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The Spectral Difference Raviart–Thomas Method for Two
and Three-Dimensional Elements and Its Connection
with the Flux Reconstruction Formulation

G. Sáez-Mischlich1 · J. Sierra-Ausín2,3 · J. Gressier1

Abstract
The purpose of this work is to describe in detail the development of the spectral difference
Raviart–Thomas (SDRT) formulation for two and three-dimensional tensor-product elements
and simplexes. Through the process, the authors establish the equivalence between the SDRT
method and the flux reconstruction (FR) approach under the assumption of the linearity of
the flux and the mesh uniformity. Such a connection allows building a new family of FR
schemes for two and three-dimensional simplexes and also to recover the well-known FR-
SD method with tensor-product elements. In addition, a thorough analysis of the numerical
dissipation and dispersion of both aforementioned schemes and the nodal discontinuous
Galerkin FR (FR-DG) method with two and three-dimensional elements is proposed through
the use of the combined-mode Fourier approach. SDRT is shown to possess an enhanced
temporal linear stability in comparison to FR-DG. On the contrary, SDRT displays larger
dissipation and dispersion errors with respect to FR-DG. Finally, the study is concluded with
a set of numerical experiments, the linear advection-diffusion problem, the Isentropic Euler
Vortex, and the Taylor-Green Vortex (TGV). The latter test case shows that SDRT schemes
present a non-linear unstable behaviorwith simplex elements and certain polynomial degrees.
For the sake of completeness, the matrix form of the SDRT method is developed and the
computational performance of SDRT with respect to FR schemes is evaluated using GPU
architectures.
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1 Introduction

The ever-increasing demand for numerical accuracy to solve turbulent flows has raised inter-
est in the study and application of high-order numerical methods for unstructured grids [47].
Such methods have the potential to enhance the accuracy per degree of freedom of numer-
ical simulations in unstructured grids although their application in complex test cases is
accompanied with specific numerical challenges such as difficulties in treating solution dis-
continuities, instabilities due to diminished numerical dissipation, lack of appropriate tools
to generate curved mesh elements for under-resolved configurations, etc.

Within high-order methods for unstructured grids, there is no doubt that spectral element
methods (SEM) are among the most promising spatial discretization schemes for the sim-
ulation of turbulent flows. SEM encompasses a plethora of different schemes such as the
nodal discontinuous Galerkin (NDG) [23], the flux reconstruction (FR) [24, 59], the spectral
difference (SD) [29, 32] and the spectral volume (SV) [62]. These schemes share several
aspects: they are compact by nature, and they rely on a description of the numerical solu-
tion within each mesh element using a nodal polynomial basis which greatly simplifies the
evaluation of the numerical operators and quadratures needed to develop the numerical for-
mulation. Such characteristics allow SEM to drastically improve the performance per degree
of freedom when compared to other more common second or low-order numerical meth-
ods. Besides, the SEM formulation is suited to exploit the massive computational power of
Graphics Processing Units (GPUs) computational architectures due to the data locality and
the possibility of expressing all numerical operations as matrix-matrix and/or matrix-vector
products. GPUs have proven to substantially out-perform Central Processing Units (CPUs)
architectures with SEM simulations [68]. Despite the apparent numerical and computational
beneficial properties of SEM, they present important temporal stability constraints, and they
lack robustness in under-resolved turbulent flows simulations due to aliasing errors and the
inherent low numerical dissipation of these methods. To alleviate the latter issues, several
techniques exist: the spectral vanishing viscosity (SVV) [36], dealiasing techniques [48],
modal filtering [19], application of skew-symmetric formulations [2], use of entropy-stable
schemes, [37], domain-invariant methods [43], etc.. Nevertheless, such methods are usually
accompanied by an increased computational cost and/or the need for appropriate tune-in of
a certain set of parameters.

The FR method [24, 59] or FRM relies on a solution nodal basis, local to each element, to
describe the solution and the discontinuousfluxwithin each element.Conservation is enforced
through the use of common fluxes at element interfaces. The contribution of such common
fluxes to the numerical solution is taken into account by means of the so-called correction
functions [58]. An appropriate choice of such correction functions guarantees the equivalence
between the FR formulation and specific NDG schemes [38, 66, 69]. This is particularly
important to extend the FR formulation to arbitrary simplex elements [21, 22, 67], resulting
in the so-called FR-DG method. The so-called Energy-Stable Flux Reconstruction (ESFR)
formulation, developed for tensor-product [59], triangular [14] and tetrahedron [66] elements,
can also be extended to prismatic elements as briefly discussed in [13]. Recently, Abgrall et al.
[4] remarked that the FR formulation can be recast into theResidualDistribution (RD)method
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and vice versa. Taking advantage of this connection, the authors were able to transfer known
results on the RD framework to FR methods. In particular, they showed the existence of FR
entropy-stable schemes via the construction of correction functions which involve solving a
Neumann problem. In a subsequent article the same authors [3], inspired by Virtual Element
Method (VEM), established a methodology to assemble discretized conformal finite element
H(div) spaces on polytopes, thus yielding the theoretical determination of entropy-stable
FR schemes in such elements. FR schemes have been applied to numerically solve various
systems of conservation laws including the Euler equations [63], Navier–Stokes equations
[26, 42], and their incompressible counterparts [35]. Several implementations of FR are
available and have recently demonstrated the possibility of achieving high computational
efficiency and scalability on large problems [68]. Within such FR solvers, special focus is
placed on the open-source PyFR solver [67], in which the methods described in this work
have been implemented.

