Skip to main content
Log in

A Lowest-Degree Conservative Finite Element Scheme for Incompressible Stokes Problems on General Triangulations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this study, we investigate how low the degree of polynomials can be to construct a stable conservative pair for incompressible Stokes problems that works on general triangulations. We propose a finite element pair that uses a slightly enriched piecewise linear polynomial space for velocity and piecewise constant space for pressure. The pair is illustrated to be a lowest-degree stable conservative pair for Stokes problems on general triangulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Arnold, D.N.: Finite Element Exterior Calculus. SIAM (2018)

  2. Arnold, D.N., Falk, R., Winther, R.: Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, D.N., Qin, J.: Quadratic velocity/linear pressure Stokes elements. In: Advances in Computer Methods for Partial Differential Equations VII, IMACS, 28–34 (1992)

  4. Auricchio, F., Beirão da Veiga, L., Lovadina, C., Reali, A.: The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations. Comput. Methods Appl. Mech. Eng. 199, 314–323 (2010)

  5. Auricchio, F., Beirão da Veiga, L., Lovadina, C., Reali, A., Taylor, R.L., Wriggers, P.: Approximation of incompressible large deformation elastic problems: some unresolved issues. Comput. Mech. 52, 1153–1167 (2013)

  6. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  7. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. R.A.I.R.O. Anal. Numér. 2, 129–151 (1974)

  8. Chen, S., Dong, L., Qiao, Z.: Uniformly convergent \(H(\text{ div})\)-conforming rectangular elements for Darcy-Stokes problem. Sci. China Math. 56, 2723–2736 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Nguyen, N.C., Peraire, J.: A comparison of HDG methods for stokes flow. J. Sci. Comput. 45, 215–237 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Gopalakrishnan, J.: The derivation of hybridizable discontinuous Galerkin methods for Stokes flow SIAM. J. Numer. Anal. 47, 1092–1125 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Falk, R.S., Morley, M.E.: Equivalence of finite element methods for problems in elasticity. SIAM J. Numer. Anal. 27, 1486–1505 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Falk, R.S., Neilan, M.: Stokes complexes and the construction of stable finite elements with pointwise mass conservation. SIAM J. Numer. Anal. 51, 1308–1326 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gauger, N.R., Linke, A., Schroeder, P.W.: On high-order pressure-robust space discretisations, their advantages for incompressible high Reynolds number generalised Beltrami flows and beyond. SMAI J. Comput. Math. 5, 89–129 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guzmán, J., Neilan, M.: A family of nonconforming elements for the Brinkman problem. IMA J. Numer. Anal. 32, 1484–1508 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guzmán, J., Neilan, M.: Conforming and divergence-free stokes elements on general triangular meshes. Math. Comput. 83, 15–36 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guzmán, J., Neilan, M.: Inf-sup stable finite elements on barycentric refinements producing divergence-free approximations in arbitrary dimensions. SIAM J. Numer. Anal. 56, 2826–2844 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Guzmán, J., Neilan, M.: Conforming and divergence-free stokes elements in three dimensions. IMA J. Numer. Anal. 34, 1489–1508 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hiptmair, R., Li, L., Mao, S., Zheng, W.: A fully divergence-free finite element method for magnetohydrodynamic equations. Math. Models Methods Appl. Sci. 28, 659–695 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hu, K., Ma, Y., Xu, J.: Stable finite element methods preserving \(\nabla \cdot {B}=0\) exactly for MHD models. Numer. Math. 135, 371–396 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu, K., Xu, J.: Structure-preserving finite element methods for stationary MHD models. Math. Comput. 88, 553–581 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang, Y., Zhang, S.: A lowest order divergence-free finite element on rectangular grids. Front. Math. China. 6, 253–270 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. John, V., Linke, A., Merdon, C., Neilan, M., Rebholz, L.G.: On the divergence constraint in mixed finite element methods for incompressible flows. SIAM Rev. 59, 492–544 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Linke, A., Merdon, C.: Well-balanced discretisation for the compressible Stokes problem by gradient-robustness. In: Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples, Springer, Cham, 113–121 (2020)

