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Abstract

We propose entropy-preserving and entropy-stable partitioned Runge–Kutta
(RK) methods. In particular, we extend the explicit relaxation Runge–Kutta
methods to IMEX–RK methods and a class of explicit second-order multirate
methods for stiff problems arising from scale-separable or grid-induced stiffness
in a system. The proposed approaches not only mitigate system stiffness but also
fully support entropy-preserving and entropy-stability properties at a discrete
level. The key idea of the relaxation approach is to adjust the step completion
with a relaxation parameter so that the time-adjusted solution satisfies the
entropy condition at a discrete level. The relaxation parameter is computed by
solving a scalar nonlinear equation at each timestep in general; however, as for
a quadratic entropy function, we theoretically derive the explicit form of the
relaxation parameter and numerically confirm that the relaxation parameter
works the Burgers equation. Several numerical results for ordinary differential
equations and the Burgers equation are presented to demonstrate the entropy-
conserving/stable behavior of these methods. We also compare the relaxation
approach and the incremental direction technique for the Burgers equation with
and without a limiter in the presence of shocks.

Keywords: entropy conservation/stability, discontinuous Galerkin,
implicit-explicit, multirate integrator, Burgers equation

1. Introduction

High-order methods for solving partial differential equations are popular be-
cause of their high-order accuracy and low numerical dissipation and dispersion
errors, compared with low-order schemes [1]. In terms of numerical robustness,
however, the low-order schemes are still an attractive choice for computational
fluid dynamics because they are less prone to numerical instability than are
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high-order methods [2]. To this end, further stabilization techniques such as
artificial viscosity, slope limiting, or filtering are needed in the vicinity of shocks
or underresolved features.

The entropy-conserving and entropy-stable methods are an alternative way
to improve robustness by satisfying the entropy condition at a discrete level.
Tadmor [3] proposed entropy-conservative/stable finite-volume schemes, which
are extended to high-order methods [4, 5, 6, 7, 8, 9, 10] with two important
tools: the summation by parts (SBP) operator and flux-differencing techniques.
1 In particular, several entropy-stable discontinuous Galerkin (DG) methods
have been developed with collocated points on quadrilateral and hexagonal
meshes [11, 12], on triangular meshes [13], and with general points [2] by a
hybridized SBP operator.

From a time discretization perspective, Nordström and Lundquist in [14]
proposed SBP-based implicit time integrators to have fully discrete entropy-
stable schemes. The work in [15, 16] incorporated SBP in implicit Runge–
Kutta (RK) methods. Friedrich et al. [17] proposed entropy-stable space-time
methods. For entropy-stable explicit time integrators, Ketcheson [18] modified
the step completion in standard Runge–Kutta methods to guarantee the square
entropy conservation or stability, namely, L2 stability, which are referred to as
relaxation methods. 2

The relaxation idea stems from the earlier works of Sanz-Serna and Manoran-
jan [19, 20], which modified the time step size of the Leapfrog scheme for the
Korteweg–de Vries equation and nonlinear Schrödinger equations such that the
quadratic invariant is conserved at a fully discrete level. Ketcheson [18] revis-
ited this relaxation idea and developed relaxation Runge–Kutta methods that
guarantee conservation or stability for any inner-product norm. Relaxation
methods have been further extended to the multistep methods [21] and deferred
correction methods [22] and studied for Hamiltonian problems [23], compressible
Euler, and Navier–Stokes equations [24].

Inspired by the work in [18], we propose the relaxation methods for par-
titioned RK methods to tackle stiff problems. Specifically, we extend the re-
laxation RK methods to IMEX Runge–Kutta (IMEX RK) and the second–
order multirate Runge–Kutta (MRK2) method [25]. Chemical kinetics [26],
biochemical reactions [27], electrical circuits [28], and fluid mechanics [29] are
all examples of stiff problems in many engineering and scientific applications.
Partitioned Runge–Kutta (RK) methods define a class of integrators that use
different time-stepping algorithms for different problem components. The aim
of these methods is to avoid a monolithic algorithm when the problem at hand
has components with different dynamical properties, which may require suitable

1The former mimics the integration by parts at a discrete level, and the latter unveil
the mechanism underlying the skew-symmetric formulation. The split forms consist of both
conservative and nonconservative forms of equations such that the aliasing errors caused by
the volume integral terms become minimized.

2Classical explicit RK or linear multistep methods cannot preserve general quadratic in-
variants [18].
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treatment for computational efficiency. Two of the most popular partitioned RK
methods are implicit-explicit (IMEX) [30] and multirate [25].

IMEX schemes are widely used in multiscale problems including atmospheric [31,
32], ocean [33], sea-ice [34], shallow-water [29], and wind turbine models [35]
and in plasma simulations [36]. By treating the fastest waves implicitly, IMEX
methods overcome the stringent time step size of explicit methods and simplify
the fully implicit system solves by using an explicit integrator for the nonstiff
components. IMEX methods can also handle geometric-induced stiffness arising
from mesh refinement by treating the fine-grid solution implicitly [37]. Similarly,
multirate time integrators are a good candidate to tackle the stiffness issues. In
multirate methods, an original problem is split into several subproblems, allow-
ing different time step sizes on each subproblem. 3 Multirate methods are used
in various applications such as atmospheric [38, 39] and air pollution models [40],
the Burgers equation [25], Euler equations [41], and compressible Navier–Stokes
equations [42].

Our proposed approaches not only alleviate the stiffness in a system but also
provide entropy-preserving and entropy-stability properties at a fully discrete
level. While the relaxation method is a straightforward step correction pro-
cedure, users will benefit from having a formula for partitioned Runge–Kutta
methods. The presented methods could be a viable option to improve the ro-
bustness of stiff simulations. In particular, our contributions in this paper are
as follows.

1. We derive the entropy-conserving/stable conditions for relaxation IMEX
methods and provide an explicit relaxation expression for a class of IMEX
methods.

2. We provide a similar result as above for partitioned multirate Runge–
Kutta methods.

3. We demonstrate entropy stability and inner-product-based conservation
on several numerical examples that employ IMEX methods for problems
with stiff components and explicit multirate for problems with variable
dynamical scales.

This paper is organized as follows. In Section 1.2 we describe the model prob-
lems and the one-dimensional entropy-conserving/stable discontinuous Galerkin
spectral element method [8]. In Section 2 we introduce the entropy-conserving/stable
IMEX and MRK2 methods and provide a novel analysis for the relaxation pa-
rameters of the IMEX-RK and MRK2 methods. In Section 3 we demonstrate the
total mass conservation and the entropy conservation/stability of the proposed
methods through numerical examples. Specifically, for the Burgers equation, we
compare the relaxation approach and the incremental direction technique with
and without a limiter in the vicinity of a shock. In Section 4 we present our
conclusions.

3In IMEX methods, the same time step size is used for both sitff and nonstiff parts.
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1.1. Problem Statement

Underresolved solutions cause aliasing errors, which can trigger numerical
instability. This often happens when sharp gradient solutions are developed
with insufficient spatial and temporal resolutions. One idea to maintain stability
is to conserve or bound a quantity called entropy at a discrete level, which is a
convex functional of the solution. Moreover, some applications require quadratic
invariants preservation. This is not possible by directly using methods with
explicit partitions. Relaxation methods have been proposed for monolithic, that
is, single-partitioned (explicit), methods to overcome this limitation. This study
extends the relaxation concept to two different classes of partitioned Runge–
Kutta methods.

1.2. Model Problems and Spatial Discretization Methods

We introduce notation and model problems, along with a choice for the spa-
tial discretization, making the presentation of the new time-stepping algorithms
easier to follow.

1.2.1. Ordinary Differential Equation: Conserved Exponential Entropy

We consider the ordinary differential equation (ODE) example introduced
in [24]:

d

dt

(
q1

q2

)
=

(
− exp(q2)
exp(q1)

)
. (1)

This system preserves the exponential entropy of form

η(q) = exp(q1) + exp(q2).

1.2.2. Ordinary Differential Equation: Nonlinear Pendulum

We also consider the nonlinear pendulum described by the first-order ODE
system

d

dt

(
q1

q2

)
=

(
− sin(q2)

q1

)
, (2)

with initial condition q = (1.5, 0)T and entropy function η(q) = 0.5q2
1 − cos(q2).