The foundation for SD schemes was initially introduced by Kopriva [29] under the name
staggered grid Chebyshev multi-domain methods. Liu et al. [32] adapted the latter method
to a more general formulation referred to as the spectral difference Method (SDM) which
allowed the developing of stable schemes for both triangular and quadrilateral elements. The
SD method (SDM) is of special interest since the flux function is evaluated with a staggered-
grid approach and then projected onto a polynomial space one degree higher than that of the
solution basis. To define this basis, an arrangement of internal and external flux points (differ-
ent from that of the solution points), togetherwith the definition of specific degrees of freedom
within these flux points, is proposed for each element. The SDMhas been successfully applied
to study non-linear equations with complex physics [33, 34]. The foundations of the SDM
have been conjectured to provide the SDM with additional dealiasing properties compared
to other FRM [16]. Temporal stability and numerical properties (dissipation and dispersion)
of the SDMwere initially assessed in Van den Abeele et al. [52], showing that the SDMwith
strictly higher than second-order accuracywere linearly unstable in triangular grids. A formal
stability criterion of the SDM in one-dimensional configurations was discussed in Jameson
[27], proving that the SDM is stable in one-dimensional configurations, provided that the
internal flux points are located at Gauss-Legendre quadrature points. Additionally, the latter
two studies found that, at least for linear cases, the position of the solution points has little to
no impact on the accuracy and stability of the method while the definition of the flux points
has important implications in those aspects. The generation of stable high-order SDM for
triangular elements was firstly discussed in Balan et al. [8]. Such schemes were developed
using Raviart–Thomas (RT) basis to build the flux polynomial. Nevertheless, strictly higher
than fourth order schemes were found to be unstable in the former study. The extension of
the SDRT for triangle elements with viscous fluxes was firstly described in Li et al. [31].
Veilleux et al. [56] proposed the use of certain quadrature points to locate the flux points,
proving the existence of stable SDRT schemes for triangular elements, while also providing
a set of flux points which yields stable sixth-order-accurate SDRT schemes in triangles. The
work of Veilleux [55] also describes the extension of the SDRT for some three-dimensional
elements. However, the latter study does not thoroughly describe the extension of SDRT to
prismatic elements and the conclusions regarding the stability of tetrahedron elements differ
from those presented in this work.

The present study is a preliminary analysis tha aims to lay out promising areas of future
research for SDRTmethods. spectral difference Raviart–Thomas (SDRT)method is analyzed
for quadrilateral, triangular, hexahedral, tetrahedral and triangular prismatic elements within
the open-source PyFR solver [67]. Within this analysis, an equivalence between FR and
SDRT is established and the properties of SDRT schemes will be compared with that of FR-
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DG. These properties could be used in future studies as a mean to provide proofs of linear
stability for SDRT methods from those of the FR family.

The study is organized as follows. Section 2 introduces the mathematical formulation
of SDRT and FR methods, demonstrating the equivalence between the latter two methods
under certain conditions. Next, Sects. 3 and 4 analyze the dissipation and dispersion prop-
erties of the aforementioned schemes with two and three-dimensional elements, using the
so-called combined mode approach in the linear advection and linear diffusion equations.
The latter sections also present the linear stability and temporal linear stability criteria for
SDRT and FR methods. To validate the observations in the aforementioned linear analyses,
Sect. 5 studies the accuracy of the SDRT and FR-DG schemes through different numerical
experiments regarding linear and non-linear test cases. Finally, the conclusions and future
work are illustrated in Sect. 6.

For the sake of completeness, several appendices have been added to this work to better
explain certain aspects of the SDRT method. “Appendix Appendix A” describes the modal
flux basis and the location of the flux points of the proposed SDRT method for different ele-
ment types. Furthermore, “Appendix Appendix B” introduces the matrix form of the SDRT
method, following the nomenclature of [67].Next, “AppendixAppendixC” compares the per-
formance of the SDRT and FRmethodswithGPU architectures. At last, “AppendixAppendix
D” discusses the wavenumber aliasing issues of SEM.

2 Formulation

Disclaimer 1 Throughout this work, the SEM notation introduced in [67] will be extensively
used to describe the numerical methods.

Disclaimer 2 As in [67], the Einstein summation convention will be adopted throughout the
whole study. All indices are assumed to be zero-based.

This work focuses on the solution systems of conservation laws written in the form

∂uα

∂t
+ ∇ · fα = 0, x ∈ Ω, (1)

where 0 ≤ α < NV is the field variable index, uα = uα(x, t) is the correspondent conserved
variable with index α, fα = fα(u,∇u) is the flux operator of the considered conserved
variable and x = xi ∈ R

ND . The unscripted variables u ∈ R
NV and ∇u ∈ R

ND×NV refer
to the field variables and their gradients, respectively. The flux operator is usually split in
a convective flux fconv(u), only dependent on the conserved variables, and a viscous flux
fvisc(u,∇u) = f(u,∇u) − fconv(u). Equation 1 may be rewritten as a first-order system as

∂uα

∂t
+ ∇ · fα = 0

qα = ∇uα, (2)

where q ∈ R
ND×NV is the auxiliary gradient variable and its unscripted form q follows the

same convention as that of u and ∇u.
The domain Ω is tessellated with a set of conforming elements, see Fig. 1. Each element

may be grouped in a set of element types E such that

Ω =
⋃

e∈E
Ωe, Ωe =

|Ωe|−1⋃

n=0

Ωen and
⋂

e∈E

|Ωe|−1⋂

n=0

Ωen = 0. (3)
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Fig. 1 Domain notation

Within each element Ωen , Eq. 2 is solved using spectral element methods. To do so, it is
convenient to transform the first-order system to the coordinates of a standard or reference
element of each type Ω̂e. This transformation is defined by a mapping function for each
element such that

x = Men (̃x) and x̃ = M−1
en (x). (4)

In the latter, it is assumed the existence and well-posedness of the inverse of the transforma-
tion, i.e., the considered elements are not degenerated. The associated Jacobian matrix of the
mapping function may be written as

Jen = Jeni j ≡ ∂Meni

∂ x̃ j
and Jen ≡ det Jen . (5)

Analogously, the Jacobian of the inverse transformation is introduced as follows

J−1
en = J−1

eni j ≡ ∂M−1
eni

∂x j
and J−1

en ≡ det J−1
en = 1

Jen
. (6)

In what follows, it is supposed that the Jacobian matrices are computed using their ana-
lytical values. Nevertheless, it is worth noting that such a choice might induce free-stream
preservation issues in non-uniform grids [1]. However, since this work is focused on the
analysis of uniform grids, such issues do not occur. The aforementioned mappings may be
used to define the transformed conserved variables, flux operators, and auxiliary variables as
[30]

ũenα = ũenα(̃x, t) = Jenuenα(x, t),

f̃enα = f̃enα(̃x, t) = Jen (̃x)J−1
en (̃x)fenα(x, t),

q̃enα = q̃enα(̃x, t) = JTen (̃x)q(x, t), (7)

where the relation between x and x̃ is given by Eq. 4. Supposing static grids, Eq. 2 can be
recast as

∂uα

∂t
+ J−1

en ∇̃ · f̃α = 0
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q̃α = ∇̃uα, (8)

where ∇̃ = ∂/∂ x̃i .
Spectral element Methods use a nodal basis of degree p, unique to each element type,

to describe the numerical solution within each element of a given grid. For each element
type e ∈ E , a set of solution points with position in the reference element {̃x(u)

eρ } such that

0 ≤ ρ < N (u)
e (p) is defined. In the latter, p is the degree of the nodal basis. These solution

points may be used to build the nodal basis set {l(u)
eρ (̃x)} with the nodal orthogonal property

l(u)
eρ (̃x(u)

eσ ) = δρσ .