  24. Liu, X., Li, J., Chen, Z.: A nonconforming virtual element method for the Stokes problem on general meshes. Comput. Methods Appl. Mech. Eng. 320, 694–711 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mardal, K.A., Tai, X.C., Winther, R.: A robust finite element method for Darcy-Stokes flow. SIAM J. Numer. Anal. 40, 1605–1631 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Neilan, M., Sap, D.: Stokes elements on cubic meshes yielding divergence-free approximations. Calcolo 53, 263–283 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nguyen, N.C., Peraire, J., Cockburn, B.: An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier-Stokes equations. J. Comput. Phys. 230, 1147–1170 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qin, J., Zhang, S.: Stability and approximability of the \(P_{1}-P_{0}\) element for Stokes equations. J. Numer. Methods Fluids 54, 497–515 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schroeder, P.W., Lube, G.: Divergence-free H(div)-FEM for time-dependent incompressible flows with applications to high Reynolds number vortex dynamics. J. Sci. Comput. 75, 830–858 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Scott, L.R., Vogelius, M.: Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO - Modél. Math. Anal. Numér. 19, 111–143 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stenberg, R.: A technique for analysing finite element methods for viscous incompressible flow. J. Numer. Methods Fluids 11, 935–948 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tai, X.C., Winther, R.: A discrete de Rham complex with enhanced smoothness. Calcolo 43, 287–306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Uchiumi, S.: A viscosity-independent error estimate of a pressure-stabilized Lagrange-Galerkin scheme for the Oseen problem. J. Sci. Comput. 80, 834–858 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, R., Wang, X., Zhai, Q., Zhang, R.: A weak Galerkin finite element scheme for solving the stationary Stokes equations. J. Comput. Appl. Math. 302, 171–185 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xie, X., Xu, J., Xue, G.: Uniformly stable finite element methods for Darcy-Stokes-Brinkman models. J. Comput. Math. 26, 437–455 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Xu, X., Zhang, S.: A new divergence-free interpolation operator with applications to the Darcy-Stokes-Brinkman equations. SIAM J. Sci. Comput. 32, 855–874 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zeng, H., Zhang, C., Zhang, S.: A low-degree strictly conservative finite element method for incompressible flows on general triangulations. SMAI J. Comput. Math, accepted. (2022)

  38. Zeng, H., Zhang, C., Zhang, S.: A low-degree strictly conservative finite element method for incompressible flows. arXiv:2103.00705, (2021)

  39. Zeng, H., Zhang, C., Zhang, S.: Optimal quadratic element on rectangular grids for \({H}^1\) problems. BIT Numer. Math. 61, 665–689 (2020)

    Article  MATH  Google Scholar 

  40. Zhang, S.: A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comput. 74, 543–554 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, S.: On the \({P_{1}}\) Powell-Sabin divergence-free finite element for the Stokes equations. J. Comput. Math. 26, 456–470 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Zhang, S.: A family of \(Q_{k+1, k}\times Q_{k, k+1}\) divergence-free finite elements on rectangular grids. SIAM J. Numer. Anal. 47, 2090–2107 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, S.: Divergence-free finite elements on tetrahedral grids for \(k\geqslant 6\). Math. Comput. 80, 669–695 (2011)

    Article  MATH  Google Scholar 

  44. Zhang, S.: Quadratic divergence-free finite elements on Powell-Sabin tetrahedral grids. Calcolo 48, 211–244 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhang, S.: Stable finite element pair for stokes problem and discrete stokes complex on quadrilateral grids. Numer. Math. 133, 371–408 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhang, S.: Minimal consistent finite element space for the biharmonic equation on quadrilateral grids. IMA J. Numer. Anal. 40, 1390–1406 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, S.: An optimal piecewise cubic nonconforming finite element scheme for the planar biharmonic equation on general triangulation. Sci. China Math. 64, 2579–2602 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhai, Q., Zhang, R., Wang, X.: A hybridized weak Galerkin finite element scheme for the Stokes equations. Sci. China Math. 58, 2455–2472 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their valuable comments and suggestions.