1.2.3. Partial Differential Equation: The Burgers Equation

We consider the inviscid Burgers equation on the time and space interval
(t, x) ∈ [0, T ]× Ω:

∂q

∂t
+

1

2

∂q2

∂x
= 0 in [0, T ]× Ω, (3)

where q is a scalar quantity and Ω ⊂ R is the one-dimensional domain. When
considering implicit-explicit methods, we will split the spatial operator in two
by defining a linearized flux FL of F := 1

2q
2 by

FL := q̃q ,
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which will be treated implicitly, and the remaining nonlinear flux FN

FN :=
q2

2
− q̃q ,

with a reference state q̃ (for example, q̃ = qn: the numerical solution at tn),
which will be treated explicitly. We can now write (3) as the partitioned problem

∂q

∂t
+

∂

∂x
(q̃q)︸︷︷︸
FL

+
∂

∂x

(
q2

2
− q̃q

)
︸ ︷︷ ︸

FN

= 0 in Ω . (4)

1.2.4. Discontinuous Galerkin Spatial Discretization

We denote by Ωh := ∪NE

`=1K` the mesh containing a finite collection of non-
overlapping elements, K`, that partition Ω, where NE is the total number of
elements. Let ∂Ωh := {∂K : K ∈ Ωh} be the collection of the boundaries of
all elements. For two neighboring elements K+ and K− that share an interior
interface ε = K+ ∩K−, we denote by q± the trace of the solutions on ε from
K±. We define n− as the unit outward normal vector on the boundary ∂K−

of element K− and n+ = −n− as the unit outward normal of a neighboring
element K+. On the interior interfaces ε , we define the mean/average operator
{{v}}, where v is a scalar quantity, by {{v}} := 1

2 (v− + v+), and the jump
operator [[v]] := v+n+ + v−n−.

Let PN (D) denote the space of polynomials of degree at most N on a domain
D. Next, we introduce the following discontinuous piecewise polynomial space
as

Vh (Ωh) :=
{
v ∈ L2 (Ωh) : v|K ∈ P

N (K) ,∀K ∈ Ωh
}
,

and similar spaces Vh (K) by replacing Ωh with K. We define (·, ·)K as the
L2-inner product on an element K, and 〈·, ·〉∂K as the L2-inner product on
the element boundary ∂K. We also define the inner products as (·, ·)Ωh

:=∑
K∈Ωh

(·, ·)K and 〈·, ·〉∂Ωh
:=
∑
∂K∈∂Ωh

〈·, ·〉∂K . We define associated norms

as ‖ · ‖ := ‖ · ‖Ωh
:=
(∑

K∈Ωh
‖ · ‖2K

) 1
2 , where ‖ · ‖K = (·, ·)

1
2

K .
The entropy-conserving/stable DG skew-symmetric formulation [8] of (3) is

as follows: Seek qh ∈ Vh (Ωh) such that(
∂qh
∂t

, v

)
Ωh

:= 〈R(qh), v〉 , (5)

where

〈R(qh), v〉 :=
2

3

(
IN
(
q2
h

2

)
,
∂v

∂x

)
Ωh

− 1

6

((
IN
(
qh
∂qh
∂x

)
, v

)
Ωh

−
(
qh,

∂IN (qhv)

∂x

)
Ωh

)
−

〈
n
q̂2
h

2
, v

〉
∂Ωh
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for all v ∈ Vh (Ωh). Here, qh is a polynomial approximation to q on each

element K; that is, for x ∈ K, q ≈ qh :=
∑N
j=0 qj(t)`j(x) with nodal values

of uj = u(xj) and Lagrange basis function `j = ΠN
k=0,k 6=j

(
x−xj

xk−xj

)
satisfying

`j(xi) = δij (for j = 0, · · · , N); IN () is the interpolation operator such that

IN (f) :=
∑N
j=0 f(xj)`j(x); and f̂ =

q̂2h
2 is a numerical flux.

For the semi-discrete entropy-conserving formulation, we take the entropy-
conserving flux,

f̂EC :=
1

6

(
(q+
h )2 + (q−h )2 + q−h q

+
h

)
;

and for the semi-discrete entropy-stable formulation, we use the Lax–Friedrichs
flux,

f̂ES :=

{{
q2
h

2

}}
+
τ

2
[[qh]]

with τ := max(|q+
h |, |q

−
h |). The Lax–Friedrichs flux with the skew-symmetric

formulation yields the energy-stable DG method [8].
The split form of the energy-conserving/stable DG weak formulation of (4)

is as follows: seek qh ∈ Vh (Ωh) such that(
∂qh
∂t

, v

)
Ωh

:= 〈Lqh, v〉+ 〈N (qh), v〉 , (6)

where

〈Lqh, v〉 := −1

2

(
IN
(
∂q̃hqh
∂x

)
, v

)
Ωh

+
1

2

(
IN (q̃hqh),

∂v

∂x

)
Ωh

−
〈
n

( ̂̃qhqh − 1

2
q̃hqh

)
, v

〉
∂Ωh

,

〈N (qh), v〉 := 〈R(qh), v〉 − 〈Lqh, v〉 ,

for all v ∈ Vh (Ωh). We take ̂̃qhqh := {{q̃hqh}} for the entropy-conserving flux

and ̂̃qhqh := {{q̃hqh}}+ 1
2 max(|q̃±h |) [[qh]] for the Lax–Friedrichs flux. The reference

state q̃h is taken as the elementwise mean value of qh at tn, so that q̃h becomes
a constant on each element.

1.2.5. Flux Limiters

Entropy-conserving/stable schemes are provably stable, but it is still not
enough to eliminate high-frequency oscillations near a shock region. To control
the Gibbs phenomenon, we employ the limiter proposed by [13]. The idea is to
construct a linear function based on the two modified left and right values, q̌l

and q̌r for each element,

q̌l = qhK −m
(
qhK − ql, qhK+1 − qhK , qhK − qhK−1

)
, (7a)

q̌r = qhK +m
(
qr − qhK , qhK+1 − qhK , qhK − qhK−1

)
, (7b)

q̌ = qhK + (qK − qh)

(
q̌l + q̌r − 2qhK
ql + qr − 2qhK

)
, (7c)
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where ql := qh(x0) and qr := qh(xN ) are the leftmost and the rightmost values
on the Kth element, respectively; qhK is the mean value on the Kth element;
and m is the minmod function defined by

m(a, b, c) =

{
smin(|a|, |b|, |c|), if s = sgn(a) = sgn(b) = sgn(c)

0, otherwise
.

Once a solution is integrated by one time step, we apply the limiter to the
updated solution as a postprocessing task.

2. Entropy-Stable Time-Splitting Methods

In this section we propose entropy-conserving/stable IMEX and multirate
methods by using relaxation methods.

Given a scalar hyperbolic equation,

∂q

∂t
+
∂F

∂x
= 0, (8)

where x ∈ Ω with Ω convex, we define a convex function η : Ω → R called an
entropy function if there exists the entropy flux F satisfying ∂η

∂q
∂F
∂x = ∂F

∂x and

F = ϕF − ψ. Here, ϕ := ∂η
∂q and ψ are the entropy variable and potential flux,

respectively. We multiply the entropy variable to (8) and integrate it over the
domain, arriving at the tendency of the entropy function,(

∂η

∂t
, 1

)
Ωh

= −〈nF , 1〉∂Ωh
.

4 For a dissipative system, the entropy tendency should decrease:(
∂η

∂t
, 1

)
Ωh

≤ −〈nF , 1〉∂Ωh
. (9)

With periodic or compactly supported boundary conditions, the term on the
right-hand side vanishes; hence, the semi-discrete entropy stability is guaran-
teed. For a fully discretized system, we expect

(η(qh,n+1), 1)Ωh
≤ (η(qh,n), 1)Ωh

at a discrete level for a dissipative system; however, in practice the entropy con-
dition is not guaranteed for all times. Here, qh,n and qh,n+1 are approximations
to q at t = tn and t = tn+1, respectively. We will not include the subscript Ωh
in the inner product and h in q unless it is required explicitly.

4Here, we have used a chain rule, ∂η
∂t

= ∂η
∂q

∂q
∂t

= ϕ ∂q
∂t

.
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Remark 1. For the Burgers equation, with the entropy function η = q2

2 and

entropy flux F = q3

3 [43], the semi-discrete form in (9) yields

1

2

d

dt
‖q‖2 ≤ 〈q,R(q)〉 ,

where R(q) is in (5). The entropy stability implies L2 stability.

2.1. Relaxation Runge–Kutta Method

The standard explicit RK methods are

Qi = qn +4t
i−1∑
j=1

aijRj , i = 1, 2, · · · , s,

qn+1 = qn +4t
s∑
i=1

biRi,

where Ri := R(Qi) and aij and bi are scalar coefficients for s-stage RK methods.
The basic idea of the relaxation Runge–Kutta method [18, 24] is to adjust the
step completion with the relaxation parameter γ, effectively taking a modified
step size such that the entropy stability is ensured. The time-adjusted solution
at tn+γ(= tn + γ4t) is

q(tn + γ4t) ≈ qn+γ = qn + γ4t
s∑
i=1

(biRi) = γqn+1 + (1− γ)qn.

