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Abstract

It is difficult to design high order numerical schemes which could
preserve both the maximum bound property (MBP) and energy dissi-
pation law for certain phase field equations. Strong stability preserv-
ing (SSP) Runge–Kutta methods have been developed for numerical
solution of hyperbolic partial differential equations in the past few
decades, where strong stability means the non-increasing of the maxi-
mum bound of the underlying solutions. However, existing framework
of SSP RK methods can not handle nonlinear stabilities like energy
dissipation law. The aim of this work is to extend this SSP theory
to deal with the nonlinear phase field equation of the Allen–Cahn
type which typically satisfies both maximum bound preserving (MBP)
and energy dissipation law. More precisely, for Runge–Kutta time dis-
cretizations, we first derive a general necessary and sufficient condition
under which MBP is satisfied; and we further provide a necessary
condition under which the MBP scheme satisfies energy dissipation.
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1 Introduction

Strong stability preserving Runge–Kutta (SSP-RK) methods have been devel-
oped for numerical solution of hyperbolic partial differential equations, starting
by Shu [1] it was observed that some Runge–Kutta methods can be decom-
posed into convex combinations of forward Euler steps, and so any convex
functional property satisfied by forward Euler will be preserved by these
higher-order time discretizations, generally under a different time-step restric-
tion. This approach was used to develop second- and third-order Runge–Kutta
methods that preserve the strong stability properties of the spatial discretiza-
tions developed in that work. In fact, this approach also guarantees that the
intermediate stages in a Runge–Kutta method satisfy the strong stability prop-
erty as well. More references in this direction can be found in [2–5] and a useful
survey article of Gottlieb, Shu and Tadmor [6].

The aim of this work is to extend this SSP theory to deal with the nonlinear
phase field equation of the Allen-Cahn type. To this end, we consider the
numerical approximation of the Allen–Cahn equation

ut = ε∆u +
1

ε
f(u), x ∈ Ω, t ∈ (0, T ], (1.1)

with initial condition

u(x, 0) = u0(x), x ∈ Ω, (1.2)

and the homogeneous Neumann boundary condition or periodic boundary
condition, where Ω is a bounded domain in Rd (d = 1, 2, 3). In this paper, we
consider the polynomial double-well potential

F (u) =
1

4
(1 − u2)2 (1.3)

and correspondingly,
f(u) = −F ′(u) = u − u3. (1.4)

The solution u(x, t) describes the concentration of two crystal orientations of
the same material. In this phase model, u = 1 represents one orientation and
u = −1 represents the other. The parameter ε here is the width of the interface
between two phases, which is positive and small.
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The Allen–Cahn equation can be viewed as the L2 gradient flow of the
Ginzburg-Landau free energy

E(u) =

∫

Ω

(

ε

2
|∇u|2 +

1

ε
F (u)

)

dx. (1.5)

The L2 gradient flow structure corresponds to an energy dissipation law. This
means that the energy is decreasing as a function of time,

dE
dt

= −
∫

Ω

(

ε∆u +
1

ε
f(u)

)2

dx 6 0. (1.6)

Another significant feature of the Allen–Cahn equation is its maximum bound
preserving (MBP) property in the sense

‖u(·, t)‖∞ ≤ 1 (1.7)

provided that the initial and boundary values are bounded by 1.
The Allen–Cahn equation was originally introduced by Allen and Cahn in

[7] to describe the motion of anti-phase boundaries in crystalline solids. In this
context, u represents the concentration of one of the two metallic components
of the alloy and the parameter ε represents the interfacial width, which is small
compared to the characteristic length of the laboratory scale. The homogenous
Neumann boundary condition implies that no mass loss occurs across the
boundary walls. Since then, the Allen–Cahn equation has been widely applied
to many complicated moving interface problems in materials science and fluid
dynamics through a phase-field approach. Since essential features of the Allen–
Cahn equation are the dissipation law (1.6) and the MBP property (1.7), it is
important to design numerical schemes satisfying both of them.

