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Abstract

The linear transform-based tensor nuclear norm (TNN) methods have recently obtained promising
results for tensor completion. The main idea of this type of methods is exploiting the low-rank structure
of frontal slices of the targeted tensor under the linear transform along the third mode. However, the low-
rankness of frontal slices is not significant under linear transforms family. To better pursue the low-rank
approximation, we propose a nonlinear transform-based TNN (NTTNN). More concretely, the proposed
nonlinear transform is a composite transform consisting of the linear semi-orthogonal transform along
the third mode and the element-wise nonlinear transform on frontal slices of the tensor under the linear
semi-orthogonal transform, which are indispensable and complementary in the composite transform to fully
exploit the underlying low-rankness. Based on the suggested low-rankness metric, i.e., NTTNN, we propose
a low-rank tensor completion (LRTC) model. To tackle the resulting nonlinear and nonconvex optimization
model, we elaborately design the proximal alternating minimization (PAM) algorithm and establish the
theoretical convergence guarantee of the PAM algorithm. Extensive experimental results on hyperspectral
images, multispectral images, and videos show that the our method outperforms linear transform-based
state-of-the-art LRTC methods qualitatively and quantitatively.

Index terms— Nonlinear transform, tensor nuclear norm, proximal alternating minimization, tensor
completion

1 Introduction
With the development of scientific computing, high-dimensional data structure is becoming more and more
complicated. As the high-dimensional extension of vectors and matrices, tensors can represent higher-dimensional
data, such as hyperspectral images (HSIs) [1, 2], multispectral images (MSIs) [3], and videos [4], which play
an increasingly important role in large-scale scientific computing. However, tensor data frequently undergo
missing entries or undersample problem due to various unpredictable or unavoidable situations when acquiring
it. The problem of recovering missing entries via the observed incomplete tensor is called tensor completion
(TC) [5], which is a fundamental problem and has received considerable attention in scientific computing [6–9].
Generally, multi-dimensional data is internally correlated and the internal redundancy property could be mea-
sured by the powerful rank function. Therefore, the low-rank TC (LRTC) problem can be formulated as
follows

min
X

rank(X )

s.t. XΩ = OΩ,

where, X and O denote the required and the observed tensors, respectively, and Ω is the index set of the
observed elements.
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Figure 1: The pipeline of the linear transform-based TNN method and the proposed NTTNN method on MSI
Toy for sampling rate (SR) 10%. (a)The observed incomplete tensor. (b)The transformed tensor under the
DFT and the AccEgy with the corresponding percentage of singular values. (c)The recovered tensor by the
TNN method and the corresponding pseudo-color image composed of the 1-st, 2-nd, and 5-th bands with the
zoom-in region and the corresponding residual part. (d)The transformed tensor under the proposed nonlinear
transform ψ and the AccEgy with the corresponding percentage of singular values. (e)The recovered tensor
by the NTTNN method and the corresponding pseudo-color image composed of the 1-st, 2-nd, and 5-th bands
with the zoom-in region and the corresponding residual part.

However, different from the matrix case, the tensor rank has no unique definition. The CP-rank [10] is
defined as the minimum number of rank-one tensors that generate the target tensor, which has been successfully
applied in LRTC [11,12]. However, to determine the CP-rank of the target tensor is NP-hard [13]. The Tucker-
rank is defined as a vector constituted of ranks of each mode-k matricization of the tensor. The Tucker-rank
has been applied in LRTC problem by minimizing its convex surrogate [14] or non-convex surrogates [15, 16].
Moreover, a series of tensor network decomposition-based ranks are proposed, such as tensor train (TT)-
rank [17], tensor ring (TR)-rank [18], and fully-connected tensor network (FCTN)-rank [19]. All of them have
been achieved great success in higher-order LRTC [19–21].

Recently, the tensor tubal-rank [22] has been proposed, which avoids the loss of inherent information in
unfolding of the target tensor. Since minimizing the tubal-rank of the target tensor is NP-hard, Zhang et
al . [23] proposed a convex surrogate, the tensor nuclear norm (TNN) of underlying tensor, to solve LRTC
problem. The TNN-based LRTC model could be mathematically rewritten as

min
X
‖X‖TNN

s.t. XΩ = OΩ,
(1)

where ‖X‖TNN is TNN of X (see Def. 2). Given X ∈ Rn1×n2×n3 , we define Z = X ×3 Fn3 , where Fn3 and
×3 respectively denotes the Discrete Fourier Transform (DFT) and the mode-3 product of a tensor and a
matrix. Since Fn3

is invertible, we have X = Z ×3 F−1
n3

. Combining the definition of TNN, the problem (1) is
equivalent to the following problem:

min
Z

n3∑
i=1

‖Zi‖∗

s.t.(Z ×3 F−1
n3

)Ω = OΩ,

(2)

where F−1
n3

denotes the inverse DFT matrix [22], ‖ · ‖∗ is the matrix nuclear norm, and Zi denotes i-th frontal
slice of Z. The problem (2) implies that low-tubal-rank structure could be characterized by the summation of
nuclear norm of frontal slices under the linear DFT.

To obtain a better low-rank approximation of frontal slices of the transformed tensor, researchers consider
different linear transforms instead of DFT. The discrete cosine transform (DCT) was proposed as an alter-
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Figure 2: The evolution of transform-based TNN methods. The learned transforms are highlighted in boldface,
while the other transforms are pre-defined.

natively implemented of DFT in [24, 25], which enjoys less computational cost and obtains a better low-rank
approximation compared with DFT. Latterly, Kernfeld et al . [26] and Lu et al . [24] noted that the DFT can
be replaced by any invertible transform. Subsequently, Jiang et al . [27] introduced the semi-invertible framelet
transform, which broke through the restriction of invertibility compared with invertible transform. It is worth
noting that all above mentioned transforms are pre-defined and data-independent. Choosing above transforms
are appealing because it is cheap and robust to initialization. Another prominent paradigm is to employ the
learning-based methods that further make transforms data-dependent. Song et al . [28] suggested the trans-
form generated by singular values decomposition (SVD) of mode-3 unfolding of the observed tensor. Kong et
al . [29] and Jiang et al . [30] further proposed that the observed tensor is used to initialize the transform, which
is updated in the algorithm. The above learned methods have shown that the learned transform is flexible for
various types of data. The evolution of transform-based TNN methods are summarised in Fig. 2.

Although above transform-based TNN methods have shown effectiveness for LRTC, they still have much
room for improvement. Specifically, they pursue the low-rankness of frontal slices of the transformed tensor
under a linear transform, which limits their recovered performance especially when sampling rate (SR) is low.