5 The change in the entropy from tn to tn+γ can be expressed as

η(qn+γ)− η(qn) = η(qn+γ)− η(qn)− γ4t
s∑
i=1

bi (Ri, ϕi)︸ ︷︷ ︸
:=θ(γ)

+ γ4t
s∑
i=1

bi (Ri, ϕi)

with ϕi := ϕ(Qi). The last term on the right-hand side is smaller than or equal
to zero, provided by γ > 0 and bi ≥ 0. With a root γ of θ(γ) = 0, the total
entropy is bounded, η(qn+γ) ≤ η(qn). Here the nonlinear scalar equation θ(γ) =
0 can be solved, for example, by Brent’s method, the Levenberg–Marquard
algorithm, or Newton’s method [24, 22].

Remark 2. The scheme using the q(tn+4t) ≈ qn+γ approximation is referred
to as an incremental direction technique (IDT) method [44]. The work in [18,
Theorem 2.7] shows that the IDT method is one order less accurate than the
relaxation approach.

5This is simply a weighted sum of the current and the next step solutions.
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2.2. Relaxation IMEX Methods

Consider a semi-discretized system,

∂q

∂t
= R(q) = f(q) + g(q).

Recall s-stage IMEX-RK methods [30, 45, 46, 47],

Qn,i = qn +4t
i−1∑
j=1

aijfj +4t
i∑

j=1

ãijgj , i = 1, . . . , s, (10a)

qn+1 = qn +4t
s∑
i=1

bifi +4t
s∑
i=1

b̃igi, (10b)

where fi = f (tn + ci4t, Qn,i), gi = g (tn + c̃i4t, Qn,i), qn = q(tn); Qn,i is the
ith intermediate state; and 4t is the time step size. The scalar coefficients aij ,

ãij , bi, b̃i, ci, and c̃i determine all the properties of a given IMEX-RK scheme.
For each stage, the intermediate state Qn,i is obtained in general by a nonlinear
solve,

Qn,i − ãii4tgj = qn +4t
i−1∑
j=1

(aijfj + ãijgj) .

Remark 3. A practical way to avoid the nonlinear solve is to linearize the
flux. To that end, we define a linear operator L(q̃) := ∂R

∂q

∣∣
q̃

and choose f(q) :=

R(q)−Lq and g(q) := Lq, where q̃ can be qn or Qn,i, i = 1, . . . , s. Then at each
stage the intermediate state Qn,i requires only a linear solve:

Qn,i − ãii4tLiQn,i = qn +4t
i−1∑
j=1

(aijNj + ãijLjQn,j) , (11)

where Ri = R(tn + ci4t, Qn,i), Li = L(tn + ci4t, q̃)Qn,i, and Ni = Ri − Li.

The relaxation IMEX-RK methods adjust the final time step size by

q(tn + γ4t) ≈ qn+γ = qn + γ4t
s∑
i=1

(
bifi + b̃igi

)
= γqn+1 + (1− γ)qn. (12)

Now, the change in the entropy from tn to tn+γ becomes

η(qn+γ)− η(qn) = η(qn+γ)− η(qn)− γ4t
s∑
i=1

(
bifi + b̃igi, ϕi

)
︸ ︷︷ ︸

:=θ(γ)

+ γ4t
s∑
i=1

(
bifi + b̃igi, ϕi

)
. (13)

9



Proposition 2.1. The relaxation IMEX-RK methods in (10a), (10b), and
(12) are entropy-conserving/stable with an entropy-conserving/stable spatial dis-
cretization of f(q) and g(q) and the relaxation parameter such that

η(qn+γ)− η(qn)− γ4t
s∑
i=1

(
bifi + b̃igi, ϕi

)
= 0. (14)

In particular, for energy entropy η(q) = 1
2‖q‖

2, the relaxation parameter is
explicitly determined by

γ = 2‖qn+1 − qn‖−24t
s∑
i=1

(
bifi + b̃igi, Qn,i − qn

)
.

Proof. By solving (14) for γ, the first, second, and third terms in (13) vanish.
With an entropy-conserving/stable spatial discretization of f and g, the last
term in (13) becomes nonpositive, that is, (fi, ϕi) ≤ 0 and (gi, ϕi) ≤ 0 for
i = 1, · · · , s, and hence η(qn+γ) ≤ η(qn).

By substituting η with the inner-product norm 1
2‖q‖

2 and by using (10b),
(14) can be written as

‖qn+γ‖2 − ‖qn‖2 − 2γ4t
s∑
i=1

(
bifi + b̃igi, Qn,i

)
= ‖γ (qn+1 − qn) + qn‖2 − ‖qn‖2 − 2γ4t

s∑
i=1

(
bifi + b̃igi, Qn,i

)
= γ2‖qn+1 − qn‖2 + 2γ (qn+1 − qn, qn)− 2γ4t

s∑
i=1

(
bifi + b̃igi, Qn,i

)
= γ2‖qn+1 − qn‖2 − 2γ4t

s∑
i=1

(
bifi + b̃igi, Qn,i − qn

)
= 0.

Rearranging a nonzero γ leads to the desired result.

Corollary 2.1.1. The relaxation IMEX-RK methods with bi = b̃i in (10a),
(10b), and (12) are entropy conserving/stable with an entropy-conserving/stable
spatial discretization R(q) = f(q) + g(q) and the relaxation parameter

η(qn+γ)− η(qn)− γ4t
s∑
i=1

bi (Ri, ϕi) = 0. (15)

In particular, for the energy entropy η(q) = 1
2‖q‖

2 and nonstationary solution,
the relaxation parameter is explicitly determined by

γ = 2‖qn+1 − qn‖−24t
s∑
i=1

bi (Ri, Qn,i − qn) .

10



Split zones 

Fast Zone Buffer Zone Slow Zone

Fast Buffer Slow Buffer

Figure 1: Illustration of MRK2 with a two-level decomposition: a domain is decomposed into
fine ( ) and coarse regions ( ). Depending on the grid size and the location, the fast, the
buffer, and the slow zones are identified. The fine region is considered the fast zone. The
coarse regions are composed of the buffer zone and the slow zone. The buffer next to the fast
zone is the fast buffer, while the buffer next to the slow zone is the slow buffer.

2.3. Relaxation Multirate Runge–Kutta Method

We apply the relaxation approach to the second-order multirate Runge–
Kutta method [25]. The MRK2 method is based on a partitioned Runge–Kutta
method where the second-order strong-stability-preserving Runge–Kutta [48]
serves as the base method; further details are given in [25].

Multirate methods can be applied in different contexts. To simplify the ex-
position and without the loss of generality, however, we focus here on geometric-
induced stiffness. We consider that some parts of a domain are spatially refined
with a fixed 2:1 balancing ratio; that is, the ratio of an element size to its
adjacent element size is at most 2. In the following, we first consider a two-
level decomposition and then generalize the idea to an arbitrary-level domain
decomposition.

2.3.1. Two-Level Decomposition

A domain is decomposed into two subdomains: coarse and fine regions with
the ratio of a 2:1 grid size. Depending on the grid size and the location, the
fast, the buffer, and the slow zones are identified as shown in Figure 1. The
fine region is considered the fast zone. The coarse regions are composed of the
buffer zone and the slow zone. The buffer next to the fast zone is the fast buffer,
while the buffer next to the slow zone is the slow buffer.

Table 1 shows the Butcher tableau for MRK2 with a two-level decomposition.
There are four global stages in all (s = 4). The solution on each element is
updated depending on what region the element belongs to: the fast zone, the
fast buffer, the slow buffer, and the slow zone. We assign zone number 1 for the
fast zone, 2 for the fast buffer, 3 for the slow buffer, and 4 for the slow zone.
The intermediate states and the next step solution for each zone number z are

Q
{z}
n,i = q{z}n +4t

i−1∑
j=1

a
{z}
ij R

{z}
j , i = 1, 2, · · · , s, (16a)

q
{z}
n+1 = q{z}n +4t

s∑
i=1

b
{z}
i R

{z}
i (16b)

for z = 1, · · · , 4.
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Table 1: Butcher tableau for MRK2 with a two-level decomposition.