There have been many energy-dissipation studies for various numerical
schemes for the Allen–Cahn equation, see, e.g., [8–12], and there have been
also many recent works on MBP schemes, see, e.g., [13–16]. It is shown in [14]
that the first- and second-order exponential time differencing (ETD) schemes
satisfy MBP (1.7) unconditionally, while [13] established an abstract frame-
work on MBP for more general semi-linear parabolic equations. Note that
most of the relevant works consider the MBP (1.7) and the energy dissipation
law (1.6) separately. The exception includes [17–19], but the schemes under
consideration are only of first-order accuracy in time.

The present work seems to be the first effort to study high-order time
discretizations aiming to preserve both (1.6) and (1.7). By applying Shu’s SSP-
RK theory [1], i.e., using the property of the forward Euler method repetitively,
we will first obtain a sufficient condition to verify whether a Runge–Kutta
method is MBP, and also give a necessary and sufficient condition for s-stage
s-th order MBP-RK methods. Both results will be established by using the
so-called Butcher Tableau so the results are easy to verify. Moreover, we will
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provide a necessary condition to judge whether the MBP-RK solutions pre-
serve the energy dissipation law. Finally, we will provide some RK2, RK3
and RK4 methods which satisfy both (1.6) and (1.7). A special RK3 method
violating the energy dissipation law will be also reported.

The paper is organized as follows. Section 2 contains some preliminaries
and notations. Section 3 analyzes high-order MBP-RK methods to the Allen–
Cahn equation by using Shu’s theory. We build up the relationship between
the Butcher Tableau and the so-called Shu-Osher form [20]. Section 4 studies
how to preserve the energy dissipation law (1.6) for the relevant Runge–Kutta
methods. Section 5 applies the theory of Sections 3 and 4 to some typical
Runge–Kutta schemes for the Allen–Cahn equation. The final section provides
some concluding remarks.

2 Interplay between the Butcher Tableau and

Shu-Osher form

The Runge–Kutta methods are a family of implicit and explicit iterative meth-
ods used in temporal discretization for the approximate solutions of ordinary
differential equations (ODEs). Consider an ODE system in time u′ = G(u).
An explicit Runge–Kutta method is commonly written in the form:

v0 = un,

vi = un + τ
i−1
∑

j=0

aijG(vj), 1 6 i 6 s − 1 (2.1)

un+1 = un + τ
s−1
∑

j=0

bjG(vj).

In other words, to specify a particular method, one needs to provide the integer
s (the number of stages), and the coefficients aij (for 1 ≤ j < i ≤ s), bj (for
j = 1, · · · , s) and cj (for j = 1, · · · , s − 1). The matrix (aij) is called the
Runge–Kutta matrix, while the bj and cj are known as the weights and the
nodes [21]. These data are usually arranged in a mnemonic device, known as
a Butcher tableau (after John C. Butcher):

0 0
c1 a1,0 0
c2 a2,0 a2,1 0
... ... ... ... 0
cs−1 as−1,0 as−1,1 ... as−1,s−2 0

b0 b1 ... ... bs−1

(2.2)
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where

ci =
i−1
∑

j=0

aij , i > 1. (2.3)

If we define asj = bj for all j > 0, then the scheme (2.1) becomes

un = v0,

vi = un + τ
i−1
∑

j=0

aijG(vj), 1 6 i 6 s (2.4)

un+1 = vs.

We further define a strictly lower-triangular matrix AL as

AL =













0
a1,0 0
a2,0 a2,1 0
... ... ... ...
as,0 as,1 ... as,s−1 0













. (2.5)

On the other hand, the Runge–Kutta method can be written in the Shu–Osher
form [20]:

v0 = un,

vi =
i−1
∑

k=0

(

αikvk + τβikG(vk)
)

, 1 6 i 6 s (2.6)

un+1 = vs,

where consistency condition requires

i−1
∑

k=0

αik = 1, 1 6 i 6 s. (2.7)

It is observed in Shu [1, 20] if all coefficients are positive, i.e., αik > 0 and
βik > 0, then the solution can be viewed as convex combinations of forward
Euler solutions. Based on this theory, the consistency condition (2.7) and the
positivity conditions αik ≥ 0 and βik > 0 can ensure the Strong Stability
Preserving (SSP) properties.