Funding

The research is supported by NSFC (No. 11871465) and CAS (No. XDB41000000). The authors have no relevant financial or non-financial interests to disclose. The work has no associated data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Zhang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

A The Most Natural Linear–Constant Pair is not Stable: A Numerical Verification

In this section, we show by numerics the pair, \(\varvec{V}{}{}_{h0}^1\)\(\mathbb {P}^0_{h0}\), defined in Remark 5.3, is not stable on general triangulations, whereas

$$\begin{aligned} \displaystyle \inf _{q_h\in \mathrm{div}\,\varvec{V}{}{}_{h0}^1}\sup _{\varvec{v}{}{}_h\in \varvec{V}{}{}_{h0}^1}\frac{(\mathrm{div}\,\varvec{v}{}{}_h,q_h)}{\Vert q_h\Vert _{0,\varOmega }|\varvec{v}{}{}_h|_{1,h}}= \mathscr {O}(h) \end{aligned}$$
(A.1)

on a specific kind of triangulations.

1.1 A.1 A special triangulation and finite element space

We consider the computational domain \(\varOmega = (0,1)\times (0,1) \setminus ( \{(x,y) : 0 \leqslant x \leqslant \frac{1}{2}, x + \frac{1}{2} \leqslant y \leqslant 1\} \cup \{ (x,y) : \frac{1}{2} \leqslant x \leqslant 1, 0 \leqslant y \leqslant x - \frac{1}{2} \})\). The initial triangulation is shown in Fig. 14a, and a sequence of triangulations is obtained by refining it uniformly (cf. Fig. 14b).

Fig. 14
figure 14

An initially divisioned grid and its sketch map after uniform refinements

Given a patch \(P_A\) as shown in Fig. 14a, we denote \( \varvec{V}{}{}_{h0}^1(P_A) = \mathrm{span} \{ \varvec{\varphi }{}{}_1^A, \varvec{\varphi }{}{}_2^A, \varvec{\varphi }{}{}_3^A \}\), and for \(i=1:6, \ \varvec{V}{}{}_{h0}^1(T_i) = \mathrm{span} \{ \varvec{\varphi }{}{}_{T_i}^1, \varvec{\varphi }{}{}_{T_i}^2, \varvec{\varphi }{}{}_{T_i}^3 \}\). Specifically, for \(s=1:2, \ i=1:6, \, \varvec{\varphi }{}{}_s^A|_{T_i}=\varvec{\varphi }{}{}_{T_i}^s\), and for \(s=3\),

$$\begin{aligned} \varvec{\varphi }{}{}_3^A = \left\{ \begin{aligned}&\varvec{\varphi }{}{}_{T_1}^1 - 2 \varvec{\varphi }{}{}_{T_1}^2 + \varvec{\varphi }{}{}_{T_1}^3 , \ in \ T_1;&\varvec{\varphi }{}{}_{T_2}^1 - \varvec{\varphi }{}{}_{T_2}^2 - \varvec{\varphi }{}{}_{T_2}^3 , \ in \ T_2;\\&2 \varvec{\varphi }{}{}_{T_3}^1 - \varvec{\varphi }{}{}_{T_3}^2 + \varvec{\varphi }{}{}_{T_3}^3 , \ in \ T_3;&\varvec{\varphi }{}{}_{T_4}^1 - 2 \varvec{\varphi }{}{}_{T_4}^2 + \varvec{\varphi }{}{}_{T_4}^3 , \ in \ T_4;\\&\varvec{\varphi }{}{}_{T_5}^1 - \varvec{\varphi }{}{}_{T_5}^2 - \varvec{\varphi }{}{}_{T_5}^3 , \ in \ T_5;&2 \varvec{\varphi }{}{}_{T_6}^1 - \varvec{\varphi }{}{}_{T_6}^2 + \varvec{\varphi }{}{}_{T_6}^3 , \ in \ T_6;\\ \end{aligned} \right. \end{aligned}$$