0
1/2 1/2
1/2 1/4 1/4
1 1/4 1/4 1/2

1/4 1/4 1/4 1/4

(a) Fast zone/buffer

0
1 1
0 0 0
1 0 0 1

1/4 1/4 1/4 1/4

(b) Slow buffer

0
1 1
0 0 0
1 1 0 0

1/2 0 0 1/2

(c) Slow zone

The relaxation MRK2 for a two-level decomposition is

q{z}(tn + γ4t) ≈ q{z}n+γ = q{z}n + γ4t
s∑
i=1

biR
{z}
i = γq

{z}
n+1 + (1− γ)q{z}n (17)

for z = 1, · · · , 4.

Proposition 2.2. The relaxation MRK2 method for a two-level decomposi-
tion in (16a), (16b), and (17) are entropy conserving/stable with an entropy-
conserving/stable spatial discretization R and the relaxation parameter satisfying

η(qn+γ)− η(qn)− γ4t
4∑
z=1

s∑
i=1

b
{z}
i

(
R
{z}
i , ϕ

{z}
n,i

)
= 0. (18)

For the quadratic invariant 1
2‖q‖

2 and a dynamic solution (q
{z}
n+1 6= q

{z}
n ), the

relaxation parameter is explicitly determined:

γ = 2

(
4∑
z=1

‖q{z}n+1 − q{z}n ‖2
)−1

(4t)2
4∑
z=1

s∑
i=1

b
{z}
i

R{z}i ,

(
Q
{z}
n,i − q

{z}
n

)
4t

 .

Proof. The change in the entropy from tn to tn+γ becomes

η(qn+γ)− η(qn) = η(qn+γ)− η(qn)− γ4t
4∑
z=1

s∑
i=1

b
{z}
i

(
R
{z}
i , ϕ

{z}
n,i

)
︸ ︷︷ ︸

:=θ(γ)

+ γ4t
4∑
z=1

s∑
i=1

b
{z}
i

(
R
{z}
i , ϕ

{z}
n,i

)
. (19)

By solving (18) for γ, the first, second, and third terms in (19) vanish just
as in the IMEX case. With an entropy-conserving/stable spatial discretization
of R, the last term in (19) becomes again nonpositive.
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By substituting η with the inner-product norm 1
2‖q‖

2 and by using (16b),
(18) becomes

‖qn+γ‖2 − ‖qn‖2 − 2γ4t
4∑
z=1

s∑
i=1

b
{z}
i

(
R
{z}
i , Q

{z}
n,i

)
= γ2‖qn+1−qn‖2 +2γ

4∑
z=1

(
q
{z}
n+1 − q{z}n , q{z}n

)
−2γ4t

4∑
z=1

s∑
i=1

b
{z}
i

(
R
{z}
i , Q

{z}
n,i

)
= γ2‖qn+1 − qn‖2 − 2γ4t

4∑
z=1

s∑
i=1

b
{z}
i

(
R
{z}
i , Q

{z}
n,i − q

{z}
n

)
= 0.

Rearranging the last equation yields an explicit form for γ.

At each stage, communication occurs between the fast zone and the fast
buffer and between the fast buffer and the slow buffer. However, communication
happens only at the first and the last stages between the slow buffer and the
slow zone. After exchanging the interface data at the fourth stage, the right-
hand side of the slow buffer at the second stage is evaluated. Based on this
observation, we group the fast zone, the fast buffer, and the slow buffer by a
level block that has four stages, which we call a cycle. We will use the level
block notation for multilevel decomposition in the next section.

2.3.2. Beyond Two-Level Decomposition

We start by defining a level block. A level block (B) is formed by consecutive
elements with the same multirate level (`), each of which is assigned to a zone
number (z). That means a level block (B) consists of a fast zone (fz), fast
buffer (fb), and slow buffer (sb). 6 A level block (B) can have a neighbor level
block (N(B)) that has `± 1 multirate level. We let Lmax be the maximum level
and 0 be the minimum (root) level. We let sG := 2Lmax+1 be the total number
of global stages and let s{0} = 2 and s{`(B)} = 4 (for ` = 1, 2, · · · ) be the total
number of local stages of a level block (B). We also let m(B) := 2{`(B)}−1 be

the number of substeps and 4t{`(B)} :=
(

1
2

)`(B)−14t be the local time step size

of a level block (B) so that m(B)4t{`(B)} = 4t if `(B) > 0. When `(B) = 0,
we take m(B) = 1. We assume that each fast buffer (fz) and slow buffer (sb)
consist of one element.

The intermediate states and the next step solution of a level block (B) and

6We view the fast zone of level ` as the slow zone with respect to level `+ 1. For instance,
the level blocks with level 0 and level 1 in Figure 2 correspond to the fast zone, the buffer
zone, and the slow zone in Figure 1.
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a zone number (z) are written as

Q
{B,z}
n+ k

m(B)
,i

= q
{B,z}
n+ k

m(B)

+4t{`(B)}
i−1∑
j=1

a
{z}
ij R

{B,z}
n+ k

m(B)
,j
, (20a)

q
{B,z}
n+1 = q{B,z}n +4t{`(B)}

m(B)∑
r=1

s{`(B)}∑
i=1

b
{z}
i R

{B,z}
n+ r−1

m(B)
,i
, (20b)

where

q
{B,z}
n+ k

m(B)

= q{B,z}n +4t{`(B)}
k∑
r=1

s{`(B)}∑
i=1

b
{z}
i R

{B,z}
n+ r−1

m(B)
,i
,

for k = 0, 1, · · · ,m(B)− 1 and i = 1, · · · , s{`(B)}.
At the first global stage, all level blocks are activated, which means that the

intermediate states of all the level blocks are updated and exchanged between
adjacent active level blocks. At the second and the third global stages, the level
blocks that have the maximum level Lmax are activated. At the fourth global
stage, the level blocks that have Lmax and Lmax−1 levels are activated. This
implies that after one cycle, these level blocks are synchronized. This process is
repeated until all the level blocks are synchronized at the last global stage, sG.
We construct the activation table in Algorithm 1 to control the synchronization.
That is, according to the activation table, certain level blocks are activated at
a given global stage.

Algorithm 1 Activation Table for Level Blocks

Ensure: Given the maximum level (Lmax), construct the activation table
(actvTable) of the size sG × NB . Here, NB is the total number of level
blocks.

1: actvTable[:, :] = 0
2: for B in {1 : NB} do
3: nActv ← 2`(B)

4: d← 2(Lmax+1−`(B))

5: for i = 1 : nActv do
6: actvTable[ 1 + d(i− 1), B]← 1
7: actvTable[sG − d(i− 1), B]← 1
8: end for
9: end for

We give an example with a three-level decomposition in Figure 2, where three
level blocks (B1, B2, and B3) have 0, 1, and 2 multirate levels, respectively. The
maximum level is two, Lmax = 2; thus the total number of global stage becomes
sG = 8. B1 and B2 have one subcycle (m(B1) = m(B2) = 1), and B3 has
two subcycles (m(B3) = 2). At every subcycle, a level block (B) needs to be
synchronized with its neighbors (N (B)). The B3 level block communicates with

14



Three level problems
• Each level is consists of Fast zone/ Fast Buffer/ Slow Buffer
• Level2 slow buf talks with level1 fast zone at 1st, 4th, 5th, 8th stages
• Level1 slow buf talks with level0 fast zone at 1st, 8th stages 
• Synchronization at 4th and 8th stages

Fast zone Fast ZoneFast Buf Slow Buf

4

1

Synchronization after 4th global stage

Fast Buf Slow Buf Fast Zone

8

5

Synchronization after 8th global stage

1

8

Level 2 Level 1 Level 0

Figure 2: Illustration of MRK2 with a three-level decomposition: three level blocks (B1, B2,
and B3) have 0, 1, and 2 multirate levels, respectively. Each level block is composed of the
fast zone, the fast buffer, and the slow buffer. The maximum level is two, Lmax = 2. The
number of global stages (the depth of MRK2) is 8(= 2Lmax+1), and the number of local stage
of each level is 4 (except level 0). The B3 level block communicates with B2 level block at
four stages (i.e., 1, 4, 5, and 8 global stages), whereas the B2 level block exchanges interface
data with the B1 level block at two stages (i.e., 1 and 8 global stages).

the B2 level block at four stages (i.e., 1, 4, 5, and 8 global stages), whereas the
B2 level block exchanges the interface data with the B1 level block at two stages
(i.e., 1 and 8 global stages).

