Skip to main content
Log in

Accurate High-Order Tensor-Product Generalized Summation-By-Parts Discretizations of Hyperbolic Conservation Laws: General Curved Domains and Functional Superconvergence

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The goal of this paper is to outline the requirements for obtaining accurate solutions and functionals from high-order tensor-product generalized summation-by-parts discretizations of the steady two-dimensional linear convection and Euler equations on general curved domains. Two procedures for constructing high-order grids using either Lagrange or B-spline mappings are outlined. For the linear convection equation, four discretizations are derived and characterized—two based on the mortar-element approach and two based on the global summation-by-parts-operator approach. It is shown numerically that the schemes are dual consistent, and the requirements for achieving functional superconvergence for each set of methods are outlined. For the Euler equations, a dual-consistent mortar-element discretization is proposed and the practical requirements for obtaining accurate solutions and superconvergent functionals for problems of increasing practical relevance are delineated through theory and numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Bassi, F., Rebay, S.: High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comput. Phys. 138, 251–285 (1997)

    Article  MathSciNet  Google Scholar 

  2. Boom, P.D.: High-order implicit time-marching methods for unsteady fluid flow simulation. Ph.D. thesis, University of Toronto (2015)

  3. Boom, P.D., Zingg, D.W.: High-order implicit time-marching methods based on generalized summation-by-parts operators. SIAM J. Sci. Comput. 37(6), A2682–A2709 (2015)

    Article  MathSciNet  Google Scholar 

  4. Cockburn, B., Wang, Z.: Adjoint-based, superconvergent Galerkin approximations of linear functionals. J. Sci. Comput. 73(2–3), 644–666 (2017)

    Article  MathSciNet  Google Scholar 

  5. Craig Penner, D.A., Zingg, D.W.: Superconvergent functional estimates from tensor-product generalized summation-by-parts discretizations in curvilinear coordinates. J. Sci. Comput. 82(41), 1–32 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Crean, J., Hicken, J.E., Del Rey Fernández, D.C., Zingg, D.W., Carpenter, M.H.: Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements. J. Comput. Phys. 356, 410–438 (2018)

    Article  MathSciNet  Google Scholar 

  7. Del Rey Fernández, D.C., Boom, P.D., Carpenter, M.H., Zingg, D.W.: Extension of tensor-product generalized and dense-norm summation-by-parts operators to curvilinear coordinates. J. Sci. Comput. 80(3), 1957–1996 (2019)

    Article  MathSciNet  Google Scholar 

  8. Del Rey Fernández, D.C., Boom, P.D., Zingg, D.W.: A generalized framework for nodal first derivative summation-by-parts operators. J. Comput. Phys. 266, 214–239 (2014)

    Article  MathSciNet  Google Scholar 

  9. Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations. Comput. Fluids 95, 171–196 (2014)

    Article  MathSciNet  Google Scholar 

  10. Del Rey Fernández, D.C., Hicken, J.E., Zingg, D.W.: Simultaneous approximation terms for multi-dimensional summation-by-parts operators. J. Sci. Comput. 75(1), 83–110 (2018)

    Article  MathSciNet  Google Scholar 

  11. Deng, X., Min, Y., Mao, M., Liu, H., Tu, G., Zhang, H.: Further studies on geometric conservation law and applications to high-order finite difference schemes with stationary grids. J. Comput. Phys. 239, 90–111 (2013)

    Article  MathSciNet  Google Scholar 

  12. Fidkowski, K.J.: A high-order discontinuous Galerkin multigrid solver for aerodynamic applications. SM thesis, Massachusetts Institute of Technology (2004)

  13. Hartmann, R.: Adjoint consistency analysis of discontinuous Galerkin discretizations. SIAM J. Numer. Anal. 45(6), 2671–2696 (2007)

    Article  MathSciNet  Google Scholar 

  14. Hartmann, R., Leicht, T.: Generalized adjoint consistent treatment of wall boundary conditions for compressible flows. J. Comput. Phys. 300, 754–778 (2015)

    Article  MathSciNet  Google Scholar 

  15. Hicken, J.E., Zingg, D.W.: Parallel Newton–Krylov solver for the Euler equations discretized using simultaneous approximation terms. AIAA J. 46(11), 2773–2786 (2008)

    Article  Google Scholar 

  16. Hicken, J.E., Zingg, D.W.: Aerodynamic optimization algorithm with integrated geometry parameterization and mesh movement. AIAA J. 48(2), 400–413 (2010)

    Article  Google Scholar 

  17. Hicken, J.E., Zingg, D.W.: Superconvergent functional estimates from summation-by-parts finite-difference discretizations. SIAM J. Sci. Comput. 33(2), 893–922 (2011)

    Article  MathSciNet  Google Scholar 

  18. Hicken, J.E., Zingg, D.W.: Dual consistency and functional accuracy: a finite-difference perspective. J. Comput. Phys. 256, 161–182 (2014)