The solution nodal basismay also be expressed through the solutionmodal basis {ψ(u)
eρ (̃x)}.

The relation between the nodal andmodal bases is given by the solutionVandermondematrix,
defined as follows

V(u)
eρσ = ψ(u)

eρ

(
x̃(u)
eσ

)
. (9)

Such a matrix links the nodal and modal bases as

l(u)
eρ (̃x) =

(
V(u)
eρσ

)−1
ψ(u)
eσ (̃x) . (10)

To avoid unwanted numerical errors due to inaccuracies in the evaluation of the inverse
Vandermonde matrix, it is recommended to build the solution modal basis using hierarchical
orthonormal polynomials. This allows a drastic reduction in the condition number of the
solution Vandermonde matrix. The interested reader is referred to Appendix [28] for a review
of the hierarchical orthornormal bases for tensor-product and simplex elements used in this
work. It is worthmentioning that the nodal solution basis allows to approximate the conserved
variable within a given element as

uenα(̃x) = u(u)
enραl

(u)
eρ (̃x), (11)

which it has the interpolation property i.e., u(u)
enρα = uenα(̃x(u)

eρ ).

2.1 SDRTMethod

Together with the solution nodal basis, the SDRTmethod relies on a vector nodal basis using
a set of flux points {̃x( f )

eρ } to compute the transformed flux divergence. This vector nodal basis

is referred to as {l( f )eρ (̃x)}. Its correspondent vector modal basis is denoted as {ψ ( f )
eρ (̃x)}. The

flux modal basis lays on the Raviart–Thomas (RT) space of the solution modal basis, i.e.,

∇̃ · ψ ( f ) ≡ ψ(u). (12)

To build the flux nodal basis, a normal or degree of freedom { ˆ̃n( f )
eρ ∈ R

ND} is assigned to
each flux point. The interested reader is referred to Appendix Appendix A for the definition
of the RT basis, the location of flux points and the degrees of freedom assigned to each flux
point within the different element types utilized in this work. The flux nodal basis and the
degrees of freedom fulfill the nodal condition

l( f )eρ (̃x( f )
eσ ) · ˆ̃n( f )

eσ = δρσ . (13)

Hence, the Vandermonde matrix of the flux basis can be obtained as

V( f )
eρσ = ψ

( f )
eρ

(
x̃( f )
eσ

)
· ˆ̃n( f )

eσ , (14)
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and its inverse, which links the flux nodal and flux modal bases as

l( f )eρ (̃x) =
(
V( f )
eρσ

)−1
ψ

( f )
eσ (̃x) . (15)

Finding appropriate orthogonal or orthornormal bases to build the flux modal bases is crucial
to reduce the condition number of the flux Vandermonde matrix, thereby avoiding unwanted
machine round-off errors. The interested reader is referred to Appendix A for more infor-
mation on the choice of flux modal bases. The nodal flux basis allows to approximate the
transformed flux within a given element as

f̃enα(̃x) = f̃
( f ⊥)
enνα l

( f )
eν (̃x), (16)

where

f̃
( f ⊥)
enνα = f̃

( f )
enνα · ˆ̃n( f )

eν and f̃
( f )
enνα = f̃enα(̃x( f )

eν ). (17)

To ease the implementation and evaluation of the transformed fluxes at element interfaces,
the flux points are divided into two sets: the external and internal flux points. The former set
lays on the boundaries of the reference element and its position in the reference element is
{̃x( f e)

eρ } with 0 ≤ ρ < N ( f e)
e . The associated flux nodal bases with the external flux points

are labeled as {l( f e)eρ (̃x)}. The external flux points are unique and only present a single degree
of freedom which coincides with the outward-pointing unit normal vectors of the reference
element at the considered external flux points. Flux points which are internal to the element
are referred to as internal flux points and are denoted as {̃x( f i)

eρ } with 0 ≤ ρ < N ( f i)
e . The

locations of these points are not unique, in the sense that the length of the set of unique internal
flux points location is not guaranteed to have the same length as its original counterpart.
This observation will be used in “Appendix Appendix B” to describe the computational
implementation of SDRT schemes. The associated flux nodal bases to the internal flux points
are labeled as {l( f i)eρ (̃x)}. Additionally, the set of unique flux points is referred to as {̃x( f u)

eρ }
with 0 ≤ ρ < N ( f u)

e . At last, to ease future developments in “Appendix Appendix B”, we
define the set of unique flux points {̃x( f iu)

eρ } with 0 ≤ ρ < N ( f iu)
e . With such a distinction

between internal and external flux points, Eq. 16 may be rewritten as

f̃enα(̃x) = f̃
( f e⊥)
enνα l( f e)eν (̃x) + f̃

( f i⊥)
enρα l( f i)eρ (̃x). (18)

To ensure conservation, the normal flux at external flux points f̃
( f e⊥)

needs to be carefully
assessed as will be shown later in this section. The SDRT approach differs from the original
SDM due to the fact that the interpolatory polynomials are vectors, as opposed to the scalar
nodal basis found in the original SDM developed for tensor-product elements. Nevertheless,
it may be demonstrated the SDRT approach for tensor-product cells is equivalent to that of
the original SD method [31].

The first step to compute the flux divergence in the SDRT approach for second-order
conservation laws is the computationof the auxiliary gradient variable. Todo so, the conserved
variables at solution points are interpolated to the external flux points

u( f e)
eνnα = u(u)

eρnαl
(u)
eρ

(
x̃( f e)
eν

)
, (19)

and to internal flux points

u( f i)
eνnα = u(u)

eρnαl
(u)
eρ

(
x̃( f i)
eν

)
. (20)
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Within the latter procedure, computational implementations may take advantage of the fact
that only interpolations to the unique internal flux points have to be considered. The inter-
ested reader is referred to “Appendix Appendix B” for more details on such computational
optimizations.

Next, a common value of the conserved variables is selected at external flux points.

Cαu
( f e)
eρnα = Cαu

( f e)
ẽρnα

= Cα

(
u( f e)
eρnα, u( f e)

ẽρnα

)
, (21)

where Cα(uL , uR) is a scalar function which returns a common value from two conserved
variables at flux points. Moreover, the sub-indices ẽρnα refer to the element type, flux point
and element number adjacent to the flux point eρnα. Function Cα may be defined through
the use of the Local-Discontinuous-Galerkin (LDG) method [15] as

Cα(uL , uR) =
(
1

2
− β

)
uL +

(
1

2
+ β

)
uR . (22)

Values ofβ = ± 1
2 are of interest since itmay promote compactness of the schemes inmultiple

dimensions, although the latter may not be ensured for certain cases on general grids [44, 64].
The non-compact Rebay-Bassi 1 (RB1) scheme [9] is recovered with β = 1

2 . By using the
common values of the conserved variables at flux points, the transformed auxiliary gradient
variable is computed as

q̃(u)
enα(̃xeσ ) = q̃(u)

eσnα = u( f i)
eνnα

ˆ̃n( f i)
eν

[
∇ · l( f i)eν (̃xeσ )

]
+ Cαu

( f e)
eρnα

ˆ̃n( f e)
eρ

[
∇ · l( f e)eρ (̃xeσ )

]
.

