Skip to main content
Log in

A Parallel Eigensolver for Photonic Crystals Discretized by Edge Finite Elements

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The band structures of photonic crystals can be described by the shifted Maxwell eigenproblem. Compared with the Laplace eigenproblem, the main difficulty in computing the discrete Maxwell eigenproblem is to deal with its huge kernel, especially when computing large-scale problems with iterative methods. In this paper, we discretize the shifted Maxwell operator with edge finite element spaces and construct a penalty term using Lagrange finite element spaces. Using the properties of the finite element spaces on the discrete de Rham complex, we prove that this penalty term can complement the kernel of the discrete Maxwell operator. Then the discrete Maxwell eigenproblem with the penalty term can be computed almost in the same way as for the Laplace eigenproblem. The difficulties caused by the huge kernel of the Maxwell operator are avoided. Many efficient methods and techniques for the Laplace eigenproblem can be easily applied in computing the Maxwell eigenproblem. We also prove that the nonzero eigenpairs of the original discrete Maxwell eigenproblem are free from the impact of the penalty term and can be recovered by a simple recomputation. The desired solutions of the original problems can be identified from the solutions of the auxiliary problems. The requirement for the parameter of the penalty term is to make the auxiliary eigenproblem suitable for the selected iterative eigensolvers. We design a matrix-type preconditioner for the algorithm to reduce the iteration count of the iterative eigensolver. Most parts of the algorithm are basic matrix and vector operators, which are of fine-grained parallelism and can be easily accelerated by GPU. Numerical examples for the band structures of 3D photonic crystals are presented to demonstrate the capability and efficiency of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

The datasets generated during the current study are available from the corresponding author on reasonable request. They support our published claims and comply with field standards.

References

  1. Arnold, D.N.: Finite element exterior calculus, volume 93 of CBMS-NSF Regional Conference Series in Applied Mathematics.. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2018)

  2. Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide (Software, Environments and Tools). SIAM (2000)

  3. Boffi, D.: Finite element approximation of eigenvalue problems. Acta. Numerica. 19, 1–120 (2010)

    Article  MathSciNet  Google Scholar 

  4. Boffi, D., Brezzi, F., Gastaldi, L.: On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. Math. Comput. 69(229), 121–140 (2000)

    Article  MathSciNet  Google Scholar 

  5. Boffi, D., Conforti, M., Gastaldi, L.: Modified edge finite elements for photonic crystals. Numerische Mathematik 105(2), 249–266 (2006)

    Article  MathSciNet  Google Scholar 

  6. Busch, K., König, M., Niegemann, J.: Discontinuous galerkin methods in nanophotonics. Laser. Photonics. Rev. 5(6), 773–809 (2011)

    Article  Google Scholar 

  7. Chou, S.-H., Huang, T.-M., Li, T., Lin, J.-W., Lin, W.-W.: A finite element based fast eigensolver for three dimensional anisotropic photonic crystals. J. Comput. Phys. 386, 611–631 (2019)

    Article  MathSciNet  Google Scholar 

  8. Descloux, J., Nassif, N., Rappaz, J.: On spectral approximation. part 1. the problem of convergence. ESAIM Math. Modelling. Numerical. Analysis-Modélisation. Mathématique et Analyse Numérique 12(2), 97–112 (1978)

    MATH  Google Scholar 

  9. Dobson, D.C., Gopalakrishnan, J., Pasciak, J.E.: An efficient method for band structure calculations in 3d photonic crystals. J. Comput. Phys. 161(2), 668–679 (2000)

    Article  MathSciNet  Google Scholar 

  10. Dobson, D.C., Pasciak, J.E.: Analysis of an algorithm for computing electromagnetic bloch modes using Nédélec spaces. Comput. Methods. Appl. Math. 1(2), 138–153 (2001)

    Article  MathSciNet  Google Scholar 

  11. Dörfler, W., Lechleiter, A., Plum, M., Schneider, G., Wieners, C.: Photonic Crystals: Mathematical Analysis and Numerical Approximation, volume 42. Springer Science & Business Media (2011)

  12. Huang, W.-Q., Lin, W.-W., Lu, H. H.-S., Yau, S.-T.: iSIRA: integrated shift-invert residual Arnoldi method for graph Laplacian matrices from big data. J. Comput. Appl. Math. 346, 518–531 (2019)

    Article  MathSciNet  Google Scholar 

  13. John, M.: Jarem and Partha P. CRC Press, Banerjee. Computational methods for electromagnetic and optical systems (2011)

  14. Joannopoulos, J.D., Johnson, S.G., Winn, J.N., Meade. R.D.: Photonic Crystals: Molding the Flow of Light. Princeton University Press Princeton (2011)

  15. Knyazev, Andrew V.: Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2), 517–541 (2001)

    Article  MathSciNet  Google Scholar 

  16. Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Comput. Phys. 257(part B), 1163–1227 (2014)

    Article  MathSciNet  Google Scholar 

  17. Lu, Z.: A sparse approximate inverse for triangular matrices based on Jacobi iteration. submitted. https://doi.org/10.48550/arXiv.2106.12836

  18. Lu, Z., Çesmelioglu, A., van der Vegt, J.J.W., Xu, Y.: Discontinuous Galerkin approximations for computing electromagnetic Bloch modes in photonic crystals. J. Sci. Comput. 70(2), 922–964 (2017)

    Article  MathSciNet  Google Scholar 

  19. Lyu, X.-L., Li, T., Huang, T.-M., Lin, J.-W., Lin, W.-W., Wang, S: FAME: fast algorithms for Maxwell’s equations for three-dimensional photonic crystals. Association for Computing Machinery. Transactions on Mathematical Software, 47(3):Art. 26, 24 (2021)

  20. Nédélec, J.-C.: Mixed finite elements in \( {\mathbb{R} }^3 \). Numerische Mathematik 35(3), 315–341 (1980)

    Article  MathSciNet  Google Scholar 

  21. Sami Sözüer, H., Haus, J.W.: Photonic bands: simple-cubic lattice. J. Optical. Society. America. B 10(2), 296–302 (1993)

    Article  Google Scholar 

  22. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method. Artech House Inc, Boston, MA (2000)

    MATH  Google Scholar 

  23. Vecharynski, E., Knyazev, A.: Preconditioned locally harmonic residual method for computing interior eigenpairs of certain classes of Hermitian matrices. SIAM J. Sci. Comput. 37(5), S3–S29 (2015)

    Article  MathSciNet  Google Scholar 

  24. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE. Trans. Antennas. Propag. 14(3), 302–307 (1966)

    Article  Google Scholar 

Download references

Funding

Research of Zhongjie Lu is supported by NSFC Grant No. 12101586 and the Fundamental Research Funds for the Central Universities, WK0010000060. Research of Yan Xu is supported by NSFC Grant No. 12071455.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Z. Lu: Research supported by NSFC Grant No. 12101586 and the Fundamental Research Funds for the Central Universities, WK0010000060.

Y. Xu: Research supported by NSFC Grant No. 12071455.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Z., Xu, Y. A Parallel Eigensolver for Photonic Crystals Discretized by Edge Finite Elements. J Sci Comput 92, 79 (2022). https://doi.org/10.1007/s10915-022-01938-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01938-0

Keywords

Navigation