To obtain a better low-rank approximation of frontal slices of the transformed tensor, we propose a nonlinear
transform, i.e., ψ : X ∈ Rn1×n2×n3 7→ ψ(X ) ∈ Rn1×n2×r. More specifically, ψ(X ) = φ(X ×3 T), where ×3

denotes the mode-3 product of the tensor X and the matrix T (see Def. 1), T ∈ Rr×n3 is a learned linear
semi-orthogonal transform along the third mode, and φ : Zi 7→ φ(Zi) is the element-wise nonlinear transform
on frontal slices Zi(i = 1, · · · , d) of the transformed tensor Z of X under the linear semi-orthogonal transform
T. In the proposed composite transform ψ, the learned linear semi-orthogonal transform T and the element-
wise nonlinear transform φ are indispensable and complementary to fully exploit the underlying low-rankness
(we have discussed the indispensability of T and φ in the Section 5.2).

Based on the proposed nonlinear transform, we propose a nonlinear transform-based tensor nuclear norm
(NTTNN) to exploit the low-rankness of underlying tensor under the proposed nonlinear transform ψ and
establish the corresponding LRTC model. Fig. 1 is the pipeline of the linear transform-based TNN method [23]
and the proposed NTTNN method on MSI Toy for SR 10%. From Fig. 1(b) and (d), we can observe that
NTTNN with different nonlinear transforms φ (Tanh and Sigmoid) need less singular values than TNN that
is based on linear transform when achieves the same accumulation energy ratio (AccEgy). In other words,
the energy of singular values of nonlinear transformed tensor is more concentrated and NTTNN could make
the frontal slices of underlying tensor more low-rank. As such, NTTNN can obtain the better low-rank
approximation of the underlying tensor under the nonlinear transform ψ, which could recover more textures
(see zoom-in regions and residual parts between ground truth and recovered tensors) and obtain a better
recovered result than TNN, which is demonstrated in Fig. 1(c) and (e). Moreover, the proposed NTTNN is a
unified transform-based TNN family, which shows in Fig. 2.

The main contributions of this paper is threefold:

• We propose a nonlinear transformed TNN termed as NTTNN, which could enhance the low-rank approx-
imation of the underlying tensor and can be regarded as a unified transform-based TNN family including
many classic transform-based TNN methods.

• Based on NTTNN, we propose the LRTC model and develop an efficient multi-block proximal alternating
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minimization (PAM) algorithm with theoretical guarantee to solve the resulting model.

• Extensive experiments on HSIs, MSIs, and videos demonstrate that NTTNN outperforms linear transform-
based state-of-the-art LRTC methods quantitatively and visually.

The rest part of the paper is arranged as follows. In Section 2, we briefly introduce some essential notations
and basic definitions used in this paper. In Section 3, we propose the NTTNN model for LRTC and establish
the corresponding algorithm with theoretical convergence guarantee. Section 4 evaluates the performance of
the proposed model. Section 5 gives some discussions. Finally, Section 6 concludes this paper.

2 Notations and Preliminaries
In this part, we introduce some basic notations and definitions for developing the proposed nonlinear transform
ψ and NTTNN.

The basic notations used in this paper are presented in Table 1.

Table 1: Basic notations.

Notations Explanations

x , x, X, X Scalar, vector, matrix, tensor.

xijk The (i, j, k)-th element of tensor X .

X (:, :, i) or Xi The i -th frontal slice of tensor X .

Tr(X) The trace of X ∈ Rn×n with Tr(X) =
∑n
i=1 xii.

〈X ,Y〉 The inner product ofX andY with 〈X ,Y〉=
∑
ijk xijkyijk.

‖X‖F The Frobenius norm of X with ‖X‖F =
√
〈X ,X〉.

‖X‖∗ The nuclear norm of X with ‖X‖∗ = Tr(
√
X>X).

Based on above basic notations, we give following definitions:

Definition 1 (mode-k product [31]) The mode-k product of a tensor Z ∈ Rn1×n2×···×ni and a matrix D ∈
Rhi×ni is defined as

X = Z ×k D = foldk(DZ(k)),

where Z(k) is the mode-k matricization of Z and foldk(·) is the corresponding inverse operator of matricization
that rearranges elements of a matrix into a tensor.

Definition 2 (tensor nuclear norm (TNN) [23]) Let X ∈ Rn1×n2×n3 , the tensor nuclear norm of X is

‖X‖TNN =

n3∑
i=1

‖Zi‖∗,

where Zi is the i-th frontal slice of the transformed tensor Z = X ×3 Fn3
.

3 Proposed Model and Solving Algorithm

3.1 Proposed Model
The existing transform-based TNN methods employ linear transform to exploit the low-rankness of frontal
slices of the underlying tensor. However, the linear transform does not always make frontal slices of the
underlying tensor obviously low-rank, which is shown in Fig. 1(d). To tackle this problem, we propose a
nonlinear transform that is defined as

ψ(X ) = (φ ◦T)(X ) = φ(X ×3 T),
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where, T ∈ Rr×n3 denotes a learned linear semi-orthogonal transform and satisfies TT> = Ir×r, and φ : Zi 7→
φ(Zi) is the element-wise nonlinear transform on frontal slices Zi(i = 1, · · · , d) of the transformed tensor Z of
X under the linear semi-orthogonal transform T.

Remark 1 The introduced nonlinear composed transform, which consists of a nonlinear transform and a
learned linear semi-orthogonal transform, can be interpreted as a single layer semi-orthogonal neural network
[32, 33]. More specifically, the nonlinear transform is represented by the nonlinear activation function and
the linear semi-orthogonal transform corresponds to the semi-orthogonal fully connected layer, where the semi-
orthogonality finds to be a favorable property for training deep convolutional neural network [34].

Based on the proposed nonlinear transform, we define the nonlinear transform-based tensor nuclear norm
(NTTNN) to exploit the low-rankness of a tensor as follows:

‖X‖NTTNN = ‖ψ(X )‖∗ =

r∑
i=1

‖φ(Zi)‖∗ ,

where Z = X ×3 T, ‖ · ‖∗ denotes the matrix nuclear norm, and Zi denotes the i-th frontal slice of Z. Here,
the nonlinear transform ψ(·) could make frontal slices of underlying tensor obviously low-rank, which is shown
in Fig. 1(d) that the singular values of φ(Z) is more concentrated. As a result, the proposed NTTNN could
better exploit the low-rankness of latent tensor than TNN-based methods under linear transforms along the
third mode.

Based on NTTNN, we propose the following LRTC model:

min
X ,Z,T

r∑
i=1

‖φ(Zi)‖∗

s.t. XΩ = OΩ,X = Z ×3 T
>,TT> = Ir×r,

(3)

where, Z ∈ Rn1×n2×r, T ∈ Rr×n3 is the semi-orthogonal transform, and I ∈ Rr×r is an identity matrix.

Remark 2 NTTNN is a unified transform-based TNN family, which is shown in Fig. 2. More specifically,
when the nonlinear function φ(·) in the proposed transform ψ(·) is defined as φ(x) = x, NTTNN is degraded
to previous transform-based TNN methods according to the different T: if T is the fixed DFT, it is equivalent
to the typical TNN method [23]; if T is the fixed DCT or the fixed framelet transform, it is equivalent to the
DCT-based TNN methods [24, 25] or the framelet-based TNN method [27], respectively; if T is the learned
orthogonal transform or the learned semi-orthogonal transform, it is equivalent to the transform-based TNN
method [28] or the tensor Q-rank method [29], respectively.