(23)

The physical gradients at solution points are related to the reference space gradients as

q(u)
eσnα = J−T

eσn q̃
(u)
eσnα. (24)

Such gradients have to be interpolated to the flux points using Eqs. 19 and 20 in order to
evaluate the transformed fluxes.

At the internal flux points, the transformed flux is defined as

f̃
( f i⊥)
enνα =

[
J ( f i)
eνn (J( f i)eνn )−1fenα(u( f i)

eνn , q( f i)
eνn )

]
· ˆ̃n( f i)

eν . (25)

It is worth mentioning that the implementation may take into account the presence of inter-
nal flux points sharing a unique location in the reference element to further optimize the
computational performance. The interested reader is referred to “Appendix Appendix B” for
more information on the implementation aspects and the matrix form of the SDRT method.
On the other hand, a common flux needs to be computed at external flux points to ensure
conservation. This is expressed as

Fαf
( f e⊥)
eσnα = −Fαf

( f e⊥)

ẽσnα
= Fα

(
u( f e⊥)
eσn , u( f e⊥)

ẽσn
, q( f e⊥)

eσn , q( f e⊥)

ẽσn
, n̂( f e⊥)

eσn

)
, (26)

where the common flux function Fα must be consistent and must present the conservation
property, i.e. Fα(uL , uR, qL , qR, n̂) = −Fα(uR, uL , qR, qL ,−n̂). Moreover, n̂( f )

eσn refers to
the physical unit normal at a given external flux point. The common flux function is usually
split into two contributions: the common convective flux and the common viscous flux

Fα(uL , uR, qL , qR, n̂L) = Fconv(uL , uR, n̂L) + Fvisc(uL , uR, qL , qR, n̂L). (27)
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The former, which only depends on the conserved variables, may be computed through the
Rusanov–Riemann solver

Fconv(uL , uR, n̂L) = n̂L

2

(
fconvL + fconvR

) + |φ|
2

(uL − uR) . (28)

where φ is an estimator of the maximum eigenvalue of the Jacobian of the flux operator. It is
worthmentioning that there exist common convective flux formulationswhich are specifically
tailored to a given system of conservation laws, such as the HLLC [50] for the Euler/Navier-
Stokes equations. The common viscous flux [67] is defined in this work as

Fvisc(uL , uR, qL , qR, n̂L) = n̂L

[(
1

2
+ β

)
fviscL +

(
1

2
− β

)
fviscL

]
+ η (uL − uR) .

(29)

where η is a penalty term of the LDG formulation. The value ofβ utilized in the latter equation
is the same as the one used to compute the commonvalue of the conserved variables at external
flux points in Eq. 22.

Once the value of the commonflux at the external points has been assessed, the transformed
flux at such points may be computed using

Fα̃f
( f e⊥)
eσnα = J ( f )

eσn

∥∥∥n( f e)
eσn

∥∥∥Fαf
( f ⊥)
eσnα. (30)

With the values of the transformed flux at internal and external flux points, the divergence
at the solution points can be evaluated as

(∇̃ · f̃α
)(u)

eρnα
= f̃

( f i⊥)
enνα

[
∇ · l( f i)eν (xeρ)

]
+ Fα̃f

( f e⊥)
enσα

[
∇ · l( f e)eσ (xeρ)

]
. (31)

This allows the rewriting of the governing system in a semi-discretized form through the
method of lines

du(u)
eρnα

dt
= −J−1(u)

eρn

(∇̃ · f̃α
)(u)

eρnα
. (32)

In this study, the previous equation is solved using explicit time-integration Runge–Kutta
(ERK) methods.

2.2 FRMethod

Herein, the FR-DG formulation is described following the notation of Witherden et al. [67].
Within this section, it is supposed that the SDRT and FR-DG formulations share the same
external flux points distribution. Nevertheless, in flux-reconstruction methods, no internal
flux points are found, i.e. N ( f i)

e = 0. Therefore, the interpolation procedure to such points
is not needed. To ensure conservation, the flux is split into a discontinuous part, which is
represented by the solution nodal basis, and a continuous contribution, which takes into
account the difference between the interpolated discontinuous flux at the external flux points
and the common flux at those locations. This may be expressed as

f̃enα(̃x) = f̃
(u)
eρnαl

(u)
eρ (̃x) +

(
Fα̃f

( f e⊥)
enνα −

[
f̃
(u)
enσαl

(u)
eσ (̃xeν)

]
· ˆ̃n( f e)

eν

)
g( f e)
eν (̃x), (33)

where g( f e)
eν (̃x) is a vector correction function whose divergence sits on the polynomial space

of the solution nodal basis and which satisfies

g( f e)
eν (̃xeσ ) · n̂eσ = δνσ . (34)
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With such a polynomial description of the flux, the computation of the divergence (needed to
update the solution values at solution points) is straightforward. The interested reader may
refer to [67] for the full FR formulation specification.

Certain vector correction function formulations choices recover a nodal DG scheme from
the FR formalism [14, 61, 66] for arbitrary simplex elements. In this work, schemes using
the latter correction functions are referred to as FR-DG schemes. It is worth mentioning that
there exist other choices of correction functions, usually referred to as Vincent–Castonguay–
Jameson–Huynh (VCJH) or ESFR schemes, for FR and triangular [14] and tetrahedral [66]
elements which yield energy-stable schemes. In that framework, FR-DG turns out to be the
energy-stable scheme with the least strict Sobolev norm.

2.3 Connections Between the SDRT and FR Formalisms

Both the correction function of the FR formalism and the flux nodal basis SDRTmethods lay
on the Raviart–Thomas space of the solution basis. Nevertheless, there exists an important
differentiation aspect between FR and SDRT related to the fact that, in FR, the correction
functions are not uniquely defined, since there exist fewer external flux points than the cardinal
of the RT basis. Additionally, the FR method approximates the discontinuous flux using the
solution nodal basis, while SDRT approximates the latter using the flux nodal basis (which
lays on the RT space). This remark was raised by [16] as a possible source of aliasing errors
of FR due to non-linearities regarding SDRT.