The intermediate states and the next step solution corresponding to Figure
2 yield

Q
{B1,z}
n,i = q{B1,z}

n + 24t
2∑
j=1

a
{z}
ij R

{B1,z}
n,j i = 1, 2,

Q
{B2,z}
n+ 0

1 ,i
= q{B2,z}

n +4t
4∑
j=1

a
{z}
ij R

{B2,z}
n,j i = 1, · · · , 4,

Q
{B3,z}
n+ 0

2 ,i
= q{B3,z}

n +
4t
2

4∑
j=1

a
{z}
ij R

{B3,z}
n,j i = 1, · · · , 4,

Q
{B3,z}
n+ 1

2 ,i
= q
{B3,z}
n+ 1

2

+
4t
2

4∑
j=1

a
{z}
ij R

{B3,z}
n+ 1

2 ,j
i = 1, · · · , 4,

and

q
{B1,z}
n+1 = q{B1,z}

n + 24t
2∑
i=1

b
{z}
i R

{B1,z}
n,i ,

q
{B2,z}
n+1 = q{B2,z}

n +4t
4∑
i=1

b
{z}
i R

{B2,z}
n,i ,

q
{B3,z}
n+1 = q{B3,z}

n +
4t
2

2∑
r=1

4∑
i=1

b
{z}
i R

{B3,z}
n+ r−1

2 ,i
,
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where

q
{B3,z}
n+ 1

2

= q{B3,z}
n +

4t
2

4∑
i=1

b
{z}
i R

{B3,z}
n,i ,

for z = 1, 2, 3.
The relaxation MRK2 for multilevel decomposition is

q
{B,z}
n+γ = q{B,z}n + γ4t{`(B)}

m(B)∑
r=1

s{`(B)}∑
i=1

b
{z}
i R

{B,z}
n+ r−1

m(B)
,i

(21)

for a level block B and a zone number z.

Proposition 2.3. Let NB be the number of level blocks. The relaxation MRK2
method for multilevel decomposition in (20a), (20b), and (21) are entropy con-
serving/stable with an entropy-conserving/stable spatial discretization R(q) and
the relaxation parameter

η(qn+γ)− η(qn)

− γ
NB∑
B=1

4t{`(B)}
3∑
z=1

m(B)∑
r=1

s{`(B)}∑
i=1

b
{z}
i

(
R
{B,z}
n+ r−1

m(B)
,i
, ϕ
{B,z}
n+ r−1

m(B)
,i

)
= 0. (22)

For the quadratic invariant 1
2‖q‖

2, the relaxation parameter is explicitly deter-
mined:

γ = 2

(
NB∑
B=1

3∑
z=1

‖q{B,z}n+1 − q{B,z}n ‖2
)−1

 NB∑
B=1

4t{`(B)}
3∑
z=1

m(B)∑
r=1

s{`(B)}∑
i=1

b
{z}
i

(
R
{B,z}
n+ r−1

m(B)
,i
, Q
{B,z}
n+ r−1

m(B)
,i
− q{B,z}n

) .

Proof. The change in the entropy from tn to tn+γ becomes

η(qn+γ)− η(qn) =

η(qn+γ)− η(qn)− γ
NB∑
B=1

4t{`(B)}
3∑
z=1

m(B)∑
r=1

s{`(B)}∑
i=1

b
{z}
i

(
R
{B,z}
n+ r−1

m(B)
,i
, ϕ
{B,z}
n+ r−1

m(B)
,i

)
︸ ︷︷ ︸

:=θ(γ)

+ γ

NB∑
B=1

4t{`(B)}
3∑
z=1

m(B)∑
r=1

s{`(B)}∑
i=1

b
{z}
i

(
R
{B,z}
n+ r−1

m(B)
,i
, ϕ
{B,z}
n+ r−1

m(B)
,i

)
. (23)

By solving (22) for γ, the first, second, and third terms in (23) vanish as
before. With an entropy-conserving/stable spatial discretization of R, the last
term in (23) becomes nonpositive as expected.
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By substituting η with the inner-product norm 1
2‖q‖

2 and using (20b), (22)
becomes

‖qn+γ‖2−‖qn‖2−2γ

NB∑
B=1

4t{`(B)}
3∑
z=1

m(B)∑
r=1

s{`(B)}∑
i=1

b
{z}
i

(
R
{B,z}
n+ r−1

m(B)
,i
, Q
{B,z}
n+ r−1

m(B)
,i

)

= γ2‖qn+1 − qn‖2 + 2γ

NB∑
B=1

3∑
z=1

(
q
{B,z}
n+1 − q{B,z}n , q{B,z}n

)

− 2γ

NB∑
B=1

4t{`(B)}
3∑
z=1

m(B)∑
r=1

s{`(B)}∑
i=1

b
{z}
i

(
R
{B,z}
n+ r−1

m(B)
,i
, Q
{B,z}
n+ r−1

m(B)
,i

)
= γ2‖qn+1 − qn‖2

− 2γ

NB∑
B=1

4t{`(B)}
3∑
z=1

m(B)∑
r=1

s{`(B)}∑
i=1

b
{z}
i

(
R
{B,z}
n+ r−1

m(B)
,i
, Q
{B,z}
n+ r−1

m(B)
,i
− q{B,z}n

)
= 0.

Rearranging the last equation yields the explicit γ.

For implementation, first we balance the multirate level of each element so
that all the level blocks have a 2:1 local time step size ratio to their adjacent
level blocks according to Algorithm 2. Next we construct the activation ta-
ble in Algorithm 1. Then we compute the entropy-conserving/stable solutions
according to (20).

3. Numerical Results

In this section we present several numerical experiments to demonstrate
the entropy-conserving/stable properties of the proposed IMEX methods and
the multirate methods. We compare standard methods, relaxation approaches,
and incremental direction techniques for both IMEX and multirate methods.
For IMEX methods, we use additive Runge–Kutta (ARK) methods [46], and
call them Relaxation-ARK and IDT-ARK for their relaxation and incremen-
tal direction techniques, respectively. For multirate methods, we employ the
second-order partitioned multirate Runge–Kutta (MRK2) methods [25], which
we refer to as Relaxation-MRK2 and IDT-MRK2 for their relaxation and in-
cremental direction techniques, respectively. We use the IMEX methods for
handling scale-separable stiffness on a uniform mesh and the multirate method
for dealing with geometric-induced stiffness on nonuniform meshes. We measure
the L2 error of q by ‖q− qr‖, where qr is either an exact solution or a reference
solution. The total entropy difference and the total mass difference are denoted
by |η(t)− η(0)| and |mass(t)−mass(0)| at time t, where mass(t) := (q, 1).

3.1. Entropy-Preserving IMEX for ODEs

Conserved Exponential Entropy

We take the initial condition of q = (1, 0.5)T for (1) and run the simula-
tions for t ∈ [0, 5] with 4t = 0.1. We plot the time series of the exponential
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Algorithm 2 Balancing Multirate Level of Elements

Ensure: Let K be the total number of elements. Let LE ∈ R be the initial
multirate levels of all elements. Let BLE ∈ R be the 2:1 balanced multirate
levels of all elements. That is, a level jump between adjacent elements is
at most one. Given LE, BLE is created. Let bs be the buffer size of two.
We assume that bs + 1 left/right boundary elements have the same level,
LE(1:bs+1) = `left and LE((K−bs):K) = `right.

1: Compute level difference, δLE(1:K−1) = LE(2:K) − LE(1:K−1)

2: idx← Find(δLE 6= 0)
3: cond = false; BLE ← LE
4: while !cond do
5: cond = true
6: for i in {1 : length(idx)} do
7: iK1 ← idx[i]
8: iK2 ← idx[i+ 1]
9: if (δLE(iK1) == −1) and (δLE(iK2) == −1) then

10: if (iK2 − iK1) < (bs+ 1) then
11: cond = false
12: nc = (bs+ 1)− (iK2 − iK1)
13: BLE(iK2+1:iK2+nc) = max(BLE(iK2+1:iK2+nc), LE(iK2))
14: end if
15: else if (δLE(iK1) == −1) and (δLE(iK2) == 1) then
16: if (iK2 − iK1) < (bs+ 1) then
17: cond = false
18: BLE(iK1+1:iK2) = max(BLE(iK2), LE(iK1))
19: end if
20: else if (δLE(iK1) == 1) and (δLE(iK2) == 1) then
21: cond = false
22: if (iK2 − iK1) < (bs+ 1) then
23: cond = false
24: nc = (bs+ 1)− (iK2 − iK1)
25: BLE(iK1+1−nc:iK1) = max(BLE(iK1+1−nc:iK1), LE(iK2))
26: end if
27: end if
28: end for
29: Update level of elements, LE ← BLE
30: Compute level difference, δLE(1:K−1) := LE(2:K) − LE(1:K−1) ∈ RK−1

31: idx← Find(δLE 6= 0)
32: end while

entropy in Figure 3. We observe that the total entropy differences for both
the Relaxation-ARK and IDT-ARK are below O(10−13), whereas the standard
ARK counterpart shows a difference of orders of magnitude, such as O(10−3),
as expected.
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Figure 3: ODE: conserved exponential entropy. Total entropy differences for both the
Relaxation-ARK and IDT-ARK are bounded within O(10−13), whereas the ARK counter-
part shows a difference of orders of magnitude, O(10−3).