3.2 Solving Algorithm
By introducing indicator functions

Φ(X ) =

{
0, XΩ = OΩ,

+∞, otherwise,
Ψ(T) =

{
0, TT> = Ir×r,
+∞, otherwise,

the problem (3) can be equivalently rewritten as follows:

min
X ,Z,T

r∑
i=1

‖φ(Zi)‖∗ + Φ(X ) + Ψ(T)

s.t. X = Z ×3 T>.

(4)

To tackle this optimization problem, we introduce the auxiliary variable Y = φ(Z) and lean upon the half
quadratic splitting [35] tips to transform the constrained problem (4) into the following unconstrained problem:

min
X ,Z,Y,T

r∑
i=1

‖Yi‖∗ +
α

2
‖X − Z ×3 T>‖2F +

β

2
‖Y − φ(Z)‖2F + Φ(X ) + Ψ(T), (5)

where α, β > 0 are two penalty parameters.
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We denote the objective function of problem (5) as f(X ,Y,Z,T). Under the proximal alternating mini-
mization (PAM) algorithm [36] framework, we can alternatively update each variable:

X k+1 ∈ argmin
X
{f(X ,Yk,Zk,Tk) +

ρ1

2
‖X − X k‖2F },

Yk+1 ∈ argmin
Y
{f(X k+1,Y,Zk,Tk) +

ρ2

2
‖Y − Yk‖2F },

Zk+1 ∈ argmin
Z
{f(X k+1,Yk+1,Z,Tk) +

ρ3

2
‖Z − Zk‖2F },

Tk+1 ∈ argmin
T
{f(X k+1,Yk+1,Zk+1,T) +

ρ4

2
‖T−Tk‖2F },

(6)

where ρ1, ρ2, ρ3, and ρ4 are four positive constants, and k denotes the iteration number. Next, we give details
for updating the subproblems about X , Y, Z, and T.
• Updating X subproblem
The X subproblem is

argmin
X

α

2
‖X − Zk ×3 Tk

>‖2F +
ρ1

2
‖X − X k‖2F + Φ(X ). (7)

The closed-form solution of the problem (7) is

X k+1 =

(
αZk ×3 Tk

>
+ ρ1X k

α+ ρ1

)
Ωc

+OΩ, (8)

where Ωc denotes the complement set of Ω.
• Updating Y subproblem
The Y subproblem is

argmin
Y

r∑
i=1

‖Yi‖∗ +
β

2
‖Y − φ(Zk)‖2F +

ρ2

2
‖Y − Yk‖2F .

The Y subproblem can be decomposed into the following r subproblems:

argmin
Yi

‖Yi‖∗ +
β + ρ2

2
‖Yi −Hi‖2F , (9)

where Hk
i =

βφ(Zki )+ρ2Yk
i

β+ρ2
. By employing singular value thresholding (SVT) operator [37], the closed-form

solution of each subproblem (9) is

Yk+1
i = T 1

β+ρ2

(Hk
i ) = ÛT 1

β+ρ2

(D̂)V̂
>
, (10)

where (Û, D̂, V̂) are derived from SVD of Hk
i and T 1

β+ρ
(D̂) = diag(max(σj − 1

β+ρ2
, 0)).

• Updating Z subproblem
The Z subproblem is

argmin
Z

α

2
‖X k+1 −Z ×3 Tk

>‖2F +
β

2
‖Yk+1 − φ(Z)‖2F +

ρ3

2
‖Z − Zk‖2F .

The Z subproblem can be equivalently formulated as follows:

argmin
Z(3)

α

2
‖Z(3) −TkXk+1

(3) ‖
2
F +

β

2
‖φ(Z(3))−Yk+1

(3) ‖
2
F +

ρ3

2
‖Z(3) − Zk(3)‖2F

= argmin
Z(3)

α+ ρ3

2
‖Z(3) −Gk‖2F +

β

2
‖φ(Z(3))−Yk+1

(3) ‖
2
F ,

(11)
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where Gk =
αTkXk+1

(3)
+ρ3Zk(3)

α+ρ3
. We denote the (i, j)-th element of Zk(3), Gk, and Yk

(3) as zkij = Zk(3)(i, j),
gkij = Gk(i, j), and ykij = Yk

(3)(i, j), respectively. Then, the problem (11) can be decomposed into n1n2r
one-dimensional nonlinear equations as follows:

argmin
zij

α+ ρ3

2
(zij − gkij)2 +

β

2
(φ(zij)− yk+1

ij )2, (12)

which can be solved by the Newton method.
• Updating T subproblem
The T subproblem is

argmin
T

α

2
‖X k+1 −Zk+1 ×3 T>‖2F +

ρ4

2
‖T−Tk‖2F + Ψ(T). (13)

Note that the problem (13) can be equivalently transformed the following problem:

argmin
T

α

2
‖X k+1 −Zk+1 ×3 T>‖2F +

ρ4

2
‖T−Tk‖2F + Ψ(T)

= argmin
T

α

2
‖Xk+1

(3) −T>Zk+1
(3) ‖

2
F +

ρ4

2
‖T−Tk‖2F + Ψ(T)

= argmin
T

α

2
Tr[(Xk+1

(3) −T>Zk+1
(3) )>(Xk+1

(3) −T>Zk+1
(3) )]

+
ρ4

2
Tr[(T−Tk)>(T−Tk)] + Ψ(T)

= argmax
T

Tr[(αXk+1
(3) (Zk+1

(3) )> + ρ4Tk
>

)T]−Ψ(T),

(14)

where Tr(X) denotes the trace of matrix X. Supposing the SVD of αXk+1
(3) (Zk+1

(3) )> + ρ4Tk
>

is ŨD̃Ṽ
>
, we

have
Tr(ŨD̃Ṽ

>
T) = Tr(D̃ŨṼ

>
T).

Since D̃ is the diagonal matrix, the maximization problem in (14) can be maximized when the diagonal elements
of ŨṼ

>
T is positive and maximum. By the Cauchy-Schwartz inequality, this is achieved when T = (ŨṼ

>
)>

in which case the diagonal elements are all 1. Hence the closed-form solution of (13) is

Tk+1 = ṼŨ
>
, (15)

where Ũ and Ṽ are the orthogonal matrices obtained by the following SVD:

αXk+1
(3) (Zk+1

(3) )> + ρ4Tk
>

= ŨD̃Ṽ
>
.

We summary the solving algorithm for NTTNN in Algorithm 1.

3.3 Convergence analysis
Under the PAM algorithm framework, we establish the global convergence guarantee of Algorithm 1 to solve
(5). First of all, we denote following functions:

f(X ,Y,Z,T) =

r∑
i=1

‖Yi‖∗ +
α

2
‖X − Z ×3 T>‖2F +

β

2
‖Y − φ(Z)‖2F + Φ(X ) + Ψ(T),

and
f1(X ,Y,Z,T) =

α

2
‖X − Z ×3 T>‖2F +

β

2
‖Y − φ(Z)‖2F .