This section aims to propose a link between the FR and SDRT formulations for all the
elements types studied in thiswork,with constantmetrics and linear fluxes. Such a connection
is established using the RT basis of the SDRT method as the correction function, resulting
in the FR-SDRT method. It is worth mentioning that this link had already been established
by Huynh [24] for tensor-product elements. Within this section, it is assumed that both the
FR and SDRT schemes use the same external flux points and solution points. To demonstrate
the analogy between FR-SDRT and SDRT methods in linear test cases with constant metric
elements, let us expand the flux divergence in the FR formulation at solution points (see
Eq. 33)

(∇̃ · f̃)(u)

enα
(̃x(u)

σ ) = f̃
(u)
eρnα · ∇̃l(u)

eρ (̃x(u)
σ ) + Fα̃f

( f e⊥)
enνα ∇̃ · g( f e)

eν (̃xeσ )

−
[
f̃
(u)
enραl

(u)
eρ (̃xeν)

]
· ˆ̃n( f e)

eν ∇̃ · g( f e)
eν (̃x(u)

σ ). (35)

If one imposes that the vector correction functions divergence is equal to that of the RT bases
associated with the external flux points of the SDRT method then

∇̃ · g( f e)
eν (̃x(u)

σ ) = ∇̃ · l( f e)eν (̃x(u)
σ ). (36)

The resulting FR method with such a choice is referred to as FR-SDRT in this work. The
equivalence between FR-SDRT and SDRT schemes may be proven if both Eqs. 31 and 35
are equal. Hence, if the external flux points location remains the same when using SDRT and
FR-SDRT schemes then

f̃
(u)
eρnα · ∇̃l(u)

eρ (̃xeσ ) −
[
f̃
(u)
enραl

(u)
eρ (̃xeν)

]
· ˆ̃n( f e)

eν ∇̃ · l( f e)eν (̃xeσ ) = f̃
( f i⊥)
enνα

[
∇ · l( f i)eν (̃xeσ )

]
.

(37)

The latter equality reduces to

∇̃ · (̃f
(u)
eρnαl

(u)
eρ )(̃x(u)

eσ ) = ∇̃ · (̃f
( f ⊥)
eνnα l

( f ⊥)
eν )(̃x(u)

eσ ), (38)
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where both nodal expansions represent the polynomial projection of the discontinuous fluxes,
which do not take into account the common fluxes, onto the solution and RT bases of a given
element. Such an ansatz may be fulfilled in all elements presenting constant metrics and if
the flux is linear. With these conditions, the flux may be exactly approximated by, at most,
a degree p modal basis, hence both the RT and solution nodal basis are equivalent, despite
the fact that the former uses vector interpolation basis of degree p + 1 and the latter uses
scalar interpolation basis of degree p. As the divergence is analytically computed based on
the values of the nodal bases, both sides of the ansatz will be equal under the previously
described conditions. “Appendix 2.3” will demonstrate through numerical experiments that
FR-SDRT and SDRT schemes are equivalent in linear advection-diffusion cases and two and
three-dimensional elements.

Remark 1 In order to complete the proof of the equivalence between the FR-SDRT and
SDRT formulations for linear advection-diffusion problems, onemust ensure that the gradient
computation at the solution points is equivalent in both formulations. This can be ensured if
one uses the same correction functions as that of the fluxes to compute the auxiliary gradient
variables. This can be achieved by following the same process utilized to determine the flux
equivalence in Eq. 38, since the calculation of the auxiliary gradient variablesfollows a similar
correction procedure as that of the fluxes and since the conservative variables are described
by polynomials of degree p within each element. .

Remark 2 Despite the fact that FR-SDRT schemes may be shown to be energy-stable for
tensor-product elements [69], it has been observed (through a posteriori analysis) that FR-
SDRT schemes do not belong to the family of ESFR schemes neither for triangles [14] nor
for tetrahedrons [66]. Hence, it is thought that the energy stability of FR-SDRT for simplex
elements can not be proven using the tools developed in the aforementioned studies. The a
priori demonstration of the energy stability of the FR-SDRT method for simplex elements
and its possible connections with filtered DG formalism will be a topic of future research.
However, on the linear setting the equivalence could provide amean of translating FR stability
proofs to the SDRT context and therefore enable linear stability proofs for general classes of
SDRT schemes as well as elucidating the conditions required to achieve linear stability.

3 Von-Neumann Analysis

This section aims to analyze the dissipation and dispersion errors in linear advection and linear
diffusion problems of SEM in two-dimensional and three-dimensional grids, composed of
tensor-product or simplex elements. In particular, a comparison between the SDRT (resp. FR-
SDRT) and FR-DGmethods will be presented. The analysis of the dissipation and dispersion
of SEM is important to study their associated numerical errors in convective-dominated
problems such as those found in turbulent flows. This analysis can be performed using a
modified version of the classical Von-Neumann analysis for FDM and FVM, applied to the
numerical solution of linear equations cf. [46, 51].

Let us start the analysis by considering the linear advection equation, solved in the periodic
domain x ∈ Ω ≡ [0, L]3

∂u(x, t)

∂t
+ ∇ · (cu(x, t)) = 0, (39)

where c is the advection velocity (supposed constant) and defined as

c = c1̂c, (40)
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Fig. 2 Sub-division procedure of a given hexahedron into prismatic (left) and tetrahedron (right) elements

being 1̂c a unitary ND-dimensional vector computed in three-dimensional configurations as

1̂c(θ0, θ1) = (cos θ0 cos θ1, sin θ0, cos θ0 sin θ1) . (41)

The two-dimensional definition of the latter vector may be obtained by imposing θ1 = 0.
The exact solution of the linear advection equation is given by the expression

u(x, t) = u(x − ct, 0) = u0(x − ct), (42)

where u0 is the initial condition. Supposing that the initial solution is a Fourier mode, i.e.
u = eIκ ·x , where κ = κ 1̂κ is the spatial wavenumber, then the analytical solution may be
expressed as

u(x, t) = e−Iωt u0(x) = e−Iωt+Iκ ·x, (43)

with ω = κ · c being the temporal wavenumber. For future reference, let us define the
wavelength as λ = 2π/κ .