Proposition 2.1 ([1, 20]) If the following so-called RK-SSP condition is satisfied

i−1
∑

k=0

αik = 1, 1 6 i 6 s; αik ≥ 0, βik > 0, 0 ≤ k < i ≤ s, (2.8)
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(when αik = 0 then βik = 0), then the Runge–Kutta type method of type (2.6)
satisfies the SSP condition in the sense that

‖un+1‖ ≤ ‖un‖, (2.9)

where ‖ · ‖ is the maximum norm or in the TV semi-norm.

Below we explore the relationship between the original form (2.1) and
the Shu–Osher form (2.6). We rewrite the Butcher form with the help of the
consistency condition (2.7):

vi = v0 + τ
i−1
∑

j=0

aijG(vj) = αi0v0 +
i−1
∑

j=1

αijv0 + τ
i−1
∑

j=0

aijG(vj). (2.10)

We further use (2.1) for the above result to obtain

vi = αi0v0 +
i−1
∑

j=1

αij

(

vj − τ

j−1
∑

k=0

ajkG(vk)

)

+ τ
i−1
∑

k=0

aikG(vk)

=
i−1
∑

k=0



αikvk + τ



aik −
i−1
∑

j=k+1

αijajk



G(vk)



 , 1 6 i 6 s.(2.11)

By defining

βik = aik −
i−1
∑

j=k+1

αijajk, 0 ≤ k ≤ i − 1, (2.12)

the relationship between the original form (2.1) and the Shu–Osher form (2.6)
is established.

Theorem 2.2 If all elements in the strictly lower-triangular matrix AL in (2.5) are
positive, i.e. aik > 0 for all 0 6 k < i 6 s, then there exist coefficients αij , βij > 0
such that the corresponding explicit Runge–Kutta scheme (2.1) satisfies the RK-SSP
condition.

Proof We need to use the given positive elements aij (0 ≤ j < i ≤ s) to construct
positive coefficient pairs (αik , βik). Let

δ = min
06k<i6s

aik
∑i−1

j=k+1
ajk

, (2.13)

and let

αij = min

{

δ

2
,

1

2(i − 1)

}

, ∀ 1 6 i 6 s, 1 6 j < i,

αi0 = 1 − (i − 1) · ai1, 1 6 i 6 s. (2.14)
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It is easy to check that αik > 0 for all 0 6 k < i 6 s. Using the relation (2.12) and
the fact αij < δ gives

βik = aik −

i−1
∑

j=k+1

αijajk

> aik −

i−1
∑

j=k+1

δajk

=

i−1
∑

j=k+1

ajk

(

aik
∑i−1

j=k+1
ajk

− δ

)

≥ 0. (2.15)

Finally, it is easy to observe that

i−1
∑

k=0

αik = αi0 +

i−1
∑

k=1

αi1 = 1 − (i − 1) · αi1 + (i − 1) · αi1 = 1. (2.16)

This completes the proof of the theorem. �

The above theorem gives a simple sufficient condition which can convert
a Runge–Kutta method to be of Shu–Osher type satisfying the RK-SSP con-
dition (2.1). Below we derive a sufficient and necessary condition for a wide
class of Runge–Kutta method.

Theorem 2.3 An explicit Runge–Kutta method with non-zero sub-diagonal elements
satisfies the RK-SSP condition (2.8) if and only if all elements in the strictly lower-
triangular part of AL in (2.5) are positive.

Proof The sufficient condition is proved in Theorem 2.2. We now prove the necessary
condition. In this case, the explicit Runge–Kutta method with non-zero sub-diagonal
elements satisfies the RK-SSP condition (2.8). Define order(aik) = (i−1)∗s+k, 0 6

k < i 6 s. If there exist non-positive elements in A, we take the first of them in the
sense of order, apq ≤ 0. Since the RK scheme satisfies (2.8), we have

αik > 0, βik = aik −

i−1
∑

j=k+1

αijajk > 0, 0 ≤ k ≤ i − 1. (2.17)

In particular, we have

apq −

p−1
∑

j=q+1

αpjajq > 0. (2.18)

As apq is the first non-positive element in the sense of order, all ajq in the summation
above are all positive. We then have two cases.