First, we introduce the necessary ingredients used for the convergence analysis.

Definition 3 (Kurdyka-Łojasiewicz property [38]). The function ψ(x) : Rn → R ∪ +∞ is said to have the
Kurdyka-ojasiewicz (K-Ł) property at x∗ ∈ dom(∂ψ(x)) if there exist η ∈ (0,+∞], a neighborhood U of x∗ and
a continuous concave function ψ(x) : [0, η)→ R+ satisfy:

7



Algorithm 1 The PAM-based solver for the proposed NTTNN model.
Input: The observed O ∈ Rn1×n2×n3 , index set Ω, the row number r of the transform T, proximal
parameters α, β, and ρi(i = 1, · · · , 4).
Output: The recovered third-order tensor X .
Initialization: X 0, Y0, Z0, T0;

While ‖
Xk+1−Xk‖

F

‖Xk‖F
≤ 10−4 do

Update X k+1 via (8);
Update Yk+1 via (10);
Update Zk+1 via (12);
Update Tk+1 via (15);

end while

• ψ(0) = 0,

• ψ(x) is C1 on (0, η],

• for any x ∈ (0, η), ψ′(x) > 0,

• for any x in U ∩ [ψ(x∗) < ψ(x) < ψ(x∗) + η]

The proper lower semi-continuous functions are called K-Ł functions, if they satisfy K-Ł property at each point
of dom(∂ψ(x)).

Definition 4 (Semi-algebraic set and semi-algebraic function [38]) If there exists a series of real polynomial
functions mij and nij satisfy S = ∩j ∪i {x ∈ Rn : mij(x) = 0, nij(x) < 0}, then the subset S ∈ R is a
semi-algebraic set. If the graph {(x, y) ∈ Rn×R, f(x) = y} of the function f is a semi-algebraic set, then f is
a semi-algebraic function.

Remark 3 A semi-algebraic real valued function f satisfies K-Ł property at each x ∈ dom(f), i.e., f is a
K-Ł function.

Lemma 1 (Sufficient decrease lemma). For any ρi > 0 (i = 1, 2, 3, 4), the sequence {X k,Yk,Zk,Tk} that is
generated by (6) satisfies the following formulae:

f(X k+1,Yk,Zk,Tk) +
ρ1

2
‖X k+1 −X k‖2F ≤ f(X k,Yk,Zk,Tk),

f(X k+1,Yk+1,Zk,Tk) +
ρ2

2
‖Yk+1 − Yk‖2F ≤ f(X k+1,Yk,Zk,Tk),

f(X k+1,Yk+1,Zk+1,Tk) +
ρ3

2
‖Zk+1 −Zk‖2F ≤ f(X k+1,Yk+1,Zk,Tk),

f(X k+1,Yk+1,Zk+1,Tk+1) +
ρ4

2
‖Tk+1 −Tk‖2F ≤ f(X k+1,Yk+1,Zk+1,Tk).

(16)

Proof. Let X k+1, Yk+1, Zk+1, and Tk+1 be optimal solutions of the corresponding subproblem in (6), then
we have 

f(X k+1,Yk,Zk,Tk) +
ρ1

2
‖X k+1 −X k‖2F ≤ f(X k,Yk,Zk,Tk),

f(X k+1,Yk+1,Zk,Tk) +
ρ2

2
‖Yk+1 − Yk‖2F ≤ f(X k+1,Yk,Zk,Tk),

f(X k+1,Yk+1,Zk+1,Tk) +
ρ3

2
‖Zk+1 −Zk‖2F ≤ f(X k+1,Yk+1,Zk,Tk),

f(X k+1,Yk+1,Zk+1,Tk+1) +
ρ4

2
‖Tk+1 −Tk‖2F ≤ f(X k+1,Yk+1,Zk+1,Tk).

The proof of the sufficient decrease lemma is completed. �

Lemma 2 (Relative error lemma). Assuming that φ(·) is a real analytic function, and continuous on its
domain with Lipschitz continuous on any bounded set. Then, the sequence {X k,Yk,Zk,Tk} obtained by (6) is
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bounded, and for any ρi > 0 (i = 1, 2, 3, 4), there exist V t+1
i such that {X k,Yk,Zk,Tk} satisfies the following

formulae: 
‖V k+1

1 +∇X f1(X k+1,Yk,Zk,Tk)‖F ≤ ρ1‖X k+1 −X k‖F ,
‖V k+1

2 +∇Yf1(X k+1,Yk+1,Zk,Tk)‖F ≤ ρ2‖Yk+1 − Yk‖F ,
‖V k+1

3 +∇Zf1(X k+1,Yk+1,Zk+1,Tk)‖F ≤ ρ3‖Zk+1 −Zk‖F ,
‖V k+1

4 +∇Tf1(X k+1,Yk+1,Zk+1,Tk+1)‖F ≤ ρ4‖Tk+1 −Tk‖F .

(17)

Proof. Firstly, we prove {X k,Yk,Zk,Tk} obtained by (6) is bounded. Since

lim
‖X‖F→+∞

α

2
‖X − Z ×3 T

>‖F = +∞, lim
‖Y‖F→+∞

r∑
i=1

‖Yi‖∗ = +∞,

lim
‖Z‖F→+∞

α

2
‖X − Z ×3 T

>‖F = +∞, lim
‖T‖F→+∞

Ψ(T) = +∞,

we can respectively obtain

lim
‖X‖F→+∞

f(X ,Y,Z,T) = +∞, lim
‖Y‖F→+∞

f(X ,Y,Z,T) = +∞,

lim
‖Z‖F→+∞

f(X ,Y,Z,T) = +∞, lim
‖T‖F→+∞

f(X ,Y,Z,T) = +∞.

Therefore, we have the conclusion that f(X k+1,Yk+1,Zk+1,Tk+1) would approach infinity if {X k,Yk,Zk,Tk}
is unbounded, i.e., the sequence {X k,Yk,Zk,Tk} is bounded if f(X k+1,Yk+1,Zk+1, Tk+1) is finite. Thus,
we proof f(X k+1,Yk+1,Zk+1, Tk+1) is finite in the following. According to Lemma 1, we have

f(X k+1,Yk+1,Zk+1,Tk+1) ≤ f(X k+1,Yk+1,Zk+1,Tk+1) +
ρ1

2
‖X k+1 −X k‖2F +

ρ2

2
‖Yk+1 − Yk‖2F

+
ρ3

2
‖Zk+1 −Zk‖2F +

ρ4

2
‖Tk+1 −Tk‖2F

≤ f(X k,Yk,Zk,Tk)

≤ f(X k,Yk,Zk,Tk) +
ρ1

2
‖X k −X k−1‖2F +

ρ2

2
‖Yk − Yk−1‖2F

+
ρ3

2
‖Zk −Zk−1‖2F +

ρ4

2
‖Tk −Tk−1‖2F

≤
· · ·
≤ f(X 0,Y0,Z0,T0),

then f(X k+1,Yk+1,Zk+1,Tk+1) is finite.
Therefore, we can conclude that {X k,Yk,Zk,Tk} obtained by (6) is bounded.
Next, let X k+1, Yk+1, Zk+1, and Tk+1 be optimal solutions of each subproblem in (6). For X , Y, and T

subproblems, we have

0 ∈ ∂Φ(X k+1) + α(X k+1 −Zk ×3 T
k>) + ρ1(X k+1 −X k),

0 ∈ ∂(

r∑
i=1

∥∥Yk+1
i

∥∥
∗) + β(Yk+1 − φ(Zk)) + ρ2(Yk+1 − Yk),

0 ∈ ∂Ψ(Tk+1)− α(Xk+1
(3) −Tk+1>Zk+1

(3) )Zk+1
(3) + ρ4(Tk+1 −Tk).