where for \(i=1:6\), \( \varvec{\varphi }{}{}_{T_i}^1= \left( \begin{array}{c} \lambda \\ 0 \\ \end{array} \right) \), \( \varvec{\varphi }{}{}_{T_i}^2= \left( \begin{array}{c} 0 \\ \lambda \\ \end{array} \right) \), and \( \varvec{\varphi }{}{}_{T_1}^3= \left( \begin{array}{c} \lambda _6-\lambda _1\\ 0 \end{array} \right) \), \( \varvec{\varphi }{}{}_{T_2}^3= \left( \begin{array}{c} \lambda _1-\lambda _2\\ \lambda _1-\lambda _2 \end{array} \right) \), \( \varvec{\varphi }{}{}_{T_3}^3= \left( \begin{array}{c} 0\\ \lambda _2-\lambda _3 \end{array} \right) \), \( \varvec{\varphi }{}{}_{T_4}^3= \left( \begin{array}{c} \lambda _3-\lambda _4\\ 0 \end{array} \right) \), \( \varvec{\varphi }{}{}_{T_5}^3= \left( \begin{array}{c} \lambda _4-\lambda _5\\ \lambda _4-\lambda _5 \end{array} \right) \), \( \varvec{\varphi }{}{}_{T_6}^3= \left( \begin{array}{c} 0\\ \lambda _5-\lambda _6 \end{array} \right) \).

Similarly to Lemma 4.3, we can show the lemma below:

Lemma A.1

\(dim(\varvec{V}{}{}_{h0}^{1})=3 \# \mathscr {X}_h^i\) and \(\varvec{V}{}{}_{h0}^1=\mathrm{span}\{ \varvec{\varphi }{}{}_1^A, \varvec{\varphi }{}{}_2^A, \varvec{\varphi }{}{}_3^A, A \in \mathscr {X}_h^i \}\).

1.2 A.2 Numerical Verification of the Inf-sup Constant

By the Courant’s min-max theorem, it is easy to show the lemma below:

Lemma A.2

With respect to any set of basis functions of \(\varvec{V}{}{}_{h0}^1\) and \(\mathbb {P}^0_h\), denote by A the stiffness matrix of \((\nabla _h\,\cdot ,\nabla _h\,\cdot )\) on \(\varvec{V}{}{}_{h0}^1\), by M the mass matrix of \((\cdot ,\cdot )\) on \(\varvec{V}{}{}_{h0}^1\), and by B the stiffness matrix of \((\mathrm{div}\,\cdot ,\cdot )\) on \(\varvec{V}{}{}_{h0}^1\times \mathbb {P}^0_h\). Then

$$\begin{aligned} \inf _{q_h\in \mathrm{div}\,\varvec{V}{}{}_{h0}^1}\sup _{\varvec{v}{}{}_h\in \varvec{V}{}{}_{h0}^1}\frac{(\mathrm{div}\,\varvec{v}{}{}_h,q_h)}{\Vert q_h\Vert _{0,\varOmega }|\varvec{v}{}{}_h|_{1,h}}= \lambda ^+_{\min }, \end{aligned}$$

where \(\lambda ^+_{\min }\) is the smallest positive eigenvalue of the matrix eigenvalue problem

$$\begin{aligned} BA^{-1}B^{T} \mathrm{v} = {\lambda } M \mathrm{v}. \end{aligned}$$
(A.2)

The maximum eigenvalue of the eigenvalue problem (A.2) is denoted by \(\lambda _{\max }\). Table 3 displays the computed values of \(\lambda ^+_{\min }\) and \(\lambda _{\max }\) on a series of refined grids. Figure 15 illustrates that \(\lambda ^+_{\min }\) degenerates in the rate of \(\mathscr {O}(h)\). This verifies (A.1) numerically.