• If apq < 0, then it is easy to see a contradiction to (2.18).
• If apq = 0, as the other ajq is positive then it follows from (2.18) that all αpj

in (2.18) are 0, and in particular, αp,p−1 = 0, which leads to βp,p−1 = 0. Note
that by (2.12) we have βp,p−1 = ap,p−1. Consequently, we have ap,p−1 = 0
which contradicts the non-zero sub-diagonal element assumption.
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This completes the proof of the theorem. �

One direct result is the following proposition.

Proposition 2.4 An s-stage sth-order explicit Runge–Kutta method satisfies the
RK-SSP condition (2.8) if and only if all elements in the strictly lower-triangular
part of AL are positive.

Proof For the s-order RK scheme, in order to match the highest order term in the
Taylor expansion, we must have

1

s!
= a1,0a2,1 · · · as,s−1

which guarantees all sub-diagonal elements ai,i−1 are non-zero. �

The following proposition is given in [4, 21], while Theorem 2.3 provides a
different perspective.

Proposition 2.5 There does not exist any 4-stage 4th-order explicit Runge–Kutta
method satisfying the RK-SSP condition (2.8).

Proof The only 4th-order RK whose coefficients are all non-negative is the classic
RK4 [21], whose Butcher tableau reads

0 0
1
2

1
2

1
2

0 1
2

1
2

0 0 1
2

1
6

1
3

1
3

1
6

Note that a21 = a30 = a31 = 0, i.e., they are not positive. Consequently, the classical
RK4 does not satisfy the RK-SSP condition (2.8). �

Proposition 2.6 Any irreducible RK method whose elements in the strictly lower-
triangular part are all positive can not have order greater than 4.

Proof It is known that there is no irreducible SSP-RK method which has order
greater than 4 [4, 5]. If an explicit irreducible Runge–Kutta method has positive
strictly lower-triangular part, then based on Theorem 2.2 it must satisfy the RK-SSP
condition, which contradicts the existing theory of [4, 5]. �

Remark 1 Theorems in this section could also be derived by the contractivity theory
[4, 22], although the approaches and illustrations are different.
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3 MBP-RK methods for the Allen–Cahn

equation

We will use the central finite difference discretization to the Allen–Cahn
equation in space. Without loss of generality, we consider the computational
domain [0, 2π] with the periodic boundary condition and let the space mesh
size h = 2π/N . Denote the grid points as {xj = jh, j = 0, 1, ..., N − 1} and
the forward finite difference matrix of ∂x by D1

D1 =
1

h









1 −1
−1 1

· · · · · · · · ·
−1 1









N×N

. (3.1)

Thus we have the central difference discretization operator D = −DT
1 D1 for

the Laplacian ∆. It is well-known that the discrete operator D is of second-
order accuracy to approximate the Laplacian operator.

Lemma 3.7 Given any vector v and scalar α > 2, the following inequality holds:
∥

∥

∥

(

I +
1

α
h2D

)

v

∥

∥

∥

∞

6 ‖v‖∞. (3.2)

Proof When α > 2, αI + D is a tri-diagonal matrix whose elements are all positive.
Besides, Note that the sum of each row of D is zero. Consequently, the sum of every
row of αI + h2D equals to constant α. Observe that

‖(αI + h2D)v‖∞ = max
j

‖ajvj−1 + bjvj + cjvj+1‖∞

6 (|aj | + |bj | + |cj |) max
j

‖vj‖∞ = α‖v‖∞.
(3.3)

This completes the proof. �

Lemma 3.8 ([23]) Denote the discrete Fourier transform as FN and the conjugate
transpose as (·)H , then it holds that

D = F H
N ΛFN , Λ = diag([λ0, · · · , λN−1]), (3.4)

where λj = −(2 − 2 cos(jh))/h2 are eigenvalues of D.