Nonlinear Pendulum

For (2) we examine the entropy behavior and the solution trajectory over
time in Figure 4. We take 4t = 0.9 and run the simulations for t ∈ [0, 1000].
Both the Relaxation-ARK and IDT-ARK keep the pendulum in a track, but
standard ARK methods cannot hold the pendulum in the path. The total
entropy difference for both the Relaxation-ARK and IDT-ARK are bounded
within O(10−13); however, as expected, standard ARK methods have O(1) en-
tropy difference during the simulation.

3.2. Entropy-Stable IMEX for the Burgers Equation on a Uniform Mesh

We consider a Gaussian initial profile, which develops a shock as time passes
for the Burgers equation. The initial condition is given as

q(t = 0) = exp(−10x2)

on x ∈ [−1, 1]. A periodic boundary condition is applied.
We first perform temporal convergence studies with entropy-conserving (EC)

and entropy-stable (ES) fluxes for the ARK, Relaxation-ARK, and IDT-ARK
methods. In particular, we use the IMEX methods based on the linearized flux
in (6). We take the RK4 solution (with 4t = 5× 10−6, N = 3, and NE = 100)
as the “ground truth” solution and measure the relative errors at t = 0.2 (before
forming a shock) in Table 2 and Table 3.
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(b) Entropy difference

Figure 4: ODE: nonlinear pendulum. Both the Relaxation-ARK and IDT-ARK keep the
pendulum in a track, but standard ARK methods cannot hold the pendulum on the exact
path. The total entropy difference for both the Relaxation-ARK and IDT-ARK is bounded
below O(10−13); however, standard ARK methods have O(1) entropy difference during the
simulation.

In Table 2 we observe the second-order rate of convergence for both ARK2
and Relaxation-ARK2 with EC and ES fluxes. IDT-ARK2, however, shows the
first-order rate of convergence. This is a consequence of the time discretization
error of the IDT approach. Similarly, in Table 3, IDT-ARK3 shows a second-
order rate of convergence, which is one degree less accurate than that of its
ARK3 and Relaxation-ARK3 counterparts. As shown in both Table 2 and
Table 3, the relative error of Relaxation-ARK methods is slightly lower than
that of naive ARK methods.

To investigate the entropy-conserving properties of ARK methods, we con-
duct the numerical experiments for t ∈ [0, 2] with a uniform mesh of N = 3 and
NE = 800. The time step size of RK2 is taken as 4tRK = 3.125×10−5, whereas
the time step sizes of ARK, Relaxation-ARK, and IDT-ARK have 5 × 4tRK .
7 Figure 5 shows the time series of the total energy and its difference for the
RK2, ARK2, Relaxation-ARK2, IDT-ARK2, ARK3, Relaxation-ARK3, and
IDT-ARK3 methods. The second- and the third-order Relaxation-ARK and
IDT-ARK methods conserve their total energies within O(10−13) differences,
whereas ARK2 and ARK3 show a slightly decreasing trend of total energy.
This is because IMEX methods act as a high-frequency filter by treating the
fast-varying dynamics implicitly [29, 49]. As a result, energy-stable behavior
is observed for the standard ARK methods. RK2, however, does not have any
filter functionality, so its total energy shows an increasing trend.

We show snapshots at t = 1 in Figure 6. All numerical solutions suffer from
high-frequency noise arising from the Gibbs phenomenon in the presence of a
shock. However, the numerical solutions do not blow up thanks to the skew-
symmetric formulation [8]. Compared with RK2, ARK2 dramatically eliminates
the high-frequency oscillation. Relaxation-ARK2 and IDT-ARK2 also reduce
the high-frequency oscillation but not as significantly as ARK2.

7RK2 with 2×4tRK leads to blow up its numerical solution.
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Figure 5: Histories of total entropy and its difference of Gaussian example for the Burgers
equation with EC flux: the relaxation methods with EC flux conserve the total energy within
O(10−13).
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(c) Relaxation-ARK2

1.0
0

0.7
5

0.5
0

0.2
5

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

x

0.5

1.0

1.5

2.0

2.5

3.0

u

time=   1.000

(d) IDT-ARK2

Figure 6: Snapshots of Gaussian profile for the Burgers equation at t = 1: (a) RK2, (b)
ARK2, (c) Relaxation-ARK2, and (d) IDT-ARK2. The time step size of RK2 is taken as
4tRK = 3.125 × 10−5, whereas the time step sizes of ARK2, Relaxation-ARK2, and IDT-
ARK2 have 5 × 4tRK . The domain is discretized with a uniform mesh of N = 3 and
NE = 800.
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Table 2: Gaussian example: temporal convergence study of ARK2 methods conducted
on a uniform mesh of N = 3 and K = 100. Time step sizes are chosen as 4t =
0.00125 {1, 1/2, 1/4, 1/8, 1/16} with EC flux; and 4t = 0.005 {1, 1/2, 1/4, 1/8, 1/16} with ES
flux. By taking the RK4 solution with 4t = 5.0 × 10−6 as the “ground truth” solution,
we measure the relative errors of the ARK2, Relaxation-ARK2, and IDT-ARK2 methods at
t = 0.2.

flux dt
ARK2 Relaxation-ARK2 IDT-ARK2

Error Order Error Order Error Order

1.250e-03 1.60E-05 − 1.48E-05 − 1.30E-04 −
6.250e-04 4.00E-06 2.00 3.71E-06 2.00 6.65E-05 0.97

EC 3.125e-04 1.00E-06 2.00 9.29E-07 2.00 3.37E-05 0.98
1.563e-04 2.51E-07 2.00 2.32E-07 2.00 1.69E-05 0.99
7.813e-05 6.27E-08 2.00 5.81E-08 2.00 8.49E-06 1.00

5.000e-03 2.51E-04 − 2.32E-04 − 4.80E-04 −
2.500e-03 6.36E-05 1.98 5.88E-05 1.98 2.50E-04 0.94

ES 1.250e-03 1.60E-05 1.99 1.48E-05 1.99 1.30E-04 0.94
6.250e-04 4.00E-06 2.00 3.71E-06 2.00 6.65E-05 0.97
3.125e-04 1.00E-06 2.00 9.29E-07 2.00 3.36E-05 0.98

Next we examine the entropy-stable properties of the ARK methods. We
perform the simulations for t ∈ [0, 2] with N = 3 and NE = 800. The time
step size of RK2 is taken as 4tRK = 2.5× 10−4, whereas the time step sizes of
the other methods including the ARK2 method have 2.5×4tRK . 8 Compared
with EC flux, ES flux substantially eliminates numerical oscillations but still not
enough to remove nonphysical oscillations near shocks. Thus, we additionally
apply the limiter in (7) to a marched solution at every time step.

The snapshots at t = 1 are reported in Figure 7. All the methods with
the limiter successfully eliminate the spurious oscillations near the shock front.
The shock front, located near x = −0.25, is well captured for all methods
with/without the limiter in general. However, the IDT-ARK2 method with the
limiter shows the shock position error compared with other methods.

In Figure 8 the time histories of the total energy and its difference are re-
ported for ARK2, Relaxation-ARK2, IDT-ARK2, ARK3, Relaxation-ARK3,
and IDT-ARK3 with/without the limiter. (The RK2 result is also reported for
comparison.) All the methods with ES flux show entropy-stable behaviors re-
gardless of applying the limiter. This observation agrees with the work in [13,
Theorem 3.8].