Table 3 Computed values of \(\lambda _{\min }^+\) and \(\lambda _{\max }\)
Fig. 15
figure 15

\(\lambda _{min}^+\) decays along with mesh refinements

B Proofs of Lemmas 4.3 and  5.3

1.1 B.1 Proof of Lemma 4.3

In this subsection, we provide the proof of Lemma 4.3, which establishes a basis of \(\varvec{Z}{}_{h0}\). To this end, we need to analyze \(\varvec{Z}{}_{h0}|_T\) with \(T\in \mathscr {T}_h\) firstly.

For the interior cell \(T\in \mathscr {T}_h^i\) with vertices \(A_i\), \(i=1:3\), and neighboring cells \(T_j\), \(j=1:3\), it is covered by functions of the set \(\varvec{\Psi }{}_h(T)=\{\varvec{\psi }{}^{A_1}|_T,\varvec{\psi }{}^{A_2}|_T,\varvec{\psi }{}^{A_3}|_T,\varvec{\psi }{}_{T}|_T,\varvec{\psi }{}_{T_1}|_T,\varvec{\psi }{}_{T_2}|_T,\varvec{\psi }{}_{T_3}|_T\}\);see Fig. 16 for an illustration. It is clear that the seven functions in \(\varvec{\Psi }{}_h(T)\) are linearly dependent; however, any six of them are linearly independent. For conciseness, a particular case is stated in the following lemma, which also serves Lemma 4.3.

Lemma B.1

For the interior cell \(T\in \mathscr {T}_h^i\), with vertices \(A_i,\ i=1:3\) and neighboring cells \(T_j,\ j=1:3\) (see Fig. 16 for an illustration), the functions in \(\{ \varvec{\psi }{}^{A_2}|_{T}, \varvec{\psi }{}^{A_3}|_{T}, \varvec{\psi }{}{}_{T}|_{T}, \varvec{\psi }{}{}_{T_1}|_{T}, \varvec{\psi }{}{}_{T_2}|_{T}, \varvec{\psi }{}{}_{T_3}|_{T}\}\) are linearly independent.

Fig. 16
figure 16

Illustration of the supports of all kernel basis functions upon one cell

Proof

With the help of (4.3) and (4.4), a direct calculation leads to

$$\begin{aligned}&\left( \varvec{\psi }{}^{A_2}|_{T}, \varvec{\psi }{}^{A_3}|_{T}, \varvec{\psi }{}{}_{T}|_{T}, \varvec{\psi }{}{}_{T_1}|_{T}, \varvec{\psi }{}{}_{T_2}|_{T}, \varvec{\psi }{}{}_{T_3}|_{T} \right) ^\top \nonumber \\&\quad ={\textbf {A}} \left( \varvec{w}{}{}_{T,e_2,e_3}, \varvec{w}{}{}_{T,e_3,e_1}, \varvec{w}{}{}_{T,e_1,e_2}, \varvec{w}{}{}_{T,e_1}, \varvec{w}{}{}_{T,e_2}, \varvec{w}{}{}_{T,e_3}\right) ^\top ,\nonumber \\&\qquad \text{ with }\ \ {\textbf {A}}= \left[ \begin{array}{cccccc} 0 &{} 1 &{} 0 &{} \frac{d_2 d_5 \sin {(\alpha _3+\gamma _3)}}{2(S_1+S)} &{} 0 &{} \frac{d_2 d_8 \sin {(\alpha _1+\beta _1)}}{2(S_3+S)} \\ 0 &{} 0 &{} 1 &{} \frac{d_3 d_4 \sin {(\alpha _2+\beta _2)}}{2(S_1+S)} &{} \frac{d_3 d_7 \sin {(\alpha _1+\gamma _1)}}{2(S_2+S)} &{} 0 \\ \frac{1}{3} &{} \frac{1}{3} &{} \frac{1}{3} &{} \frac{S_1-2S}{3(S_1+S)} &{} \frac{S_2-2S}{3(S_2+S)} &{} \frac{S_3-2S}{3(S_3+S)} \\ 0 &{} 0 &{} 0 &{} \frac{S}{S_1+S} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} \frac{S}{S_2+S} &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \frac{S}{S_3+S} \end{array}\right] . \end{aligned}$$