One direct result of this lemma is the following inverse inequality: Given
any vector u, it holds that

0 ≤ −uT Du 6
4

h2
uT u. (3.5)

Note that the above property holds for more general boundary conditions and
domains, and in these situations the coefficient 4 in (3.5) will be replaced by
a constant C depending only on the boundary conditions and the domain.
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For simplicity and for ease of demonstrating the main ideas, in this paper
we only consider the 1D case. For multi-dimension cases, by using the tensor
product for the discrete Laplacian operator in 2D and 3D, results similar to
the 1D case can be obtained.

The semi-discrete finite difference discretization of the Allen–Cahn
equation reads

d

dt
u = εDu +

1

ε
f(u) =: G(u). (3.6)

We list following two properties for system (3.6) resulting from the so-called
method-of-line approach.

• If the initial value satisfies ‖u0‖∞ 6 1, then the solution u(t) given by (3.6)
satisfies the maximum bound preserving (MBP) property:

‖u(t)‖∞ 6 1, ∀t > 0. (3.7)

• Let

Eh(u) =
ε

2
‖D1u‖2

l2 +
1

4ε
‖1 − u2‖2

l2 . (3.8)

Then the solutions of system (3.6) satisfy the semi-discrete energy dissipa-
tion law

d

dt
Eh = −

∥

∥

∥

∥

du

dt

∥

∥

∥

∥

2

l2

6 0. (3.9)

Note that the first result can be found in, e.g., [24], and the second result can
be obtained by taking the L2 inner product of (3.6) with d

dt
u.

In this section, we are concerned with MBP Runge–Kutta method for the
Allen–Cahn equation. The main strategy is to extend the Shu-Osher theory
for the hyperbolic conservation laws to deal with the Allen–Cahn solutions.

3.1 Forward Euler solution

In this section we discretize the semi-discrete system in the time direction by
applying forward Euler method.

Before providing a useful theorem, we need following simple results, which
can be obtained by an elementary proof.

Lemma 3.9 For any positive number a, if −4a 6 c 6 a/2, then the function g(x) =
ax + c(x − x3) satisfies

|g(x)| 6 a, ∀x ∈ [−1, 1]. (3.10)

The following theorem characterizes the Euler property for the system
(3.6).

Theorem 3.10 Consider the ODE system (3.6). If τ < τ0 := min{4h2/ε, ε/4}, then
for any vector u satisfying ‖u‖∞ 6 1, we have

‖u + τG(u)‖∞ 6 1. (3.11)
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Proof Note that

‖u + τG(u)‖∞ =

∥

∥

∥
u + τ

(

εDu +
1

ε
f(u)

)∥

∥

∥

∞

=

∥

∥

∥

(

1

2
u + τεDu

)

+
(

1

2
u +

τ

ε
f(u)

)∥

∥

∥

∞

6

∥

∥

∥

1

2
u + τεDu

∥

∥

∥

∞

+

∥

∥

∥

1

2
u +

τ

ε
f(u)

∥

∥

∥

∞

. (3.12)

Using Lemma 3.7 and the assumption τ < 4h2/ε gives
∥

∥

∥

1

2
u + τεDu

∥

∥

∥

∞

≤
1

2
.

Using (1.4), Lemma 3.9 and the assumption τ < ε/4 yields
∥

∥

∥

1

2
u +

τ

ε
f(u)

∥

∥

∥

∞

≤
1

2
.

Combining the above three results gives the desired result. �

Remark 2 The relationship between the time step and ε comes from here and is
inevitable if one wants to solve with explicit methods directly.

3.2 MBP-RK methods

Theorem 3.11 Consider the Runge–Kutta scheme (2.6) with G defined by (3.6). If
the SSP-RK property (2.8)is satisfied, then

‖un‖∞ 6 1 =⇒ ‖un+1‖∞ 6 1 (3.13)

under the time-step restriction

τ 6 τSSP := min
06k<i6s

αik

βik

· τ0, with τ0 = min

{

4h2

ε
,

ε

4

}

. (3.14)

Note that the ratio above is understood as infinity whenever βik = 0.