Then we can define V1, V2, and V4 as
V k+1

1 = −α(X k+1 −Zk ×3 T
k>)− ρ1(X k+1 −X k),

V k+1
2 = −β(Yk+1 − φ(Zk))− ρ2(Yk+1 − Yk),

V k+1
4 = α(Xk+1

(3) −Tk+1>Zk+1
(3) )Zk+1

(3) − ρ4(Tk+1 −Tk).
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Additionally, from the subproblem (12), we have

0 ∈ (α+ ρ3)(zk+1
ij − gkij) + β∂φ(zk+1

ij )(φ(zk+1
ij )− yk+1

ij ),

thus we can define V k+1
3 = 0. Since φ(·) is a real analytic function, and continuous on its domain with Lipschitz

continuous on any bounded set, ∇f1 is Lipschitz continuous on any bounded set. Since {X k,Yk,Zk,Tk} is
bounded and ∇f1 is Lipschitz continuous on any bounded set, then for any ρi > 0, the following formulae
holds: 

‖V k+1
1 +∇X f1(X k+1,Yk,Zk,Tk)‖F ≤ ρ1‖X k+1 −X k‖F ,

‖V k+1
2 +∇Yf1(X k+1,Yk+1,Zk,Tk)‖F ≤ ρ2‖Yk+1 − Yk‖F ,

‖V k+1
3 +∇Zf1(X k+1,Yk+1,Zk+1,Tk)‖F ≤ ρ3‖Zk+1 −Zk‖F ,

‖V k+1
4 +∇Tf1(X k+1,Yk+1,Zk+1,Tk+1)‖F ≤ ρ4‖Tk+1 −Tk‖F .

Therefore, the proof of the relative error lemma is completed. �
Next, we give the theoretical convergence guarantee of Algorithm 1.

Theorem 1 Assuming that the φ(·) is a real analytic function and continuous on its domains with Lipschitz
continuous on any bounded set, the bounded sequence {X k,Yk,Zk,Tk} obtained by Algorithm 1 converges to
a critical point of f .

Proof. To prove {X k,Yk,Zk,Tk} globally converges to a critical point of f(X k,Yk,Zk,Tk), we require the
following three key conditions:
• f(X k,Yk,Zk,Tk) is a proper lower semi-continuous function.
• f(X k,Yk,Zk,Tk) satisfies the K-Ł property at each {X k,Yk,Zk,Tk} ∈ dom(f).
• The sequence {X k,Yk,Zk,Tk}k∈N satisfies the sufficient decrease and relative error conditions.
Firstly, it can be verified that α

2 ‖X − Z ×3 T>‖2F and β
2 ‖Y − φ(Z)‖2F are C1 functions with locally

Lipschitz continuous gradient, and Φ(X ), Ψ(T), and
∑r
i=1 ‖Yi‖∗ are proper lower semi-continuous. Therefore,

f(X ,Y,Z,T) is the proper and lower semi-continuous function.
Secondly, we prove f satisfies K-Ł property at each point by verifying that the each part of f(X ,Y,Z,T)

is the K-Ł function, where

f(X ,Y,Z,T) =

r∑
i=1

‖Yi‖∗ +
α

2
‖X − Z ×3 T>‖2F +

β

2
‖Y − φ(Z)‖2F + Φ(X ) + Ψ(T).

Then, we verify each part as follows:
(1)The matrix nuclear norm term

∑r
i=1 ‖Yi‖∗ is a semi-algebraic function [39]. According to Remark 3,∑r

i=1 ‖Yi‖∗ is a K-Ł function.
(2)The Frobenius norm function α

2 ‖X − Z ×3 T>‖2F is semi-algebraic [39]. According to Remark 3,
α
2 ‖X − Z ×3 T>‖2F is a K-Ł function.

(3)Ψ(X ) and Φ(T) are semi-algebraic functions, since they are indicator functions with semi-algebraic
sets [39]. According to Remark 3, Ψ(X ) and Φ(T) are K-Ł functions.

(4) According to the proof of Lemma 6 in [40], the nonlinear function β
2 ‖Y − φ(Z)‖2F is a K-Ł function.

Therefore, the function f(X ,Y,Z,T) is a K-Ł function.
Thirdly, according to Lemma 1 and Lemma 2, the sequence {X k,Yk,Zk,Tk} satisfies the sufficient

decrease and relative error conditions.
In summary, combining the three key conditions, the proposed algorithm satisfies Theorem 6.2 in [38], thus,

we can conclude that the sequence {X k,Yk,Zk,Tk} generated by Algorithm 1 converges to a critical point of
f . �

4 Numerical Experiments
In this part, we conduct numerical experiments on HSIs, MSIs, and videos for LRTC to test the performance
of the proposed model. All experimental tensor data are prescaled to [0,1]. All numerical experiments are
implemented in Windows 10 64-bit and MATLAB R2019a on a desktop computer with an Intel(R) Core(TM)
i7-8700K CPU at 3.70 GHz with 32GB memory of RAM.
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We compare the proposed method with four state-of-the-art methods, including t-SVD baseline method
TNN [23], DCT-based TNNmethod DCT-TNN [24], transform-based TNNmethod TTNN [28], and dictionary-
based TNN method DTNN [30]. For the compared methods, we make efforts to achieve their best result ac-
cording to the authors suggestions. For our method, we set the proximal parameters ρi = 0.001 (i = 1, 2, 3, 4),
the penalty parameters α and β are selected from {1,10,100}. For easy comparison, we use the hyperbolic
tangent (Tanh) function as the nonlinear function φ(·), i.e.,

φ(x) =
ex − e−x

ex + e−x
.

Please see the comparison of different nonlinear functions in section 5.3.
Since the proposed NTTNN model is highly nonlinear and nonconvex, it is significant for our algorithm

to employ an efficient initialization. To efficiently obtain X 0, we use a simple linear interpolation strategy,
which is also used in [41], for TTNN, DTNN, and our method. The initialization for transform T is obtained
from the left-singular vectors U of the SVD of X0

(3), i.e., T
0 = U(:, 1 : r)>. Then, Z0 can be obtained by

Z(0) = fold3(Z0
(3)) = fold3(T0X0

(3)), and Y
0 = φ(Z0).