In Figure 9 we also plot the time series of the total mass (a linear invariant)
for ARK2, Relaxation-ARK2, IDT-ARK2, ARK3, Relaxation-ARK3, and IDT-

8RK2 with 4tRK = 5× 10−4 leads to blowup of the numerical solution.
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(b) RK2 w/ limiter
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(d) ARK2 w/ limiter
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(e) Relaxation-ARK2
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(f) Relaxation-ARK2 w/ limiter
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(g) IDT-ARK2
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(h) IDT-ARK2 w/ limiter

Figure 7: Snapshots of Gaussian profile for the Burgers equation at t = 1 with entropy-stable
(ES) flux for (a) RK2, (b) RK2 with the limiter, (c) ARK2, (d) ARK2 with the limiter, (e)
Relaxation-ARK2, (f) Relaxation-ARK2 with the limiter, (g) IDT-ARK2, and (h) IDT-ARK2
with the limiter. The time step size of RK2 is taken as 4tRK = 2.5× 10−4, whereas the time
step sizes of other methods have 2.5×4tRK . The domain is discretized with a uniform mesh
of N = 3 and NE = 800.
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Table 3: Same as 2, except the third-order accurate methods.

flux 4t ARK3 Relaxation-ARK3 IDT-ARK3
Error Order Error Order Error Order

1.250e-03 4.76E-07 − 4.53E-07 − 1.02E-05 −
6.250e-04 6.03E-08 2.98 5.76E-08 2.98 2.54E-06 2.00

EC 3.125e-04 7.61E-09 2.99 7.29E-09 2.98 6.34E-07 2.00
1.563e-04 9.58E-10 2.99 9.18E-10 2.99 1.58E-07 2.00
7.813e-05 1.20E-10 2.99 1.15E-10 2.99 3.96E-08 2.00

5.000e-03 2.76E-05 − 2.58E-05 − 1.65E-04 −
2.500e-03 3.61E-06 2.93 3.41E-06 2.92 4.09E-05 2.01

ES 1.250e-03 4.59E-07 2.97 4.36E-07 2.97 1.02E-05 2.01
6.250e-04 5.79E-08 2.99 5.51E-08 2.99 2.54E-06 2.00
3.125e-04 7.26E-09 3.00 6.92E-09 2.99 6.34E-07 2.00

ARK3 with/without limiter, as well as RK2. As expected, all the methods
preserve the total mass within O(10−14) difference.

3.3. Entropy-Stable Multirate Methods for the Burgers Equation on a Nonuni-
form Mesh

We consider MRK2 methods on a nonuniform mesh for handling geometric-
induced stiffness. A one-dimensional domain is five times refined at the center
of the domain with a 2:1 grid ratio so that the biggest element is 32 times larger
than the smallest element, as shown in Figure 10a. In the MRK2 algorithm,
based on the ratio of the element sizes, multirate levels are assigned to each
element in Figure 10b, where the highest multirate level is five.

We first perform temporal convergence studies with the entropy-conserving
and entropy-stable fluxes for MRK2, Relaxation-MRK2, and IDT-MRK2 meth-
ods without using the limiter. We take the RK4 solution (with the fixed step
size of 4t = 5 × 10−6, N = 3, and NE = 196) as the “ground truth” solution
and measure the relative errors at t = 0.2 (before forming a shock) in Table
4. We also report the relative errors at t = 1 (after forming the shock) for the
entropy-stable flux.

The numerical solutions converge to the reference RK4 solution with second-
order accuracy for the MRK2, Relaxation-MRK2, and IDT-MRK2 methods
regardless of the EC/ES fluxes at t = 0.2. The error differences among MRK2,
Relaxation-MRK2, and IDT-MRK2 are within O(10−8). In particular, IDT-
MRK2 shows second-order accuracy in time. This is because both Relaxation-
MRK2 and IDT-MRK2 have tiny relaxation parameters (O(10−5)), and the
temporal error of IDT-MRK2 is not accumulated enough. This agrees with the
previous study in [18, Figure 9.], where both IDT-RK2 and Relaxation-RK2
show the second-order rate of convergence in time. However, at t = 1, the error
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Figure 8: Gaussian example for the Burgers equation: histories of total energy and its differ-
ence with ES flux for ARK methods (standard, relaxation, and IDT). All the methods with
ES flux show entropy-stable behaviors.
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Figure 9: Histories of total mass difference of Gaussian example for the Burgers equation with
ES flux: all the methods preserve the total mass within O(10−14) difference.
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(a) h/hmin
(b) MR levels for Lmax = 5

Figure 10: (a) Ratio of element sizes with respect to the minimum size of the elements and
(b) multirate levels of elements for Lmax = 5. Here, L is the maximum multirate (MR) level.
The center of the domain is five times refined with a 2 : 1 ratio so that the largest element
is 32 times bigger than the smallest element. Multirate level is assigned to each element
corresponding to the ratio of element sizes.

of IDT-MRK2 is at least sixty times larger than that of Relaxation-MRK2. We
also observe that the order of temporal accuracy of IDT-MRK2 drops to one
with larger time step sizes. The temporal error of IDT-MRK2 has accumulated
to the point where the theoretical convergence rate can be seen. This agrees
with Figure 7 where the location of the shock front for IDT-MRK2 is slightly
behind that of Relaxation-MRK2.

Next, we examine the entropy conservation of MRK2 methods. We perform
the simulations for t ∈ [0, 2] with N = 3 and K = 784 (Lmax = 5). The time step
size of RK2 is taken as4tRK = 6.25×10−6, whereas those of MRK2, Relaxation-
MRK2, and IDT-MRK2 have 4t = 20 × 4tRK . 9 Figure 11 shows the time
histories of the total energy and its difference for the RK2, MRK2, Relaxation-
RK2, Relaxation-MRK2, IDT-RK2, and IDT-MRK2 methods. We see that
both the relaxation and the IDT methods preserve the total energy during
the simulation. The difference between the total energy for the relaxation and
the IDT methods is around O(10−13), whereas the standard RK2 and MRK2
counterparts increase to O(10−1). We also show the snapshots at t = 1 in Figure
12. As expected, high oscillatory noises are observed, but numerical solutions
are still stable.

Now we examine the entropy stability of MRK2 methods with ES flux. We
perform the simulations for t ∈ [0, 2] with N = 3 and K = 784 (Lmax = 5).
The time step size of RK2 is taken as 4tRK = 5 × 10−5, whereas the time
step sizes of MRK2, Relaxation-MRK2, and IDT-MRK2 have 4t = 25×4tRK .
10 The snapshots at t = 1 are reported in Figure 13. Similar to Figure 7,

9RK2 with 4tRK = 1.25× 10−6 leads to blowup of its numerical solution.
10RK2 with 4tRK = 6.25× 10−5 yields a blowup solution.
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Figure 11: Histories of total energy and its difference of Gaussian example for the Burgers
equation with EC flux: the relaxation methods with EC flux conserve the total energy within
O(10−13).
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(c) Relaxation-MRK2
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Figure 12: Snapshots of Gaussian profile for the Burgers equation at t = 1 on a nonuniform
mesh with energy-conserving (EC) flux for (a) RK2, (b) MRK2, (c) Relaxation-MRK2, and
(d) IDT-MRK2. The time step size of RK2 is taken as 4tRK = 6.25×10−6, whereas those of
MRK2, Relaxation-MRK2, and IDT-MRK2 have 4t = 20×4tRK . The domain is discretized
with a nonuniform mesh of N = 3 and K = 784 (Lmax = 5).
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Table 4: Gaussian example: temporal convergence study for MRK2 methods performed with
EC and ES fluxes on a nonuniform mesh of N = 3 and K = 196 without using the limiter.
We use the time step sizes with 4t = 0.001 {1, 1/2, 1/4, 1/8, 1/16} for EC flux and 4t =
0.0025 {1, 1/2, 1/4, 1/8, 1/16} for ES flux. By taking the RK4 solution with the fixed step size
of 4t = 5.0× 10−6 as the “ground truth” solution, we measure the relative errors of MRK2,
Relaxation-MRK2, and IDT-MRK2 methods at t = 0.2 (before forming a shock). We also
report the relative errors at t = 1.0 (after forming the shock) for ES flux.

flux 4t MRK2 Relaxation-MRK2 IDT-MRK2
Error Order Error Order Error Order

1.000e-03 5.67E-06 − 5.68E-06 − 5.59E-06 −
5.000e-04 1.43E-06 1.98 1.43E-06 1.99 1.41E-06 1.98

EC 2.500e-04 3.61E-07 1.99 3.61E-07 1.99 3.56E-07 1.99
(t=0.2) 1.250e-04 9.05E-08 2.00 9.06E-08 2.00 8.94E-08 1.99

6.250e-05 2.27E-08 2.00 2.27E-08 2.00 2.24E-08 2.00

2.500e-03 7.43E-05 − 7.42E-05 − 9.22E-05 −
1.250e-03 1.68E-05 2.14 1.68E-05 2.14 1.78E-05 2.37

ES 6.250e-04 4.02E-06 2.07 4.02E-06 2.07 4.04E-06 2.14
(t=0.2) 3.125e-04 9.83E-07 2.03 9.83E-07 2.03 9.77E-07 2.05

1.563e-04 2.43E-07 2.02 2.43E-07 2.02 2.41E-07 2.02

2.500e-03 1.46E-03 − 1.59E-03 − 9.68E-02 −
1.250e-03 3.44E-04 2.08 3.01E-04 2.40 5.00E-02 0.95

ES 6.250e-04 8.35E-05 2.04 1.29E-04 1.22 1.36E-02 1.88
(t=1.0) 3.125e-04 2.06E-05 2.02 2.25E-05 2.53 3.31E-03 2.04

1.563e-04 5.11E-06 2.01 5.18E-06 2.12 8.22E-04 2.01

the IDT method suffers from phase errors. The shock front of IDT-MRK2 is
slightly lagged behind, and the error becomes severe when the limiter is applied.
This example demonstrates that the relaxation approach is better than the IDT
approach in terms of accuracy, especially when the limiter is applied.