Proof The proof is based on the original SSP machinery, see, e.g., [3, 6]. In particular,
note that for each i, we have

‖vi‖∞ =

∥

∥

∥

∥

∥

i−1
∑

k=0

(αikvk + τβikG(vk))

∥

∥

∥

∥

∥

∞

6

∥

∥

∥

∥

∥

i−1
∑

k=0

αik

(

vk + τ
βik

αik

G(vk)

)

∥

∥

∥

∥

∥

∞

. (3.15)

Under the assumption (3.14), we have τβik/αik ≤ τ0. Then using Theorem 3.10 gives

‖vi‖∞ ≤

i−1
∑

k=0

αik

∥

∥

∥

∥

vk + τ
βik

αik

G(vk)

∥

∥

∥

∥

∞

≤

i−1
∑

k=0

αik · 1 = 1. (3.16)

This yields the desired result (3.13). �
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4 The discrete energy dissipation law

The discrete energy is defined as follows

E(u) = −ε

2
uT Du +

1

ε

N
∑

j=1

F (uj). (4.1)

For ease of our derivation, we will consider a special class of Runge–Kutta
schemes.

Lemma 4.12 Given a Butcher tableau (2.2) and the corresponding RK scheme
(2.4). By suitably arranging coefficients {cik}, we can obtain a class of RK scheme
of the following form:

vi =

i−1
∑

k=0

pikvk + diτG(vi−1), 1 6 i 6 s. (4.2)

Proof We wish to convert the RK formula (2.4) into the Shu-Osher format. It follows
from (2.12) that

vi =

i−1
∑

k=0

[

αikvk +

(

aik −

i−1
∑

l=k+1

alkαil

)

τG(vk)

]

=

i−1
∑

k=0

αikvk +

i−2
∑

k=0

(

aik −

i−1
∑

l=k+1

alkαil

)

τG(vk) + ai,i−1τG(vi−1). (4.3)

By forcing the second last term in (4.3) to 0, a set of values of {αik} can be determined
by {aik}. This will leave only the last G-term in (4.3). Therefore, we derive pik = αik

and di = ai,i−1 and thus the scheme has the unique form (4.2). �

Note that the consistency condition requires
∑i−1

k=0
pik = 1, but now the

coefficients in (4.2) may be negative.
Before we present the main result of this section, we state the following

result whose proof is quite straightforward:

1

4
[(a2 − 1)2 − (b2 − 1)2] 6 (b3 − b)(a − b) + (a − b)2, ∀a, b ∈ [−1, 1]. (4.4)

Theorem 4.13 For a given SSP-RK solution which has the form (4.2), we define a
upper triangular matrix Φ given by

Φij =

i−1
∑

k=0

pjk

dj
, i 6 j (4.5)

and the energy discriminant

∆E =
1

2
(Φ + ΦT ). (4.6)
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If ∆E is positive-definite, then the energy is non-increasing under the time step
restriction

τ 6 min

{

λ
1
ε + 2ε

h2

, τSSP

}

, (4.7)

where τSSP is the SSP-RK time-restriction given by (3.14), and λ is the smallest
eigenvalue of ∆E .

Proof Rewrite (4.2) by using the form of G (for simplicity we drop the ε scale in this
proof and notice that here vi are vectors) and the consistency condition:

f(vi) =
1

di+1τ

(

vi+1 −

i
∑

k=0

pi+1,kvk

)

− Dvi

=
vi+1 − vi

di+1τ
+

1

di+1τ

i−1
∑

k=0

pi+1,k(vi − vk) − Dvi. (4.8)

By using the definition of the potential F and by using (4.4), we obtain

N
∑

j=1

F ((un+1)j) − F ((un)j) =

s−1
∑

i=0

N
∑

j=1

F ((vi+1)j) − F ((vi)j)

≤

s−1
∑

i=0

−(vi+1 − vi)
T f(vi) + (vi+1 − vi)

2 =: J1 + J2 + J3, (4.9)

where

J1 =

s−1
∑

i=0

(

1 −
1

di+1τ

)

(vi+1 − vi)
2, J2 =

s−1
∑

i=0

(vi+1 − vi)
T Dvi,

J3 = −

s−1
∑

i=0

∑i−1

k=0
pi+1,k(vi − vk)T

di+1τ
(vi+1 − vi).