As \(\displaystyle \det ({\textbf {A}})=\frac{1}{3} \prod _{i=1:3} \frac{S}{S+S_i}\ne 0\) and \(\left\{ \varvec{w}{}{}_{T,e_2,e_3}, \varvec{w}{}{}_{T,e_3,e_1}, \varvec{w}{}{}_{T,e_1,e_2}, \varvec{w}{}{}_{T,e_1}, \varvec{w}{}{}_{T,e_2}, \varvec{w}{}{}_{T,e_3}\right\} \) are linearly independent, it concludes that \(\left\{ \varvec{\psi }{}^{A_2}|_{T}, \varvec{\psi }{}^{A_3}|_{T}, \varvec{\psi }{}{}_{T}|_{T}, \varvec{\psi }{}{}_{T_1}|_{T}, \varvec{\psi }{}{}_{T_2}|_{T}, \varvec{\psi }{}{}_{T_3}|_{T} \right\} \) are linearly independent.\(\square \)

Remark B.1

If a cell \(T\in \mathscr {T}_h\) has one (or more) vertices aligned on the boundary, then it is covered by no more than two interior vertex patches and contained in the supports of no more than six vertex- or cell-related kernel basis functions; the restriction of these six functions on T is linearly independent.

Proof of Lemma 4.3

We only have to prove that the functions of \(\varPhi _h(\mathscr {T}_h)\) are linearly independent. Indeed, provided that the set \(\varPhi _h(\mathscr {T}_h)\) is linearly independent, \(\dim (\mathrm{span}(\varPhi _h(\mathscr {T}_h))) = \# \mathscr {X}^i_h + \# \mathscr {T}^i_h = 3 \# \mathscr {X}^i_h -2 = 3\# \mathscr {E}^i_h - (3 \# \mathscr {T}_h - 1) =\dim (\varvec{V}{}{}_{h0}^\mathrm{sBDFM})-\dim (\mathbb {P}^1_{h0})=\dim (\varvec{V}{}{}_{h0}^\mathrm{sBDFM})-\dim (\mathrm{div}\,\varvec{V}{}{}_{h0}^\mathrm{sBDFM})=\dim (\varvec{Z}{}{}_{h0})\), and thus \(\varvec{Z}{}{}_{h0}=\mathrm{span}\left( \varPhi _h(\mathscr {T}_h)\right) \).

Now, given \(\displaystyle \varvec{\psi }{}{}_h=\sum _{A\in \mathscr {X}_h^i}c_A\varvec{\psi }{}^A+\sum _{T\in \mathscr {T}_h^i}c_T\varvec{\psi }{}{}_T=0\), we show that all \(c_A\) and \(c_T\) are zero. Similar to [46], we adopt a sweeping process here. Given \(a\in \mathscr {X}_h^b\), let T be such that a is a vertex of T. Then,

$$\begin{aligned} \varvec{\psi }{}{}_h|_T=\sum _{A\in \mathscr {X}_h^i\cap \overline{T}}c_A\varvec{\psi }{}^A|_T+\sum _{T'\in \mathscr {T}_h^i,T'\ \text{ and }\ T\ \text{ share } \text{ a } \text{ common } \text{ edge }}c_{T'}\varvec{\psi }{}{}_{T'}|_T=0. \end{aligned}$$