Figure 14 shows the time histories of the total entropy and its difference
for the RK2, MRK2, Relaxation-RK2, Relaxation-MRK2, IDT-RK2, and IDT-
MRK2 methods with/without the limiter. All the methods show entropy-stable
behaviors. The entropy differences of all methods reach O(10−1) as time passes.
In Figure 15 the time history of the total mass difference is shown for the
RK2, MRK2, Relaxation-RK2, Relaxation-MRK2, IDT-RK2, and IDT-MRK2
methods with/without the limiter. In general, all the methods demonstrate
good total mass conservation. In particular, without the limiter, all the methods
preserve the total mass within O(10−14) error. With the limiter, however, the
total mass difference is bounded by O(10−12) for the RK2, Relaxation-RK2,
and IDT-RK2 methods and by O(10−13) for the MRK2, Relaxation-MRK2,
and IDT-MRK2 methods.
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(b) RK2 w/ limiter

1.0
0

0.7
5

0.5
0

0.2
5

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

x

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

u

time=   1.000

(c) MRK2

1.0
0

0.7
5

0.5
0

0.2
5

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

x

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

u

time=   1.000

(d) MRK2 w/ limiter
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(e) Relaxation-MRK2
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(f) Relaxation-MRK2 w/ limiter
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(g) IDT-MRK2
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(h) IDT-MRK2 w/ limiter

Figure 13: Snapshots of Gaussian profile for the Burgers equation at t = 1 on a nonuniform
mesh with entropy-stable (ES) flux for (a) RK2, (b) RK2 with limiter, (c) MRK2, (d) MRK2
with limiter, (e) Relaxation-MRK2, (f) Relaxation-MRK2 with limiter, (g) IDT-MRK2, and
(h) IDT-MRK2 with limiter. The time step size of RK2 is taken as4tRK = 5×10−5, whereas
those of MRK2, Relaxation-MRK2, and IDT-MRK2 have 4t = 25 ×4tRK . The domain is
discretized with a nonuniform mesh of N = 3 and K = 784 (Lmax = 5).
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(b) Total energy difference (ES)

Figure 14: Histories of total entropy and its difference of Gaussian example for the Burgers
equation with ES flux: all the methods with ES flux show entropy-stable behaviors.
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Figure 15: Histories of total mass difference of Gaussian example for the Burgers equation with
ES flux: without the limiter, the methods preserve the total mass within O(10−14). However,
the limiting procedure somehow affects the mass difference quantity, but the methods are
bounded by O(10−12)

30



(a) MR Levels

1.0
0

0.7
5

0.5
0

0.2
5

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

x

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

u

time=   1.000

(b) Relaxation-MRK2

Figure 16: (a) Multirate levels of elements for Lmax = 10 and (b) snapshot of Gaussian
profile for the Burgers equation at t = 1 on a nonuniform mesh with entropy-stable (ES)
flux for Relaxation-MRK2. The domain is discretized with a nonuniform mesh of N = 3 and
K = 3099.

We note that the relaxation approach in (20) is “global.” The entropy con-
servation/stability in time is imposed only at the synchronization time for all
steps, which corresponds to the coarsest time level. If numerical instability oc-
curs during the stage integration of the multirate method, then the instability
can lead to unstable numerical solutions. For this reason, when a shock oc-
curs, we recommend using entropy-stable flux rather than entropy-conserving
flux because the diffusive penalty term in entropy-stable flux helps mitigate the
numerical instability. Indeed, we numerically observed that the relaxation ap-
proach is stable with entropy-stable flux on deeply nested mesh refinement. We
perform a numerical simulation for t ∈ [0, 1] with 4t = 0.002. The computa-
tional domain is non-uniformly refined with Lmax = 10, N = 3, and NE = 3099.
Figure 16 shows the snapshot of Gaussian example at t = 1 without the limiter.
The shock front is highly resolved thanks to the fine resolution, and hence sharp
spikes at the shock front are reduced, compared with Figure 13e.

4. Conclusions

In this paper we present entropy-preserving/stable time discretization meth-
ods for partitioned Runge–Kutta schemes. Our work is an extension of the
explicit relaxation Runge–Kutta methods [18, 21] to partitioned Runge–Kutta
methods. In particular, we use the relaxation method to IMEX–RK methods
and to a class of explicit second-order multirate methods. IMEX-RK meth-
ods allow for a longer time step size than that restricted by explicit methods
by defining the linearized flux containing the fast wave in the system with the
stiffness being implicitly treated. Multirate methods decompose the original
problem into subproblems, where different time step sizes can be used locally
on each subproblem. Unlike IMEX-RK methods, multirate methods do not re-
quire any linear/nonlinear solve and, hence, are attractive for parallel computing
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if proper preconditioning is not available. In combination with entropy conser-
vation/stable spatial discretization, the proposed method successfully demon-
strates the entropy conservation and stability properties for a few ODEs and
the Burgers equation.

We numerically found that Relaxation-ARK approaches provide high-order
accuracy in time, whereas the Relaxation-MRK2 method has a second-order
rate of convergence, as expected. We also observed that the relaxation ap-
proach is one degree more accurate than the incremental direction technique
when enough temporal errors have accumulated. The location error of the in-
cremental direction technique is larger than the relaxation strategy, especially in
the presence of shocks. When the limiter is used, the inaccuracy becomes sub-
stantially worse. However, regardless of whether or not the limiter is applied,
all the Relaxation-ARK, Relaxation-MRK2, IDT-ARK, IDT-MRK2 methods
show entropy-conserving/stable behavior for the Burgers equation.

The key idea of the relaxation method is to adjust the step completion with
the relaxation parameter so that the time-adjusted solution satisfies entropy
conservation and stability properties. The relaxation parameter is computed by
solving a scalar nonlinear equation in general at each timestep; but, as for energy
entropy, the relaxation parameter can be determined explicitly. We theoretically
provided the explicit forms of the relaxation parameters for IMEX-RK methods
and the multirate methods and numerically verified that the explicit relaxation
parameters work for the Burgers equation.

We note that entropy conservation/stability in time is guaranteed only at
the coarsest time level. Numerical solutions may become unstable if numerical
instability arises during the stage integration of the IMEX or multirate meth-
ods. Because of the implicit correction step at each stage, Relaxation-ARK
approaches can reduce numerical instability. Relaxation-MRK2, on the other
hand, lacks the ability to manage instability during stage integration. There-
fore, with Relaxation-MRK2, entropy-stable flux is preferred above entropy-
conserving flux, especially on deep-nested mesh refinement. We showed that
Relaxation-MRK2 with entropy-stable flux performs well on the deep-nested
mesh refinement (with 10 levels).

To exploit more sophisticated problems, we will focus our future work on
extension to multidimensions as well as additional partial differential equations,
such as Euler equations. Working on entropy-conserving/entropy-stable cou-
pling techniques for multiphysics problems is also interesting.

Acknowledgments

This material is based upon work supported by the U.S. Department of
Energy, Office of Science, Office of Advanced Scientific Computing Research
(ASCR) and Office of Biological and Environmental Research (BER), Scientific
Discovery through Advanced Computing (SciDAC) program under Contract
DE-AC02-06CH11357 through the Coupling Approaches for Next-Generation
Architectures (CANGA) Project and ASCR Base Program.

32



Declaration

Availability of data and material

The datasets generated during and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Code availability

The code used to generate the results is available from the corresponding
author on reasonable request.

[1] M. Ainsworth, Dispersive and dissipative behaviour of high order discon-
tinuous Galerkin finite element methods, Journal of Computational Physics
198 (1) (2004) 106–130.

[2] J. Chan, On discretely entropy conservative and entropy stable discon-
tinuous Galerkin methods, Journal of Computational Physics 362 (2018)
346–374.

[3] E. Tadmor, The numerical viscosity of entropy stable schemes for systems of
conservation laws. I, Mathematics of Computation 49 (179) (1987) 91–103.

[4] G. S. Jiang, C.-W. Shu, On a cell entropy inequality for discontinuous
Galerkin methods, Mathematics of Computation 62 (206) (1994) 531–538.
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