The quality of recovered images is measured by the peak signal-to-noise ratio (PSNR) [42], the structural
similarity index (SSIM) [42], and the spectral angle mapper (SAM) [43]. The PSNR and SSIM are defined as

PSNR = 10 log10

MAX2
X,X∗

‖X−X∗‖2F

and
SSIM =

(2µXµX∗)(2σXX∗ + c2)

(µ2
X + µ2

X∗ + c1)(σ2
X + σ2

X∗ + c2)
,

respectively, where, X∗ is the true image, X is the recovered image, MAXX,X∗ is the maximum pixel value of
the images X and X∗, µX and µX∗ are the mean values of images X and X∗, σX and σX∗ are the standard
variances of X and X∗, respectively, σXX∗ is the covariance of X and X∗, and c1 and c2 are positive constants.
The SAM is defined as

SAM = cos−1

∑n1n2

i=1 xix
∗
i

(
∑n1n2

i=1 xi2)
1
2 (
∑n1n2

i=1 x∗i
2)

1
2

,

where xi and x∗i are pixel of X and X∗, respectively. By calculating average PSNR, SSIM and SAM values
for all bands, we obtain PSNR, SSIM, and SAM values of a higher-order tensor. Higher PSNR/SSIM values
and lower SAM values indicate better reconstructions.

For all the methods, the relative error of the tensor X between two successive iterations defined by

‖X k+1 −X k‖F
‖X k‖F

≤ 10−4

as the stopping criterion.

4.1 Experiments on HSIs Data
In this subsection, we use a sub-image of Washington DC Mall(WDC Mall) of size 256 × 256 × 100 and a
sub-image of Pavia City of size 200 × 200 × 80 to evaluate the performance of the proposed method. Since
the high redundancy between HSI’s slices, we evaluate the performance of the proposed method on HSIs for
extremely low sample ratios (SRs) 1%, 5%, and 10%.

Table 2 lists the numerical results by different methods, where the best results for each data are highlighted
in bold. It can be observed that the proposed NTTNN consistently outperforms the compared methods in
terms of PSNR, SSIM, and SAM values on all cases.

Fig. 3 shows the recovered results of one band and the spectrum profiles of WDC Mall and Pavia City by
different methods for SR = 1%. From the visual comparison, our method outperforms other compared methods
in preserving image structures and details, e.g., the building in the zoom-in regions of WDC Mall . Moreover,
NTTNN gives the closest spectrum profiles than those of other compared methods, which demonstrates that
the nonlinear transform plays an important role in the spectrum profile recovery.
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Table 2: The PSNR, SSIM, and SAM values of the recovered HSIs by different methods for different SRs.

Data Index methods
SR=1% SR=5% SR=10%

PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

WDC Mall

Observed 13.370 0.0083 1.4969 13.549 0.0278 1.3559 13.784 0.0491 1.2556

TNN 16.499 0.2185 0.5261 28.663 0.8002 0.1743 32.233 0.8974 0.1239

DCT-TNN 16.540 0.2191 0.5130 29.470 0.8272 0.1525 33.371 0.9199 0.1060

TTNN 22.646 0.5040 0.2780 32.062 0.9023 0.1105 37.835 0.9721 0.0605

DTNN 24.587 0.6179 0.2514 32.367 0.9051 0.1196 39.651 0.9788 0.0505

NTTNN 25.558 0.6749 0.1849 36.402 0.9643 0.0536 43.251 0.9930 0.0219

Pavia City

Observed 13.321 0.0076 1.4991 13.500 0.0249 1.3556 13.735 0.0463 1.2547

TNN 15.643 0.1429 0.5632 28.355 0.8312 0.1879 32.055 0.9119 0.1533

DCT-TNN 16.464 0.1734 0.4430 30.899 0.9023 0.1273 37.125 0.9733 0.0767

TTNN 21.477 0.4029 0.1899 32.100 0.9237 0.1099 38.092 0.9787 0.0687

DTNN 23.190 0.5013 0.1719 31.840 0.9258 0.1006 38.416 0.9819 0.0616

NTTNN 24.405 0.6587 0.1438 34.498 0.9577 0.0812 41.672 0.9903 0.0468
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Figure 3: The results of one band and spectrum profiles at one spatial location of HSIs by different methods for
SR = 1%. From top to bottom: WDC Mall and Pavia City , respectively. From left to right: the observed data,
the reconstructed results by TNN, DCT-TNN, TTNN, DTNN, NTTNN, and the original data, respectively.
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4.2 Experiments on MSIs Data
In this part, we evaluate different methods on five MSIs from the CAVE database1: Balloons, Beads, Toy ,
Cloth, and Feathers. All MSIs have been resized to 256× 256× 31 in the experiments. The SRs are set to 5%,
10%, and 15%, respectively.

In Table 3, we show the PSNR, SSIM, and SAM values of the recovered MSIs by different methods for
different SRs. We can note that NTTNN obtains the highest quality results for different MSIs with different
SRs. In addition, Fig. 4 displays the recovered results of one band and spectrum profiles of MSIs by different
methods for SR = 5%. From the visual comparison, it is clear that NTTNN performs best in preserving
image edges and details, e.g., the symbols in the zoom-in regions of Toy . Moreover, we clearly observe that
the spectral curves obtained by NTTNN better approximate the original ones than those obtained by the
compared methods.

4.3 Experiments on Videos Data
In this part, we verify the effectiveness of the proposed NTTNN on three videos2: Carphone,Hall , and News.
All videos have been resized to 144 × 176 × 100 in the experiments. The SRs are set to 5%, 10%, and 15%,
respectively.

Table 4 shows the quantitative metrics of the recovered videos obtained by different methods for different
SRs. We can observe that the proposed NTTNN clearly outperforms the other compared linear transform-
based TNN methods for all SRs. For visual comparisons, we show the recovered results of one band and one
mode-3 tube of videos by different methods for SR = 5% in Fig. 5. From Fig. 5, we can observe that NTTNN
outperforms the compared methods in preserving details and structures, e.g., the dancer in zoom-in regions of
News. Moreover, NTTNN yields the closest spectral curves in all cases.

5 Discussion

5.1 Analysis of row number r of T
In this subsection, we discuss the influence of row number r of T on MSI Toy with SR=5%. From the Fig.
6(a), we can observe that the energy of singular values of recovered result of NTTNN with less row number
r is more concentrated, which implies that the recovered result of NTTNN with less row number r is more
low-rank. Furthermore, Fig. 6(b) plots PSNR and SSIM values of recovered MSIs by NTTNN with different
row number r of T. From the Fig. 6(b), we can observed that NTTNN with r = 5 obtain the best recovered
result in terms of PSNR and SSIM values. Therefore, in all experiments, the row number r of T is selected
from {3,4,5,6,7,8,9,10}, which is much less than n3.

5.2 The indispensability of T and φ

In this part, we analyze the effectiveness of T and φ in the proposed nonlinear transform ψ by reserving only T
or φ, which are denoted as NTTNN(linear) and NTTNN(nonlinear), respectively. We conduct the numerical
experiment on MSI Toy by NTTNN(linear), NTTNN(nonlinear), and NTTNN with SR 5%, 10%, and 15%,
respectively.

