20 × 10−6 1.48 × 10−6

testing. From Figure 11, we can find that the 2D driven cavity
flow is stablest when using 16 neurons. Moreover, the optimal
models for 2D and 3D cases are obtained by training the exist-
ing 2D-DS and 3D-DS respectively. Then, we test the different
neural networks by using 1600 data points in 2D case (Figure
12). In like wise, the better results are only related to the num-
ber of hidden layers. Especially, the results by using ARCH
3 are in perfect agreement with the physical significance since
ARCH 3 has more hidden layers than others. Furthermore, the
optimal framework for the 3D case obtained by using 3D-DS-3
and ARCH-2. As shown in Figures 13 - 14, we utilize 1000 and
8000 data points for testing and intercepts the top view along 3
axis respectively. The numerical results indicate that the DGM
is efficient and accurate.

Figure 7: The errL2 norm of the 2D general Stokes equations.

Figure 8: The errL2 norm of the 3D general Stokes equations.

5. Conclusions

This paper applies the DGM to solve the general Stokes prob-
lems in both 2D and 3D cases with high efficiency and accuracy,
which can transform the traditional grid mesh method into a
grid free algorithm by using the random sampled data. Besides,
we set the objective function appropriately to convert the con-
strained problem into an unconstrained problem in the sense
and give two theorems to ensure the convergence of the objec-
tive function and the convergence of the neural network to the
exact solution. In general, this method is based on drawing ran-
dom sampled points from the domain, which can be readily ex-
tended to arbitrary domains; triangulation of the domain is not
needed. The numerical results fully demonstrate the conver-
gence properties of the DGM completely. But, we need more
deliberation on the elements which have great impact in exper-
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Figure 9: The three norms of the 2D general Stokes equations by using ARCH-
3.

Figure 11: The 2D driven cavity flow with different neurons and ARCH-1.

iments. For example, how to construct the most suitable ob-
jective function for measuring loss and applied to optimization,
whether the deeper network can get better results and random-
ness have a positive effect on the algorithm.
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