Skip to main content
Log in

Arbitrarily High Order and Fully Discrete Extrapolated RK–SAV/DG Schemes for Phase-field Gradient Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we construct and analyze a fully discrete method for phase-field gradient flows, which uses extrapolated Runge–Kutta with scalar auxiliary variable (RK–SAV) method in time and discontinuous Galerkin (DG) method in space. We propose a novel technique to decouple the system, after which only several elliptic scalar problems with constant coefficients need to be solved independently. Discrete energy decay property of the method is proved for gradient flows. The scheme can be of arbitrarily high order both in time and space, which is demonstrated rigorously for the Allen–Cahn equation and the Cahn–Hilliard equation. More precisely, optimal \(L^2\)-error bound in space and qth-order convergence rate in time are obtained for q-stage extrapolated RK–SAV/DG method. Several numerical experiments are carried out to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akrivis, G., Li, B., Li, D.: Energy-decaying extrapolated RK–SAV methods for the Allen–Cahn and Cahn–Hilliard equations. SIAM J. Sci. Comput. 41(6), A3703–A3727 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  2. Allen, S.M., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  3. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Ann. Rev. Fluid Mech. 30(1), 139–165 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boettinger, W.J., Warren, J.A., Beckermann, C., Karma, A.: Phase-field simulation of solidification. Ann. Rev. Mater. Res. 32(1), 163–194 (2002)

    Article  Google Scholar 

  6. Braun, R.J., Murray, B.T.: Adaptive phase-field computations of dendritic crystal growth. J. Cryst. Growth 174(1–4), 41–53 (1997)

    Article  Google Scholar 

  7. Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equ. Int. J. 16(4), 365–378 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (1958)

    Article  MATH  Google Scholar 

  9. Castillo, P., Cockburn, B., Perugia, I., Schötzau, D.: An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38(5), 1676–1706 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, L.-Q.: Phase-field models for microstructure evolution. Ann. Rev. Mater. Res. 32(1), 113–140 (2002)

    Article  Google Scholar 

  11. Cheng, Q., Liu, C., Shen, J.: A new Lagrange Multiplier approach for gradient flows. Comput. Methods Appl. Mech. Eng. 367, 113070 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cheng, Q., Shen, J.: Multiple scalar auxiliary variable (MSAV) approach and its application to the phase-field vesicle membrane model. SIAM J. Sci. Comput. 40(6), A3982–A4006 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  14. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal. 39(1), 264–285 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Du, Q., Ju, L., Li, X., Qiao, Z.: Maximum bound principles for a class of semilinear parabolic equations and exponential time-differencing schemes. SIAM Rev. 63(2), 317–359 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  17. Du, Q., Feng, X.: The Phase Field Method for Geometric Moving Interfaces and Their Numerical Approximations. Handbook of Numerical Analysis, vol. 21, pp. 425–508. Elsevier, Amsterdam (2020)

    MATH  Google Scholar 

  18. Feng, X., Tang, T., Yang, J.: Long time numerical simulations for phase-field problems using \(p\)-adaptive spectral deferred correction methods. SIAM J. Sci. Comput. 37(1), A271–A294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Frieboes, H.B., Jin, F., Chuang, Y.-L., Wise, S.M., Lowengrub, J.S., Cristini, V.: Three-dimensional multispecies nonlinear tumor growth-II: tumor invasion and angiogenesis. J. Theor. Biol. 264(4), 1254–1278 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fu, Z., Yang, J.: Energy-decreasing exponential time differencing Runge–Kutta methods for phase-field models. J. Comput. Phys. 454, 110943 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, R., Ji, L., Xu, Y.: High order local discontinuous Galerkin methods for the Allen–Cahn equation: analysis and simulation. J. Comput. Math. 34(2), 135–158 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  23. Huang, F., Shen, J., Yang, Z.: A highly efficient and accurate new scalar auxiliary variable approach for gradient flows. SIAM J. Sci. Comput. 42(4), A2514–A2536 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kassam, A.-K., Trefethen, L.N.: Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26(4), 1214–1233 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, D., Quan, C., Xu, J.: Stability and convergence of Strang splitting. Part I: Scalar Allen–Cahn equation. J. Comput. Phys. 458(6), 111087 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, C., Frank, F., Rivière, B.M.: Numerical error analysis for nonsymmetric interior penalty discontinuous Galerkin method of Cahn–Hilliard equation. Numer. Methods Partial Differ. Equ. 35(4), 1509–1537 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, H., Yan, J.: A local discontinuous Galerkin method for the Korteweg–de Vries equation with boundary effect. J. Comput. Phys. 215(1), 197–218 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reed, W.H., Hill, T.R.: Triangular Mesh Methods for the Neutron Transport Equation, Tech. report, Los Alamos Scientific Lab., N. Mex. (USA), (1973)