Fig. 7 plots curves of the AccEgy with the corresponding percentage of singular values of recovered results
by NTTNN(linear), NTTNN(nonlinear), and NTTNN with SR 5%, 10%, and 15%, respectively. We can
observe that the linear transform T and nonlinear transform φ together contribute to the most concentrate
energy of the singular values of recovered results of the proposed NTTNN as compared with the linear transform
T alone and the nonlinear transform φ alone, i.e., NTTNN(linear) and NTTNN(nonlinear), respectively.

Moreover, Table 5 reports PSNR, SSIM, and SAM values of the recovered MSI Balloons by NTTNN(linear),
NTTNN(nonlinear), and NTTNN for different SRs. We can observe that NTTNN outperforms NTTNN(linear)
and NTTNN(nonlinear) in terms of PSNR, SSIM, and SAM values due to NTTNN can obtain the most
concentrate energy of the singular values of recovered results. Therefore, we suggest the composite nonlinear
transform ψ consisting of T and φ to obtain a better low-rank approximation of the transformed tensor.

1https://www.cs.columbia.edu/CAVE/databases/multispectral/
2http://trace.eas.asu.edu/yuv/.
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Table 3: The PSNR, SSIM, and SAM values of the recovered MSIs by different methods for different SRs.

Data Index methods
SR=5% SR=10% SR=15%

PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

Balloons

Observed 13.349 0.0959 1.5163 13.762 0.1613 1.2774 14.011 0.1896 1.1934

TNN 31.642 0.8665 0.1940 36.270 0.9412 0.1230 39.375 0.9681 0.0894

DCT-TNN 32.639 0.8911 0.1720 37.171 0.9521 0.1099 40.524 0.9758 0.0772

TTNN 33.641 0.9259 0.1581 37.814 0.9608 0.1005 41.957 0.9830 0.0651

DTNN 33.418 0.9218 0.1580 37.394 0.9559 0.1145 42.982 0.9831 0.0671

NTTNN 35.425 0.9387 0.1268 40.458 0.9757 0.0784 43.633 0.9865 0.0600

Beads

Observed 14.416 0.1188 1.4032 14.651 0.1548 1.2956 14.898 0.1926 1.2105

TNN 19.364 0.4086 0.5922 23.508 0.6604 0.4270 26.052 0.7741 0.3381

DCT-TNN 19.696 0.4272 0.5629 23.434 0.6593 0.4109 26.238 0.7847 0.3181

TTNN 22.934 0.6789 0.4033 25.786 0.8086 0.3122 28.071 0.8458 0.2662

DTNN 22.827 0.6950 0.3933 25.659 0.8262 0.2987 30.145 0.9181 0.1895

NTTNN 23.917 0.7162 0.3784 28.106 0.8659 0.2484 31.327 0.9251 0.1831

Toy

Observed 10.631 0.2565 1.3874 10.866 0.2925 1.2821 11.114 0.3271 1.1991

TNN 28.749 0.8471 0.3287 32.549 0.9197 0.2295 35.453 0.9520 0.1734

DCT-TNN 28.462 0.8508 0.3054 33.487 0.9396 0.1903 36.599 0.9650 0.1390

TTNN 29.271 0.8653 0.2986 34.270 0.9435 0.1875 37.801 0.9704 0.1323

DTNN 29.023 0.8857 0.2998 32.838 0.9306 0.2451 38.470 0.9783 0.1086

NTTNN 30.636 0.9165 0.2333 35.058 0.9572 0.1659 39.711 0.9798 0.1222

Cloth

Observed 11.699 0.0336 1.3939 11.933 0.0578 1.2821 12.181 0.0829 1.1963

TNN 20.085 0.4275 0.2685 24.889 0.7225 0.1699 27.857 0.8344 0.1285

DCT-TNN 21.777 0.5225 0.2237 26.227 0.7790 0.1385 29.223 0.8743 0.1026

TTNN 22.749 0.6077 0.2155 25.458 0.7511 0.1474 28.622 0.8655 0.1070

DTNN 24.036 0.7139 0.1875 27.883 0.8666 0.1247 31.452 0.9330 0.0874

NTTNN 25.109 0.7608 0.1464 29.779 0.8971 0.0931 33.345 0.9457 0.0684

Feathers

Observed 13.356 0.1907 1.4062 13.590 0.2310 1.3008 13.838 0.2693 1.2162

TNN 25.029 0.7053 0.3531 31.624 0.8733 0.2063 34.571 0.9235 0.1529

DCT-TNN 27.842 0.7861 0.2713 32.581 0.8980 0.1697 35.763 0.9428 0.1223

TTNN 28.650 0.8119 0.2548 33.267 0.9133 0.1539 36.689 0.9546 0.1062

DTNN 28.164 0.8391 0.3085 33.109 0.9313 0.1725 37.198 0.9635 0.1179

NTTNN 30.515 0.8801 0.2063 35.581 0.9474 0.1225 39.229 0.9712 0.0883
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Figure 4: The results of one band and spectrum profiles at one spatial location of MSIs by different methods
for SR = 5%. From top to bottom: Balloons, Beads, Toy , Cloth, and Feathers, respectively. From left to
right: the observed data, the reconstructed results by TNN, DCT-TNN, TTNN, DTNN, NTTNN, and the
original data, respectively.
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Table 4: The PSNR, SSIM, and SAM values of the recovered videos by different methods for different SRs.

Data Index methods
SR=5% SR=10% SR=15%

PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

Carphone

Observed 6.814 0.0143 1.3521 7.048 0.0231 1.2532 7.296 0.0311 1.1758

TNN 25.122 0.7222 0.1138 27.229 0.7909 0.0942 28.637 0.8309 0.0825

DCT-TNN 25.516 0.7395 0.1070 27.633 0.8074 0.0881 29.049 0.8459 0.0769

TTNN 26.597 0.8162 0.0852 28.708 0.8666 0.0724 30.146 0.8932 0.0644

DTNN 26.941 0.8328 0.0833 29.178 0.8756 0.0694 30.635 0.8983 0.0604

NTTNN 27.460 0.8355 0.0814 29.614 0.8833 0.0676 31.059 0.9097 0.0588

Hall

Observed 4.835 0.0071 1.3516 5.070 0.0123 1.2529 5.319 0.0179 1.1757

TNN 28.033 0.9010 0.0434 30.868 0.9387 0.0350 32.436 0.9522 0.0309

DCT-TNN 28.042 0.9034 0.0434 30.842 0.9380 0.0352 32.369 0.9510 0.0311

TTNN 28.781 0.9163 0.0413 31.283 0.9431 0.0343 32.824 0.9548 0.0303

DTNN 27.765 0.9040 0.0429 31.722 0.9496 0.0343 33.814 0.9629 0.0295

NTTNN 30.140 0.9410 0.0352 32.713 0.9595 0.0298 34.261 0.9688 0.0264

News

Observed 8.991 0.0207 1.3516 9.227 0.0347 1.2528 9.476 0.0477 1.1756

TNN 26.715 0.8208 0.1002 29.085 0.8810 0.0814 30.762 0.9119 0.0691

DCT-TNN 27.069 0.8335 0.0944 29.501 0.8923 0.0756 31.206 0.9222 0.0636

TTNN 27.674 0.8547 0.0881 30.011 0.9054 0.0705 31.708 0.9319 0.0592

DTNN 26.277 0.8605 0.0848 29.844 0.9300 0.0646 32.384 0.9479 0.0546

NTTNN 28.195 0.8896 0.0727 31.028 0.9309 0.0574 32.912 0.9512 0.0479

Table 5: The PSNR, SSIM, and SAM values of the recovered MSI Balloons by NTTNN(linear), NT-
TNN(nonlinear), and NTTNN for different SRs.