The common flux operator for the linear advection equation is defined in this study using
the upwind Lax–Friedrich flux

F
(
uL , uR, n̂L

) = c · n̂L

2
(uL + uR) + |c · n̂L |

2
(uL − uR)

= c · n̂L

[
(1 + sign(c · n̂L))

2
uL + (1 − sign(c · n̂L))

2
uR

]
. (44)

To solve numerically Eq. 39, the domain is triangulated with a uniform mesh of edge size
h. Uniform meshes of simplex elements are generated by subdividing the initial mesh made
up of tensor-product elements into simplex elements, using a similar approach to that shown
in [46]. The number of subdivided cells resulting from a unique tensor-product element is
referred to as Np and its value is: Np = 1 for tensor-product elements, Np = 2 for prism
and triangular elements and Np = 6 for tetrahedron elements. See Fig. 2 for a sketch of the
subdivision mechanism of hexahedron elements into prismatic and tetrahedron cells. In what
follows, the sub-index e, referring to the type of element, will be dropped as uniform meshes
(with a unique element type) are supposed.
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(a) (b)

Fig. 3 Cell patterns utilized to perform the Von-Neumann analysis in two-dimensional uniform meshes of
quadrilateral (left) and triangular (right) elements. The cells belonging to the root cell pattern are marked in
blue, while the wave is depicted in orange (Color figure online)

The resulting semi-discrete system, which discretizes Eq. 39 reads

duρn

dt
= c

h

∑

i∈Cn
Jρniνuiν, (45)

where J is the right-hand-side (RHS) Jacobian matrix and Cn is a set that stores the indices
of the direct face neighbors of an element n. The solution of the latter equation may be
simplified by taking advantage of the fact that the RHS Jacobian is a circulant block matrix
[41] in uniform meshes with a unique element type and periodic boundary conditions [57].
The block size is given by the number of solution points within a given cell pattern. The
interested reader is referred to “Appendix Appendix A” for a definition of the number of
solution points and their location within a given reference element. In the proposed mesh
subdivision procedure, based on the decomposition of tensor-product elements into simplex
elements, a cell pattern refers to the resulting subdivided cells from a unique tensor-product
element. Hence, the number of cells within each cell pattern is Np . Additionally, the number
of circulant blocks in the RHS Jacobian is equal to the number of patterns in the initial
non-decomposed mesh, i.e. 2ND + 1. The interested reader may refer to Fig. 3 for a sketch
representing the mesh patterns on quadrilateral and triangular meshes. With such definitions,
onemay take advantage of the properties of block circulantmatrices to analyze the dissipation
and dispersion properties of SEM. In the following, the index n will refer to a given pattern,
while the index ρ is representative of a given solution point within such a pattern.

Let the initial condition be a Fourier mode

uρn(0) = eIκ ·xρn = eIκ ·xnUρ, (46)

where xn refers to the center of a given pattern andUρ = eIκ ·(xnρ−xn) ∈ R
N (u)
e Np is a projec-

tion vector of size equal to the number of solution points per cell multiplied by the number
of cells within a cell pattern. For the considered initial condition, such a projection vector
is independent of the considered pattern, provided that the solution points are appropriately
ordered within each pattern.
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The structured arrangement of the mesh allows representing the pattern centers through a
label vector a ∈ N

ND as

κ · xn − κ · x0 = hκ · a, (47)

where x0 is an arbitrary root cell pattern. The RHS Jacobian may be diagonalized using the
latter expression and relying on [41, Collorary 20]. This allows to redefine Eq. 45 as

dUρ

dt
= c

h

∑

n∈C
Jρnνe

Iκ ·(xn−x0)Uρ = c

h

∑

n∈C
GρνUρ, (48)

where C refers to the neighbor cells of the mesh pattern root cell and G is the reduced
right-hand-side Jacobian matrix. This demonstrates that, with a structured uniformmesh, the
computation of the solution may be reduced to the assessment of the values Uρ within an
arbitrary mesh pattern.

The exact solution of Eq. 48 is given by

Uρ(mΔt) = E
m
ρνUν(0), (49)

where τ = cΔt
h is the Courant–Friedrichs–Lewy (CFL) number andE = eτG is the exponen-

tial matrix of the reduced RHS Jacobian multiplied by the CFL number. RK time integration
methods approximate the exponential matrix, resulting in E

δ (see [14, 54]). The assessment
of Eq. 49 using RK methods allows taking into account the temporal discretization errors
within the dissipation and dispersion analysis [46, 57], as well as to compute the temporal
linear stability condition of the resulting discrete system.

After the diagonalization of the linear operator E, the aforementioned equation reduces
to,

Uρ(mΔt) = (
WΛm

W
−1)

ρν
Uν(0), (50)

where Λ ∈ R
N (u)
e ×Np is the diagonal eigenvalue matrix and W is the square eigenvector

matrix.With analytical time and spatial discretizations, the eigenvalues ofmatrixΛ are e−IωΔt

cf. [25]. Deviations of the numerical eigenvalues from such values indicate dissipation and
dispersion errors. The initial value Uν(0) is not generally an eigenvector of the exponential
matrix. Hence, the numerical solution is governed by the contribution of each eigenmode.
The energy stored within each eigenvector may be defined as

γρ = W
−1
ρν Uν(0). (51)

This parameter allows describing the so-called physical eigenmodewhich presents the highest
energy contribution, i.e. max |γρ |. Heretofore, most studies only focused on the dissipation
and dispersion properties of the physical mode (provided by its associated eigenvalue) to
assess the numerical properties of SEM. Nevertheless, it is worth noting that the dissipation
and dispersion of the discrete system are only well characterized by the physical mode for
non-aliased wavenumbers [5, 54]. This is related to the fact that the physical mode only
coincides with the spectral radius (the eigenmode whose associated eigenvalue presents the
highest absolute value) of the discrete system for non-aliased wavenumbers. For aliased
wavenumbers, such a relation does not exist. If the physical eigenmode is not the spectral
radius of the discrete system, then it will be quickly dissipated during an initial transient
regime and, at the asymptotic regime, aliasing appears due to the diagonalization properties
matrix J. For example, in one-dimensional configurations the lattermatrix is uniquely defined
in κh ∈ [0, π] cf. [54]. Therefore, the spectral radius for a given wavenumber presents
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similar aliasing properties as those found in FDM and FVM. In two and three-dimensional
configurations aliasing occurs if

κh ≥ min
0≤i≤ND−1

(
π

1̂κ i

)
. (52)

Nevertheless, there exist several secondary aliasing conditions, due to the fact that alias-
ing occurs on a dimension per dimension basis. Hence, two and three-dimensional aliasing
behavior is more complex than the one found in one-dimensional configurations. The inter-
ested reader is referred to “Appendix Appendix D” for an in-depth description on the aliasing
phenomena of SEM and its influence in the dissipation and dispersion errors. Due to all these
facts, the behavior of the discrete system for aliased wavenumbers is highly unsteady.

