Skip to main content
Log in

A Modular Voigt Regularization of the Crank-Nicolson Finite Element Method for the Navier-Stokes Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We study a modular Crank-Nicolson based Voigt regularization algorithm for the Navier-Stokes equations. This algorithm adds a minimally intrusive module that not only implements Voigt regularization but also adds some numerical dissipation which is not existent in the monolithic algorithms. The additional dissipation induced by the method could act to dampen spurious oscillations, improve stability of numerical solutions, and yield improved accuracy with large-scale dynamics. Within, we prove that the algorithm is unconditionally stable. A convergence analysis is provided whereby \(O(\Delta t^2 + \alpha ^2 + {h^k})\) convergence is proven for velocity solutions. Numerical tests illustrate both the proven stability and convergence properties and the benefit of modular Voigt regularization over the monolithic implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on request. The software applications used to generate the results are open source and the corresponding author can provide instructions on how to reproduce the analyses.

References

  1. Adams, R., Fournier, J.: Sobolev Spaces. In: Pure and Applied Mathematics[M], vol. 140. Academic Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Baker, G.A., Dougalis, V., Karakashian, O.: On a higher order accurate, fully discrete galerkin approximation to the Navier-Stokes equations. Math. Comput. 39, 339–375 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baranovskii, E.S.: Strong Solutions of the Incompressible Navier-Stokes-Voigt Model. Mathematics 8(2), 181 (2020)

    Article  Google Scholar 

  4. Berselli, L.C., Bisconti, L.: On the structural stability of the Euler-Voigt and Navier-Stokes-Voigt models. Nonlinear Anal. 75(1), 117–130 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berselli, L.C., Catania, C.: A note on the Euler-Voigt system in a 3D bounded domain: Propagation of singularities and absence of the boundary layer. AIMS Math. 4(1), 1–11 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berselli, L.C., Spirito, S.: Suitable weak solutions to the 3D Navier-Stokes equations are constructed with the Voigt approximation. J. Differ. Equ. 262(5), 3285–3316 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berselli, L.C., Kim, T.Y., Rebholz, L.G.: Analysis of a reduced-order approximate deconvolution model and its interpretation as a Navier-Stokes-Voigt regularization. Discrete Contin. Dyn. Syst. Ser. B 21(4), 1027–1050 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Britz, D., Østerby, O., Strutwolf, J.: Damping of Crank-Nicolson error oscillations[J]. Comput. Biol. Chem. 27(3), 253–263 (2003)

    Article  MATH  Google Scholar 

  9. Brown, D.L., Minion, M.L.: Performance of under-resolved two-dimensional incompressible flow simulations[J]. J. Comput. Phys. 122, 165–183 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cao, Y., Lunasin, E., Titi, E.S.: Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci. 4(4), 823–848 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cuff, V.M., Dunca, A.A., Manica, C.C., Rebholz, L.G.: The reduced order NS-\(\alpha \) model for incompressible flow: theory, numerical analysis and benchmark testing. ESAIM: M2AN 49(3), 641–662 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ebrahimi, M.A., Lunasin, E.: The Navier-Stokes-Voight model for image inpainting. IMA J. Appl. Math. 78(5), 869–894 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Erturk, E., Corke, T.C., Gökçöl, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers[J]. Int. J. Numer. Meth. Fluids 48, 747–774 (2005)

    Article  MATH  Google Scholar 

  14. Galvin, K.J.: New subgrid artificial viscosity Galerkin methods for the Navier-Stokes equations[J]. Comput. Methods Appl. Mech. Eng. 200, 242–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghia, U., Ghia, K.N., Shin, C.T.: High-resolutions for incompressible flow using the Navier-Stokes equations and a multigrid method[J]. J. Comput. Phys. 48, 387–411 (1982)

    Article  MATH  Google Scholar 

  16. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations[M]. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  17. Hecht, F., Pironneau, O.: FreeFem++. Webpage: http://www.freefem.org

  18. Heywood, J.G., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem. Part IV: Error analysis for second-order time discretization[J]. SIAM J. Numer. Anal. 27(2), 353–384 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. John, V.: Reference values for drag and lift of a two-dimensional time-dependent flow around a cylinder[J]. Int. J. Numer. Meth. Fluids 44, 777–788 (2004)