    Article  MathSciNet  Google Scholar 

  19. Hunter, J.D.: Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9(3), 90–95 (2007)

    Article  Google Scholar 

  20. Krivodonova, L., Berger, M.: High-order accurate implementation of solid wall boundary conditions in curved geometries. J. Comput. Phys. 211(2), 492–512 (2006)

    Article  MathSciNet  Google Scholar 

  21. Loken, C., Gruner, D., Groer, L., Peltier, R., Bunn, N., Craig, M., Henriques, T., Dempsey, J., Yu, C.H., Chen, J., Dursi, L.J., Chong, J., Northrup, S., Pinto, J., Knecht, N., Zon, R.V.: SciNet: lessons learned from building a power-efficient top-20 system and data centre. J. Phys. Conf. Ser. 256, 012026 (2010)

    Article  Google Scholar 

  22. Lu, J.C.C.: An a posteriori error control framework for adaptive precision optimization using discontinuous Galerkin finite element method. Ph.D. thesis, Massachusetts Institute of Technology (2005)

  23. Navah, F.: Development, verification and validation of high-order methods for the simulation of turbulence. Ph.D. thesis, McGill University (2018)

  24. Navah, F., Nadarajah, S.: On the verification of CFD solvers of all orders of accuracy on curved wall-bounded domains and for realistic RANS flows. Comput. Fluids 205, 104504 (2020)

    Article  MathSciNet  Google Scholar 

  25. Nolasco, I.R., Dalcin, L., Del Rey Fernández, D.C., Zampini, S., Parsani, M.: Optimized geometrical metrics satisfying free-stream preservation. Comput. Fluids 207, 104555 (2020)

    Article  MathSciNet  Google Scholar 

  26. Osusky, M., Zingg, D.W.: Parallel Newton–Krylov–Schur flow solver for the Navier–Stokes equations. AIAA J. 51(12), 2833–2851 (2013)

    Article  Google Scholar 

  27. Pierce, N.A., Giles, M.B.: Adjoint recovery of superconvergent functionals from PDE approximations. SIAM Rev. 42(2), 247–264 (2000)

    Article  MathSciNet  Google Scholar 

  28. Pulliam, T.H., Zingg, D.W.: Fundamental Algorithms in Computational Fluid Dynamics. Springer (2014)

    Book  Google Scholar 

  29. Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial-boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)

    Article  MathSciNet  Google Scholar 

  30. Thomas, P.D., Lombard, C.K.: Geometric conservation law and its application to flow computations on moving grids. AIAA J. 17(10), 1030–1037 (1979)

    Article  MathSciNet  Google Scholar 

  31. van der Vegt, J.J.W., van der Ven, H.: Slip flow boundary conditions in discontinuous Galerkin discretizations of the Euler equations of gas dynamics. Tech. Rep. NLR-TP-2002-300, National Aerospace Laboratory NLR (2002)

  32. Vinokur, M., Yee, H.: Extension of efficient low dissipation high order schemes for 3-D curvilinear moving grids. In: Frontiers of Computational Fluid Dynamics 2002, pp. 129–164 (2001)

  33. Worku, Z.A., Zingg, D.W.: Simultaneous approximation terms and functional accuracy for diffusion problems discretized with multidimensional summation-by-parts operators. J. Comput. Phys. 445, 110634 (2021)

    Article  MathSciNet  Google Scholar 

  34. Yan, J., Crean, J., Hicken, J.E.: Interior penalties for summation-by-parts discretizations of linear second-order differential equations. J. Sci. Comput. 75(3), 1385–1414 (2018)

    Article  MathSciNet  Google Scholar 

  35. Zwanenburg, P., Nadarajah, S.: On the necessity of superparametric geometry representation for discontinuous Galerkin methods on domains with curved boundaries. In: 23rd AIAA Computational Fluid Dynamics Conference (2017)

Download references

Acknowledgements

A portion of the plots appearing in this paper were created using Matplotlib [19].

Funding

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Government of Ontario, and the University of Toronto. A portion of the computations were performed on the Niagara supercomputer at the SciNet HPC Consortium [21]. SciNet is funded by: the Canada Foundation for Innovation; the Government of Ontario; Ontario Research Fund - Research Excellence; and the University of Toronto.

Author information

Authors and Affiliations

Authors

Contributions

David A. Craig Penner: Conceptualization, Methodology, Software, Writing – original draft; David W. Zingg: Conceptualization, Methodology, Supervision, Writing – review & editing.

Corresponding author

Correspondence to David A. Craig Penner.

Ethics declarations

Competing interests

The authors have no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Craig Penner, D.A., Zingg, D.W. Accurate High-Order Tensor-Product Generalized Summation-By-Parts Discretizations of Hyperbolic Conservation Laws: General Curved Domains and Functional Superconvergence. J Sci Comput 93, 36 (2022). https://doi.org/10.1007/s10915-022-01990-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01990-w

Keywords

Mathematics Subject Classification

Navigation