To characterize the dissipation and dispersion of SEM the combined-mode approach cf.
[5, 54] will be employed. The dissipation error at a given iteration m may be associated to
the imaginary part of a numerical temporal wavenumber ωδ defined as

Im
(
ωδ(m)

) = − 1

mτ
ln

‖U (mΔt)‖
‖U (0)‖ , (53)

where the norm of the projection vector is computed as

‖U‖ =
√

1

|Ωn |
∫

Ωn

UU dΩ, (54)

in any cell pattern Ωn of the considered mesh, with U being the conjugate value of U . This
integral needs to be assessed using appropriate numerical quadratures, within the different
elements generating the given cell pattern, to avoid introducing quadrature errors in the
estimation of the dissipation. In this work, quadratures of degree ten are used to evaluate the
former integral. On the other hand, the real part of the numerical temporal wavanumber may
be computed as

Re
(
ωδ(m)

) = Re (ω) − 1

mτ
arg〈U (mΔt)eIωmΔt ,U (0)〉, (55)

where the inner product is defined as

〈a, b〉 = 1

|Ωn |
∫

Ωn

ab dΩ. (56)

With such dissipation and dispersion measures, the estimator of the error of the numerical
temporal wavenumber may be defined as

D(m) = 1

ω
(|Re(ωδ − ω)| + I|Im(ωδ − ω)|). (57)

The behavior of error estimatorwith thewavenumber is representative of the order of accuracy
of SEM cf. [45]. It is worth mentioning that, for a given wave angle configuration, the
dissipation and dispersion measures are a function of the number of iterations. Such a fact
differs substantially from what is observed when performing the Von–Neumann analysis of
FD or FVM, since in the latter, the dissipation and dispersion errors are related to a unique
eigenmode.
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3.1 Dissipation and Dispersion

This section focuses on the comparison between the dissipation and dispersion maps of FR-
DG and SDRT schemes in two uniform meshes with quadrilateral or triangular elements.
To ease such a comparison, the advection velocity vector and the wavenumber vector are
supposed to be parallel. Additionally, only configurations with θ0 = π/6 and θ1 = π/4 (if
applicable) are considered. Exhaustive analysis of the dissipation and dispersion maps for
non-aligned waves and other wave angle configurations will be presented in future works.

Since the dissipation and dispersion measures depend on the number of iterations m, we
will first focus on analyzing cases usingm = mc = 1/τ which implies t = h/c. Such a value
of the physical time is related to the number of iterations needed for the wave to traverse a
given cell. With this choice, the dissipation and dispersion measures refer to the short-term
diffusion and dispersion, which are intimately related to the dissipation and dispersion of the
physical eigenmode. It is worth noting that, with exponential time integration, the numerical
errors are independent of the τ number. The latter is not the case when using analytical
exponential time integration methods.

Figure 4 represents the short-term dissipation and dispersion error estimator with expo-
nential time integration obtained using quadrilateral elements and a wave angle that is equal
to θ0 = π/6 and which is aligned with the advection velocity. The results are depicted as a
function of the cells per wavelength parameter λ/h. They show that SDRT method presents
increased dissipation and dispersion errors compared to FR-DG for every wavelength value,
with the possible exception of the dispersion behavior at aliased wavenumbers.Moreover, the
dissipation errors show 2p+1 order of accuracy in both the SDRT and FR-DG formulations,
while the dispersion converges to 2p and 2p + 2 order in the SDRT and FR-DG methods
respectively. The latter observations concerning the FR-DG formulation had been already
found in [18, 20] for two-dimensional meshes of tensor-product elements. Nevertheless, to
the best of the authors’ knowledge, the order of accuracy of the dissipation and dispersion
maps of FR-DG schemes had not been previously characterized for simplex elements.

To analyze the influence of the choice of the number of iterations m in the dissipation
errors, Fig. 5 displays the dissipation errors associated to quadrilateral elements with wave
angle that is equal to θ0 = π/6 and for m = mc and m = 400mc coupled with exponential
time integration. Within this figure, it is possible to observe that the dissipation errors for
κh < π/ cos θ0 or λ/h > 1.73 (which is the aliasing limit introduced in Eq. 52) show
little to no variations when increasing the amount of iterations performed. This is related
to the fact that the physical eigenmode and the spectral radius coincide in this wavenumber
range. Nevertheless, for aliased wavenumbers κh > π/ cos θ0, the dissipation errors are
reduced as the number of iterations increases. Such an issue can be explained by the fact
that the physical eigenmode does not coincide with the spectral radius, hence the dissipation
errors are heavily influenced by the amount of iterations performed. For low number of m,
the dissipation errors are always dominated by the dissipation of the physical eigenmode.
However, for high numbers of m, the physical eigenmode is fully dissipated and an aliased
behavior is established, which reduces the amount of dissipation errors on an iteration-per-
iteration basis. Nevertheless, the typical aliasing spectrum observed with FD and FVM is not
exactly reproduced, since this aliasing is established after an important part of initial wave
energy (contained in the physical eigenmode) is dissipated. It isworth noting that as the degree
of the schemes increases, the amount of dissipation errors of the physical mode is reduced.
Therefore, more iterations are needed to dissipate the physical eigenmode. This explains the
lack of aliased behavior found within schemes built with p = 4 at κh ≈ π/ cos θ0. At last,
it is worth mentioning that there exist several dissipation local maximums. Such points are
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(a) (b)

(c) (d)

Fig. 4 Dissipation (left) and dispersion (right) errors with exponential time integration obtained with two-
dimensional elements, wave angle equal to θ0 = π/6 and m = mc

related to secondary aliasing limits when κh ≈ π/ sin θ0 (hence λ/h ≈ 1) and/or when
κh ≈ 3π/ cos θ0 (hence λ/h ≈ 0.58). For the sake of completeness, Fig. 6 represents the
same results with triangular elements. As the conclusions that can be drawn from this figure
are the same as those obtained with quadrilateral elements, these are not discussed further.

Regarding three-dimensional elements, Fig. 7 displays the dissipation and dispersion error
estimator with exponential time integration andm = mc obtainedwith quadrilateral elements
and wave angles θ0 = π/6, θ1 = π/4. As it was observed in the two-dimensional analysis,
SDRT schemes present 2p and 2p + 1 order of accuracy in their dispersion and dissipation
maps, respectively, for most elements and polynomial degrees. On the other hand, FR-DG
schemes display 2p+1 and 2p+2 order of accuracy in their dispersion and dissipation maps,
respectively. The latter schemes show reduced dispersion and dissipation errors compared
to SDRT methods. It is worth mentioning the reduced order of accuracy of the SDRT3
scheme with tetrahedron elements for well-resolved wavenumbers. The reason behind this
behavior is undetermined, although it is hypothesized that it may be related to the presence
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(a) (b)

Fig. 5 Dissipation errors with exponential time integration obtained with quadrilateral elements, wave angle
equal to θ0 = π/6, and m = mc (left) and m = 400mc (right)

(a) (b)

Fig. 6 Dissipation errors with exponential time integration obtained with triangular elements, wave angle
equal to θ0 = π/6, and m = mc (left) and m = 400mc (right)

of several eigenmodes with similar energy contribution than that of the physical mode and
whose associated dissipation and dispersion errors are of lower orders.