By Lemma B.1 and Remark B.1, \(c_A=0\) for \(A\in \mathscr {X}_h^i\cap \overline{T}\) and \(c_{T'}=0\) for \(T'\in \mathscr {T}_h^i\), where \(T'\) and T share a common edge. Therefore, \(c_A=0\) for any vertex \(A\in \mathscr {X}_h^i\) that is connected to one boundary vertex \(a\in \mathscr {X}_h^b\), and \(c_T=0\) for any \(T\in \mathscr {T}_h^i\) that connects to a boundary vertex \(a\in \mathscr {X}^b_h\). Similarly, we can show

$$\begin{aligned} c_A=0\ \forall \,A\in \mathscr {X}_h^{b,+2},\ \ \ c_T=0\ \forall \,T\in \mathscr {T}_h\ \text{ that } \text{ connects } \text{ to } \mathscr {X}_h^{b,+1}. \end{aligned}$$

Repeating the procedure recursively, finally, we obtain

$$\begin{aligned} c_A=0 \ \forall \, A \in \mathscr {X}_h^{b,+k},\ \ \ c_T=0\ \forall \,T\in \mathscr {T}_h\ \text{ that } \text{ connects } \text{ to } \mathscr {X}_h^{b,+(k-1)} \end{aligned}$$

where k is the number of levels of the triangulation \(\mathscr {T}_h\). Therefore, \(c_A\) and \(c_T\) are all zero, and the functions of \(\varPhi _h(\mathscr {T}_h)\) are linearly independent. The proof is completed. \(\square \)

1.2 B.2 Proof of Lemma 5.3

In this subsection, we provide the proof of Lemma 5.3, which establishes a basis of \(\varvec{V}{}_{h0}^\mathrm{el}\).

Proof of Lemma 5.3

Evidently, \(\varvec{V}{}{}_{h0}^\mathrm{el}\supset \mathrm{span}\{\varvec{\psi }{}{}_e,\ e\in \mathscr {E}_h^i;\ \varvec{\psi }{}{}_T,\ T\in \mathscr {T}_h^i\}\). So we turn to the other direction.

First, we show \(\mathrm{span}\{\mathrm{div}\,\varvec{\psi }{}{}_e,\ e\in \mathscr {E}_h^i\}=\mathbb {P}^0_{h0}.\) For both cases, as in Fig. 6, \(\mathrm{div}\, \varvec{\psi }{}{}_e=\frac{1}{S_1}\) on \(T_1\) and \(-\frac{1}{S_2}\) on \(T_2\), and vanishes on all the other cells. A simple algebraic argument leads to this assertion.

Second, all functions of \(\varvec{Z}{}{}_{h0}\) can be represented by these functions. We only have to verify it for any kernel function, which is supported in a vertex patch. \(\square \)

Fig. 17
figure 17

Illustration of the support of \(\varvec{\psi }{}{}_{e_i}\). Left: \(e_i\) has one interior vertex; Right: \(e_i\) has two interior vertices

In fact, for an interior vertex A, \(P_A=\cup _{i=1:m}T_i\), \(\overline{T}_{i}\cap \overline{T}_{i+1}=e_i\), \(T_{m+1}=T_1\) and \(e_i\) connects A and \(A_i\). Denote for \(i=1:m\) (see Fig. 17)

$$\begin{aligned} \varvec{\psi }{}{}_{e_i}^* = \left\{ \begin{aligned}&\varvec{\psi }{}{}_{e_i}, \ A_i \in \mathscr {X}_h^b, \\&\varvec{\psi }{}{}_{e_i} + \frac{1}{2} \varvec{\psi }{}{}_{T_i} + \frac{1}{2} \varvec{\psi }{}{}_{T_{i+1}}, \ A_i \in \mathscr {X}_h^i. \end{aligned} \right. \end{aligned}$$