It can be easily seen that J1 is simply quadratic, which will be negative for sufficiently
small τ . By denoting wi = vi − vi−1, we have

J2 =

s−1
∑

i=0

(vi+1 − vi)
T D
(

vi+1 + vi

2
−

vi+1 − vi

2

)

=

s−1
∑

i=0

1

2

(

v
T
i+1Dvi+1 − v

T
i Dvi − w

T
i+1Dwi+1

)

=
1

2
(uT

n+1Dun+1 − u
T
n Dun) −

1

2

s
∑

i=1

w
T
i Dwi; (4.10)

and also

J3 =

s−1
∑

i=0

1

di+1τ

i−1
∑

k=0

pi+1,k

(

i
∑

m=k+1

w
T
m

)

wi+1
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=

s
∑

i=1

1

diτ

i−2
∑

k=0

i−1
∑

m=k+1

pikw
T
mwi =

s
∑

i=1

1

diτ

i−1
∑

m=1

m−1
∑

k=0

pikw
T
mwi. (4.11)

Combining all these results together, we obtain

En+1 − En =

N
∑

j=1

F ((un+1)j) − F ((un)j) −
1

2
(uT

n+1Dun+1 − u
T
n Dun)

6

s
∑

i=1

(1 −
1

diτ
)w2

i −

s
∑

i=1

1

diτ

i−1
∑

m=1

m−1
∑

k=0

pikw
T
mwi −

1

2

s
∑

i=1

w
T
i Dwi

=

s
∑

i=1

w
2
i −

1

τ

s
∑

m,i=1

w
T
mΦmiwi −

1

2

s
∑

i=1

w
T
i Dwi, (4.12)

where we have defined an upper triangle matrix Φ by (notice that
∑i−1

k=0
pik = 1)

Φij =

i−1
∑

k=0

pjk/dj , i 6 j. (4.13)

Consider the energy discriminant ∆E defined by (4.6). Recall that we dropped the ε
scale in the very beginning. If we keep ε in the derivation, the change of the energy
(4.12) becomes

En+1 − En 6

s
∑

i=1

w
2
i −

ε

τ

s
∑

i,j=1

w
T
i Φijwj −

ε2

2

s
∑

i=1

w
T
i Dwi. (4.14)

If ∆E is positive-definite and λ is the smallest eigenvalue of ∆E , then we have

s
∑

i,j=1

w
T
i Φijwj =

s
∑

i,j=1

w
T
i ∆Eijwj > λ

s
∑

i=1

w
2
i . (4.15)

It follows from (3.5) that

−

s
∑

i=1

w
T
i Dwi 6 4h−2

s
∑

i=1

w
2
i . (4.16)

Thus, by (4.14), to make sure the energy dissipation we only need

1 −
ελ

τ
+

2ε2

h2
6 0, (4.17)

which is true under the assumption (4.7). �

5 Some energy plus MBP RK methods

In this section we present some RK2, RK3 and RK4 methods which is max-
imum bound preserving and energy dissipation. We will also give an RK3
method which is MBP but does not satisfy our condition for the energy dissi-
pation law. All examples in this section are existing schemes, and the special
5-stage 4th-order example comes from [3].
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5.1 An RK2 satisfying energy-dissipation and MBP

The Butcher Tableau is as follows:

0
1 1

1

2

1

2

.

The corresponding (4.2) form is given by

v0 = un,

v1 = v0 + τG(v0),

v2 = v0 +
τ

2
G(v0) +

τ

2
G(v1) =

1

2
v0 +

1

2
v1 +

τ

2
G(v1). (5.1)

It follows from the theory in Section 3 the scheme (5.1) is MBP.
The energy form coincides with (5.1) and the energy discriminant is

Φ =

(

1 1
0 2

)

, ∆E =
1

2

(

Φ + ΦT
)

=

(

1 1

2
1

2
2

)

. (5.2)

Note that ∆E is positive-definite and the smallest eigenvalue of ∆E is 1

2
(3 −√

2). Hence with suitably small time-step, this MBP-RK2 scheme preserves
both maximum bound and the energy dissipation law.