  29. Riviere, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  30. Shen, J., Wang, C., Wang, X., Wise, S.M.: Second-order convex splitting schemes for gradient flows with Ehrlich–Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50, 105–125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Shen, J., Xu, J., Yang, J.: The scalar auxiliary variable (SAV) approach for gradient flows. J. Comput. Phys. 353, 407–416 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Shen, J., Xu, J., Yang, J.: A new class of efficient and robust energy stable schemes for gradient flows. SIAM Rev. 61(3), 474–506 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shen, J., Yang, X.: Numerical approximations of Allen–Cahn and Cahn–Hilliard equations. Discret. Contin. Dyn. Syst. 28, 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Song, H., Shu, C.-W.: Unconditional energy stability analysis of a second order implicit-explicit local discontinuous Galerkin method for the Cahn-Hilliard equation. J. Sci. Comput. 73(2–3), 1178–1203 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems, vol. 1054. Springer, Berlin (1984)

    MATH  Google Scholar 

  36. Villain, J.: Continuum models of crystal growth from atomic beams with and without desorption. Journal de Physique I 1(1), 19–42 (1991)

    Article  Google Scholar 

  37. Wang, Y.U., Jin, Y.M., Khachaturyan, A.G.: Phase field microelasticity modeling of dislocation dynamics near free surface and in heteroepitaxial thin films. Acta Materialia 51(14), 4209–4223 (2003)

    Article  Google Scholar 

  38. Wanner, G., Hairer, E.: Solving Ordinary Differential Equations II. Springer, Berlin (1996)

    MATH  Google Scholar 

  39. Xia, Y., Yan, X., Shu, C.-W.: Application of the local discontinuous Galerkin method for the Allen–Cahn/Cahn–Hilliard system. Commun. Comput. Phys. 5, 821–835 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Xu, C., Tang, T.: Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44, 1759–1779 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  41. Yang, J., Yuan, Z., Zhou, Z.: Arbitrarily high-order maximum bound preserving schemes with cut-off postprocessing for Allen–Cahn equations. J. Sci. Comput. 90(2), 1–36 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  42. Yang, X.: Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. J. Comput. Phys. 327, 294–316 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang, X., Zhao, J., Wang, Q., Shen, J.: Numerical approximations for a three-component Cahn–Hilliard phase-field model based on the invariant energy quadratization method. Math. Models Methods Appl. Sci. 27(11), 1993–2030 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Yue, P., Feng, J.J., Liu, C., Shen, J.: A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515, 293 (2004)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Science Foundation of China and Hong Kong RGC Joint Research Scheme (NSFC/RGC 11961160718), and the fund of the Guangdong Provincial Key Laboratory of Computational Science and Material Design (No. 2019B030301001). The work of J. Yang is supported by the National Science Foundation of China (NSFC-11871264) and the Shenzhen Natural Science Fund (RCJC20210609103819018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, T., Wu, X. & Yang, J. Arbitrarily High Order and Fully Discrete Extrapolated RK–SAV/DG Schemes for Phase-field Gradient Flows. J Sci Comput 93, 38 (2022). https://doi.org/10.1007/s10915-022-01995-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-01995-5

Keywords

Navigation