We refer to (4.3), (4.4), (5.1), (5.2) for the expressions of \(\varvec{\psi }{}^A\), \(\varvec{\psi }{}{}_{T_i}\) and \(\varvec{\psi }{}{}_{e_i}\)(cf Figs. 5, 6 and 7). Then, in any event \(\mathrm{supp}(\varvec{\psi }{}{}_{e_i}^*)=T_{i-1} \cup T_{i} \cup T_{i+1} \cup T_{i+2} \subset P_A\), and \(\mathrm{div}\,\sum _{i=1:m}\varvec{\psi }{}{}_{e_i}^*=0\). Thus \(\sum _{i=1:m}\varvec{\psi }{}{}_{e_i}^*\in \varvec{Z}{}{}_A=\mathrm{span}\{\varvec{\psi }{}^A\}\). A further calculation gives \(\sum _{i=1:m}\varvec{\psi }{}{}_{e_i}^*=\varvec{\psi }{}^A\), which thus leads to

$$\begin{aligned} \displaystyle \varvec{\psi }{}^{A}= \sum _{i=1:m} \varvec{\psi }{}{}_{e_i} + \frac{1}{2}\sum _{i=1:m, \ A_i \in \mathscr {X}_h^i} ( \varvec{\psi }{}{}_{T_i} + \varvec{\psi }{}{}_{T_{i+1}} ). \end{aligned}$$

Now, \(\varvec{V}{}{}_{h0}^\mathrm{el}\) and \(\mathrm{span}\{\varvec{\psi }{}{}_e,\ e\in \mathscr {E}_h^i;\ \varvec{\psi }{}{}_T,\ T\in \mathscr {T}_h^i\}\) have the same range under the operator \(\mathrm{div}\). It also holds that \(\varvec{Z}{}{}_{h0}\subset \mathrm{span}\{\varvec{\psi }{}{}_e,\ e\in \mathscr {E}_h^i;\ \varvec{\psi }{}{}_T,\ T\in \mathscr {T}_h^i\}\). Thus, \(\varvec{V}{}{}_{h0}^\mathrm{el}=\mathrm{span}\{\varvec{\psi }{}{}_e,\ e\in \mathscr {E}_h^i;\ \varvec{\psi }{}{}_T,\ T\in \mathscr {T}_h^i\}\).

Further, \(\dim (\mathrm{span}\{\varvec{\psi }{}{}_e,\ e\in \mathscr {E}_h^i;\ \varvec{\psi }{}{}_T,\ T\in \mathscr {T}_h^i\})=\dim (\varvec{V}{}{}_{h0}^\mathrm{el})=\dim (\varvec{Z}{}{}_{h0}) + \dim (\mathbb {P}{}_{h0}^0) = \# \mathscr {X}^i_h + \# \mathscr {T}^i_h + \# \mathscr {T}_h - 1 = \# \mathscr {T}^i_h + \# \mathscr {E}^i_h=\#(\{\varvec{\psi }{}{}_e,\ e\in \mathscr {E}_h^i;\ \varvec{\psi }{}{}_T,\ T\in \mathscr {T}_h^i\})\). Therefore, the functions \(\{\varvec{\psi }{}{}_e,\ e\in \mathscr {E}_h^i;\ \varvec{\psi }{}{}_T,\ T\in \mathscr {T}_h^i\}\) are linearly independent, and they form a basis of \(\varvec{V}{}{}_{h0}^\mathrm{el}\). The proof is completed. \(\square \)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Zhang, S. A Lowest-Degree Conservative Finite Element Scheme for Incompressible Stokes Problems on General Triangulations. J Sci Comput 93, 28 (2022). https://doi.org/10.1007/s10915-022-01974-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01974-w

Keywords

Mathematics Subject Classification

Navigation