Methods
SR=5% SR=10% SR=15%

PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

Observed 13.349 0.0959 1.5163 13.762 0.1613 1.2774 14.011 0.1896 1.1934

NTTNN(linear) 34.205 0.9322 0.1476 37.890 0.9643 0.1115 39.870 0.9746 0.0958

NTTNN(nonlinear) 19.823 0.4974 0.3798 24.280 0.6990 0.2521 27.477 0.8090 0.1898

NTTNN 35.425 0.9387 0.1268 40.458 0.9757 0.0784 43.633 0.9865 0.0600
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Figure 5: The results of one band and spectral curves at one spatial location of videos by different methods for
SR = 5%. From top to bottom: Carphone, Hall , and News, respectively. From left to right: the observed data,
the reconstructed results by TNN, DCT-TNN, TTNN, DTNN, NTTNN, and the original data, respectively.
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Figure 7: The AccEgy with the corresponding percentage of singular values of recovered results by NT-
TNN(linear), NTTNN(nonlinear), and NTTNN with SR 5%, 10%, and 15%, respectively.

5.3 Effectiveness of nonlinear transform
In this subsection, we further verify the effectiveness of nonlinear transform in the proposed framework. Specif-
ically, we compare the performance of NTTNN without nonlinear function φ (denoted as NTTNN(linear)) and
NTTNN with different nonlinear transforms, i.e., Sigmoid function [44], Softplus function [45], and Hyperbolic
tangent (Tanh) function [44].

Table 6 reports the PSNR, SSIM, and SAM values of the recovered HSI WDC Mall by NTTNN with differ-
ent nonlinear function for different SRs. We can observe that NTTNN(Tanh) obtains the best recovered results
for SR 5% and 10%, while NTTNN(Sigmoid) obtains the best recovered results for challenging case SR 1%.
Additionally, the performance of NTTNN with different nonlinear functions compared with NTTNN(linear)
is improved, which demonstrates the nonlinear function play an important role in our NTTNN framework.

Table 6: The PSNR, SSIM, and SAM values of the recovered HSI WDC Mall by NTTNN with different
nonlinear functions for different SRs.

Methods
SR=1% SR=5% SR=10%

PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

Observed 13.370 0.0083 1.4969 13.549 0.0278 1.3559 13.784 0.0491 1.2556

NTTNN(linear) 24.863 0.6188 0.1928 33.882 0.9337 0.0787 38.635 0.9766 0.0474

NTTNN(Sigmoid) 26.523 0.7142 0.1723 34.287 0.9414 0.0663 41.462 0.9885 0.0260

NTTNN(Softplus) 25.987 0.6866 0.1881 34.713 0.9465 0.0651 42.159 0.9904 0.0247

TTNN(Tanh) 25.558 0.6749 0.1849 36.402 0.9643 0.0536 43.251 0.9930 0.0219

5.4 Comparison of different initialization
In this subsection, we discuss the performance of NTTNN with different initialization of X . We consider
initializing X 0 by the following: the observed tensor, the result of TNN method, and the linear interpolation
of X 0, which denote as NTTNN(Observed), NTTNN(TNN), and NTTNN(Interpolation), respectively.

Table 7 reports the PSNR, SSIM, and SAM values of the recovered HSI WDC Mall by NTTNN(Observed),
NTTNN(TNN), and NTTNN(Interpolation) for different SRs. We can observe that NTTNN(Interpolation)
and NTTNN(TNN) outperform NTTNN(Observed) for all SRs, which demonstrates using good and low com-
putational cost initialization can improve the performance of NTTNN. Additionally, NTTNN(Interpolation)
outperforms NTTNN(TNN) for extremely low SRs 1% and 5%, and both of them obtain good performance
for relatively high SR 10%. The reason behind this phenomenon is the interpolation method outperforms the
TNN method for extremely low SRs. Therefore, throughout all the experiments in this paper, we employ good
and low computational cost linear interpolation strategy to fill in the missing pixels and obtain X 0 for TTNN,
DTNN, and our method.
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Table 7: The PSNR, SSIM, and SAM values of the recovered HSI WDC Mall by NTTNN with different
initialization for different SRs.

methods
SR=1% SR=5% SR=10%

PSNR SSIM SAM PSNR SSIM SAM PSNR SSIM SAM

NTTNN(Observed) 21.391 0.4825 0.3212 33.980 0.9347 0.0758 40.193 0.9802 0.0510

NTTNN(TNN) 22.651 0.5544 0.2283 35.863 0.9544 0.0554 43.969 0.9919 0.0256

NTTNN(Interpolation) 25.558 0.6749 0.1849 36.402 0.9643 0.0536 43.251 0.9930 0.0219

5.5 Numerical convergence
In this subsection, we evaluate the numerical convergence of the PAM-based algorithm for the proposed method
to validate the theoretical convergence. Taking the HSI WDC Mall , MSI Balloons, and video Carphone for
different SRs as examples, Fig. 8 displays the relative change curves of the proposed PAM-based algorithm.
We can clearly observe that the relative error decreases as the number of iterations increase, demonstrating
the numerical convergence of the proposed PAM-based algorithm.
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Figure 8: Curves of relative errors versus iterations. (a) HSI WDC Mall . (b) MSI Balloons. (c) Video
Carphone.

6 Conclusion
In this paper, we proposed the nonlinear transform for the underlying tensor and developed the corresponding
nonlinear transform-based TNN (NTTNN). More concretely, the proposed nonlinear transform is a composite
transform consisting of the linear semi-orthogonal transform along the third mode and the element-wise nonlin-
ear transform on frontal slices of the tensor under the linear semi-orthogonal transform, which are indispensable
and complementary in the composite transform to fully exploit the underlying low-rankness. The proposed
NTTNN could enhance the low-rank approximation of the underlying tensor and can be regarded as a unified
transform-based TNN family including many classic transform-based TNN methods. Moreover, based on the
suggested low-rank metric, i.e., NTTNN, we proposed the corresponding LRTC model and developed an effi-
cient PAM-based algorithm. Theoretically, we proved that the sequence generated by the proposed method is
bounded and converges to a critical point. Massive experimental results on different types of multi-dimensional
images show that NTTNN reconstructs better results compared to the state-of-the-art linear transform-based
TNN methods quantitatively and visually.
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