5.2 An RK3 satisfying energy-dissipation and MBP

Consider the Butcher tableau:

0
1 1
1

2

1

4

1

4
1

6

1

6

2

3

.

The corresponding (4.2) form is given by

v0 = un,

v1 = v0 + τG(v0),

v2 =
3

4
v0 +

1

4
v1 +

τ

4
G(v1), (5.3)

v3 =
1

3
v0 +

2

3
v2 +

2τ

3
G(v2).
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The energy discriminant reads

Φ =





1 3 1

2

0 4 1

2

0 0 3

2



 , ∆E =
1

2

(

Φ + ΦT
)

=





1 3

2

1

4
3

2
4 1

4
1

4

1

4

3

2



 . (5.4)

Note that ∆E is positive-definite and the smallest eigenvalue of ∆E is about
0.362228. Again based on the theory in Section 4, with sufficiently small time-
step, this MBP-RK3 scheme preserves both maximum bound and the energy
dissipation law.

5.3 An RK3 satisfying MBP but not sure

energy-dissipation

Consider the Butcher tableau:

0
1 1
2 1 1

2

3

1

6

1

6

.

The corresponding (4.2) form is given by

v0 = un,

v1 = v0 + τG(v0),

v2 = v1 + τG(v1), (5.5)

v3 =
1

3
v0 +

1

2
v1 +

1

6
v2 +

τ

6
G(v2).

However, It can be shown that the energy discriminant is not positive-definite
in this case. Note

Φ =





1 0 2
0 1 5
0 0 6



 , ∆E =
1

2

(

Φ + ΦT
)

=





1 0 1
0 1 5

2

1 5

2
6



 . (5.6)

The smallest eigenvalue of ∆E is 1

2
(7 − 3

√
6) ≈ −0.174. Thus, this scheme is

not guaranteed to decrease the energy by our approach.

5.4 An 5-stage RK4 satisfying MBP and

energy-dissipation

It is well known that there is no 4-stage 4th-order RK4. We then just consider
the following 5-stage RK scheme:

v0 = un,
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v1 = v0 + d1τG(v0),

v2 = p20v0 + p21v1 + d2τG(v1),

v3 = p30v0 + p32v2 + d3τG(v2), (5.7)

v4 = p40v0 + p43v3 + d4τG(v3),

v5 = p52v2 + p53v3 + d53τG(v3) + p54v4 + d54τG(v4),

where

d1 = 0.391752226571890, p20 = 0.444370493651235,

p21 = 0.555629506348765, d2 = 0.368410593050371,

p30 = 0.620101851488403, p32 = 0.379898148511597,

d3 = 0.251891774271694, p40 = 0.178079954393132,

p43 = 0.821920045606868, d4 = 0.544974750228521,

p52 = 0.517231671970585, p53 = 0.096059710526147,

d53 = 0.063692468666290, p54 = 0.386708617503269,

d54 = 0.226007483236906.

Using the theory of Section 3, it is known that the scheme (5.7) satisfies MBP.
In order to obtain the energy form, we rewrite the last line as

v5 = p52v2 + p53v3 + d53

v4 − p40v0 − p43v3

d4

+ p54v4 + d54τG(v4)

= −d53p40

d4

v0 + p52v2 +

(

p53 − d53p43

d4

)

v3 +

(

p54 +
d53

d4

)

v4 + d54τG(v4).(5.8)

Thus the energy discriminant is

Φ =















1

d1

p20

d2

p30

d3

p40

d4

− d53p40

d4

0 1

d2

p30

d3

p40

d4
− d53p40

d4

0 0 1

d3

p40

d4

p52 − d53p40

d4

0 0 0 1

d4

p52 + p53 − d53

d4

0 0 0 0 1

d5















, ∆E =
1

2

(

Φ + ΦT
)

. (5.9)

The smallest eigenvalue of ∆E is about 1.706. Hence, based on the theory of
Section 4, then with sufficiently small time-step this 5-stage RK4 preserves
both maximum bound and energy dissipation law.
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