    Article  MATH  Google Scholar 

  20. Kalantarov, V.K., Titi, E.S.: Global attractors and determining modes for the 3D Navier-Stokes-Voight equations. Chinese Annals of Mathematics, Series B 30, 697–741 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kalantarov, V.K., Levant, B., Titi, E.S.: Gevrey regularity of the global attractor of the 3D Navier-Stokes-Voight equations. J. Nonlinear Sci. 19, 133–152 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, P.: Invariantization of the Crank-Nicolson method for Burgers’ equation. Physica D 237(2), 243–254 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Korpusov, M.O., Sveshnikov, A.G.: Blow-up of Oskolkov’s system of equations. Sbornik: Math. 200(4), 549–572 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kuberry, P., Larios, A., Rebholz, L., et al.: Numerical approximation of the Voigt regularization of incompressible Navier-Stokes and magnetohydrodynamic flows. Comput. Math. Appl. 64(8), 2647–2662 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Labovsky, A., Layton, W., Manica, C., et al.: The stabilized extrapolated trapezoidal finite-element method for the Navier-Stokes equations[J]. Comput. Methods Appl. Mech. Eng. 198(9), 958–974 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Larios, A., Pei, Y.: Approximate continuous data assimilation of the 2D Navier-Stokes equations via the Voigt-regularization with observable data. Evolution Equations and Control Theory 9(3), 733–751 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Larios, A., Titi, E.: On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models. Discrete and Continuous Dynamical Systems - B 14, 603–627 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Larios, A., Titi, E.S.: Higher-order global regularity of an inviscid voigt-regularization of the three-dimensional inviscid resistive magnetohydrodynamic equations. J. Math. Fluid Mech. 16(1), 59–76 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Larios, A., Petersen, M.R., Titi, E.S., Wingate, B.: A computational investigation of the finite-time blow-up of the 3D incompressible Euler equations based on the Voigt regularization. Theoret. Comput. Fluid Dyn. 32(1), 23–34 (2018)

    Article  MathSciNet  Google Scholar 

  30. Layton, W., Rebholz, L.: On relaxation times in the Navier-Stokes-Voigt model. Int. J. Comput Fluid Dyn. 27(3), 184–187 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Layton, W., Tobiska, L.: A two-level method with backtracking for the Navier-Stokes equations[J]. SIAM J. Numer. Anal. 35, 2035–2054 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lee, B., Kang, M., Kim, S.: An Essentially Non-oscillatory Crank-Nicolson Procedure for the Simulation of Convection-Dominated Flows. J. Sci. Comput. 71, 875–895 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Levant, B., Ramos, F., Titi, E.S.: On the statistical properties of the 3D incompressible Navier-Stokes-Voigt model. Commun. Math. Sci. 8, 277–293 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Lu, X., Huang, P., He, Y.: Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete and Continuous Dynamical Systems - B 26(2), 815–845 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  35. Medovikov, A.A., Lebedev, V.I.: Variable time steps optimization of \(L_{\omega }\)-stable Crank-Nicolson method[J]. Russ. J. Numer. Anal. Math. Model. 20(3), 283–303 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Minion, M.L., Brown, D.L.: Performance of under-resolved two-dimensional incompressible flow simulations, II[J]. J. Comput. Phys. 138(2), 734–765 (1997)

    Article  MATH  Google Scholar 

  37. Niche, C.J.: Decay characterization of solutions to Navier-Stokes-Voigt equations in terms of the initial datum. J. Differ. Equ. 260(5), 4440–4453 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. Oskolkov, A.P.: The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 38: 98-136, (1973). Boundary value problems of mathematical physics and related questions in the theory of functions, 7

  39. Oskolkov, A.P.: The uniqueness and global solvability of boundary-value problems for the equations of motion for aqueous solutions of polymers. J. Sov. Math. 8, 427–455 (1977)

    Article  MATH  Google Scholar 

  40. Oskolkov, A.P.: On the theory of Voight fluids. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov (LOMI) 96, 233–236 (1980)

    MathSciNet  MATH  Google Scholar 

  41. Østerby, O.: Five Ways of Reducing the Crank-Nicolson Oscillations[J]. BIT Numer. Math. 43, 811–822 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  42. Pany, A.K.: Fully discrete second-order backward difference method for Kelvin-Voigt fluid flow model. Numerical Algorithms 78, 1061–1086 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  43. Schäfer, M., Turek, S.: Benchmark computations of laminar flow around a cylinder[J]. Flow Simul with High-Performance Comput. II(48), 547–566 (1996)

    MATH  Google Scholar 

  44. Shi, F., Liang, G., Zhao, Y., et al.: New splitting methods for convection-dominated dffusion problems and Navier-Stokes equations[J]. Commun. Comput. Phys. 16(5), 1239–1262 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sviridyuk, G.A., Sukacheva, T.G.: On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid. Math. Notes 63, 388–395 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  46. Takhirov, A.: Voigt regularization for the explicit time stepping of the Hall effect term. Geophys. Astro. Fluid. 110(5), 409–431 (2016)

    Article  MathSciNet  Google Scholar 

  47. Takhirov, A., Lozovskiy, A.: Computationally efficient modular nonlinear filter stabilization for high Reynolds number flows[J]. Adv. Comput. Math. 44, 295–325 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis[M]. North-Holland Publishing Company, New York (1977)

    MATH  Google Scholar 

  49. Voigt, W.: Ueber innere Reibung fester Körper, insbesondere der Metalle. Ann. Phys. 283, 671–693 (1892)

    Article  MATH  Google Scholar 

  50. Yuksel, G., Ingram, R.: Numerical analysis of a finite element Crank-Nicolson discretization for MHD flows at small magnetic Reynolds numbers[J]. Int. J. Numer. Anal. Model. 10(1), 74–98 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

Y. Rong: Supported by Guangdong Basic and Applied Basic Research Foundation Nos. 2019A1515110503 and National Natural Science Foundation of China Nos. 12001139. J. A. Fiordilino: Supported by NSF grants CBET 1609120 and DMS 1522267 and the DoD SMART Scholarship. F. Shi: Supported by Shenzhen Technology Projects Nos. GXWD20201230155427003-20200822102539001 and RCJC20210609103755110. Y. Cao: Supported by Shenzhen Technology Projects Nos. ZDSYS201707280904031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Shi.

Ethics declarations

Competing interests

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The time-stepping schemes of algorithms used in Sect. 4 are as follows.

CNLE: Find \({\varvec{u}}^{n+1}\) and \(p^{n+1}\) satisfying:

$$\begin{aligned}&\frac{{\varvec{u}}^{n+1}-{\varvec{u}}^{n}}{\Delta t} -\nu \Delta \frac{{\varvec{u}}^{n+1}+{\varvec{u}}^{n}}{2} +\frac{3{\varvec{u}}^{n}-{\varvec{u}}^{n-1}}{2}\cdot \nabla \frac{{\varvec{u}}^{n+1}+{\varvec{u}}^{n}}{2} +\nabla \frac{p^{n+1}+p^{n}}{2} ={\varvec{f}}^{n+\frac{1}{2}}, \\&\quad \nabla \cdot {\varvec{u}}^{n+1}=0. \end{aligned}$$

ModCN: \(Step 1 \). Find \({\varvec{w}}^{n+1}\) and \(\lambda ^{n+1}\) satisfying:

$$\begin{aligned}&\frac{{\varvec{w}}^{n+1}-{\varvec{u}}^{n}}{\Delta t} -\nu \Delta \frac{{\varvec{w}}^{n+1}+{\varvec{u}}^{n}}{2} +\frac{{\varvec{w}}^{n+1}+{\varvec{u}}^{n}}{2}\cdot \nabla \frac{{\varvec{w}}^{n+1}+{\varvec{u}}^{n}}{2} +\nabla \frac{\lambda ^{n+1}+p^{n}}{2} ={\varvec{f}}^{n+\frac{1}{2}}, \\&\quad \nabla \cdot {\varvec{w}}^{n+1}=0. \end{aligned}$$

\(Step 2 \) . Find \({\varvec{u}}^{n+1}\) and \(p^{n+1}\) satisfying:

$$\begin{aligned}&\frac{{\varvec{u}}^{n+1}-{\varvec{w}}^{n+1}}{\Delta t} -\alpha ^{2}\frac{\Delta {\varvec{u}}^{n+1}-\Delta {\varvec{u}}^{n}}{\Delta t} +\nabla \frac{p^{n+1}-\lambda ^{n+1}}{2} =0, \\&\quad \nabla \cdot {\varvec{u}}^{n+1}=0. \end{aligned}$$

MonoCN: Find \({\varvec{u}}^{n+1}\) and \(p^{n+1}\) satisfying:

$$\begin{aligned}&\frac{{\varvec{u}}^{n+1}-{\varvec{u}}^{n}}{\Delta t} -\alpha ^{2}\frac{\Delta {\varvec{u}}^{n+1}-\Delta {\varvec{u}}^{n}}{\Delta t} -\nu \Delta \frac{{\varvec{u}}^{n+1}+{\varvec{u}}^{n}}{2} +\frac{{\varvec{u}}^{n+1}+{\varvec{u}}^{n}}{2}\cdot \nabla \frac{{\varvec{u}}^{n+1}+{\varvec{u}}^{n}}{2} \\&+\nabla \frac{p^{n+1}+p^{n}}{2} ={\varvec{f}}^{n+\frac{1}{2}}, \\&\quad \nabla \cdot {\varvec{u}}^{n+1}=0. \end{aligned}$$

MonoCNLE: Find \({\varvec{u}}^{n+1}\) and \(p^{n+1}\) satisfying:

$$\begin{aligned}&\frac{{\varvec{u}}^{n+1}-{\varvec{u}}^{n}}{\Delta t} -\alpha ^{2}\frac{\Delta {\varvec{u}}^{n+1}-\Delta {\varvec{u}}^{n}}{\Delta t} -\nu \Delta \frac{{\varvec{u}}^{n+1}+{\varvec{u}}^{n}}{2} +\frac{3{\varvec{u}}^{n}-{\varvec{u}}^{n-1}}{2}\cdot \nabla \frac{{\varvec{u}}^{n+1}+{\varvec{u}}^{n}}{2} \\&+\nabla \frac{p^{n+1}+p^{n}}{2} ={\varvec{f}}^{n+\frac{1}{2}}, \\&\quad \nabla \cdot {\varvec{u}}^{n+1}=0. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Y., Fiordilino, J.A., Shi, F. et al. A Modular Voigt Regularization of the Crank-Nicolson Finite Element Method for the Navier-Stokes Equations. J Sci Comput 92, 101 (2022). https://doi.org/10.1007/s10915-022-01945-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01945-1

Keywords

Mathematics Subject Classification

Navigation