Remark 3 Although not shown for the sake of brevity, aliasing issues have also been observed
in three-dimensional elements.

Up to this point, the dissipation and dispersion errors analyzed in this work do not take
into account the accuracy of the temporal discretization. In order to consider the temporal
discretization defects, the dissipation and dispersion properties will be studied using the
classical three stages and third order RK3, four stages fourth order RK4, and the five stages
and fourth order RK54 time integrator [12]. Only triangular elements will be considered
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Dissipation (left) and dispersion (right) errors with exponential time integration obtained with three-
dimensional elements, wave angles equal to θ0 = π/6, θ1 = π/4 and m = mc
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since, in our studies, all elements showed a similar influence of the temporal discretization
errors in the dissipation and dispersion errors. The aforementioned RK schemes approximate
the exponential matrix as

E
δ
RK3 =

3∑

i=0

(τG)i

i ! , E
δ
RK4 =

4∑

i=0

(τG)i

i ! and E
δ
RK54 =

4∑

i=0

(τG)i

i ! + (τG)5

200
. (58)

Figure 8 shows the dissipation and dispersion errors with triangular elements, θ0 = π/6
and the RK3 time integrator with τ = 0.05 withm = mc. From these results, it can be clearly
observed that the addition of temporal discretization defects to the dissipation and dispersion
maps greatly distorts the accuracy of the schemes as the polynomial degree increases. Fur-
thermore, the order of accuracy of the dissipation and dispersion is reduced to, at most, third
and fourth order respectively. This order of accuracy reduction is consistent with the third
order of accuracy of the RK3 time integrator. Nevertheless, the dissipation and dispersion
errors for low λ/h remain almost invariant with respect to those obtained with exponential
time integration.

On the other hand, Fig. 9 shows the dissipation and dispersion errors with triangular
elements, θ0 = π/6 and the RK54 time integrator with τ = 0.05 for m = mc. The results
indicate the RK54 time integrator has little influence in the dissipation errors, up to λ/h ≈ 5
for p = 4. Nevertheless, the dispersion errors display fourth order of accuracy for most
polynomial degrees, consistent with the formal fourth order of accuracy of the RK54 time
integrator. It is worth mentioning that the influence of the temporal discretization errors in
the dissipation and dispersion of SEM can be reduced by decreasing the τ number.

Remark 4 Although not shown for the sake of brevity, the aliasing issues that appear for high
values of the number of iterations are not influenced by the temporal discretization errors
of RK schemes. This can be explained by the fact that the temporal discretization errors
only influence the diffusion and dispersion errors of the numerical schemes for well-resolved
waves.

3.1.1 Temporal Linear Stability in UniformMesh

Temporal linear stability here refers to the asymptotic stability of the numerical system
described in Eq. 49 as a function of the time step. Boundedness of the solution may be
ensured if the absolute value of all eigenvalues of the exponential matrix E

δ is less than one.
Therefore, the discrete linear system defined in Eq. 49 is linearly stable with exponential
time integration provided that the RHS Jacobian is stable, i.e., if the spatial discretization is
stable. On the other hand, if the exponential of the RHS Jacobian is approximated through
RK methods, there exists a given value of the Δt or τ value for which the spectral radius
is strictly greater than one. Such a τ value is referred to as τMAX and for uniform periodic
meshes, it is a function of the reduced wavenumber κh, the advection velocity angle and the
wavenumber angle.

As the SDRT formulation is equivalent to the original SD method in tensor-product ele-
ments, SDRT schemes are linearly stable for tensor-product elements. It is worth mentioning
that the stability of the SD method in one-dimensional configurations is ensured if the flux
points are located at Gauss-Legendre quadrature points [27]. Nevertheless, for triangular,
tetrahedron and prismatic elements, it was observed (a posteriori) that SDRT schemes are
unstable for p ≥ 5, i.e., the real part of some eigenvalues of J was found to be substantially
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(a) (b)

Fig. 8 Dissipation (left) and dispersion (right) errors with exponential the RK3 time integration scheme
obtained with triangular elements, wave angle equal to θ0 = π/6 and m = mc
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Fig. 9 Dissipation (left) and dispersion (right) errors with exponential the RK54 time integration scheme
obtained with triangular elements, wave angle equal to θ0 = π/6 and m = mc

higher than machine round-off errors. Such a fact was also observed in [55] for triangular
elements. The latter study also proposed a distribution of unique internal flux points, which
are said to yield stable schemes for p = 5. The reason behind such unstable behavior of
SDRT schemes in triangles is undetermined and will be further studied in future works.

Table 1 shows the τMAX for quadrilateral and triangular elements, the SDRT and FR-
DG schemes and RK3, RK4 [11] and RK54 (five stages, two registers and fourth order) [12]
scheme. The results indicate that SDRT schemes present around 30% additional higher τMAX

number than that of FR-DG methods. Moreover, the CFL condition in triangular elements is
lower than that of quadrilateral cells.
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Table 1 τMAX number to ensure
linear stability in the linear
advection equation with uniform
meshes made up of
two-dimensional elements with
θ0 = π/6

τMAX

RK3 RK4 RK54

(a) SDRT quadrilateral elements

SDRT1 0.459 0.509 0.695

SDRT2 0.235 0.281 0.392

SDRT3 0.149 0.165 0.247

SDRT4 0.102 0.119 0.173

(b) FR-DG quadrilateral elements

FR-DG1 0.306 0.339 0.507

FR-DG2 0.153 0.185 0.261

FR-DG3 0.096 0.106 0.162

FR-DG4 0.065 0.078 0.113

(c) SDRT triangular elements

SDRT1 0.286 0.329 0.464

SDRT2 0.179 0.198 0.290

SDRT3 0.112 0.128 0.196

SDRT4 0.078 0.088 0.138

(d) FR-DG triangular elements

FR-DG1 0.222 0.249 0.372

FR-DG2 0.126 0.140 0.217

FR-DG3 0.086 0.096 0.146

FR-DG4 0.060 0.066 0.103

Table 2f shows the τMAX for hexahedral, tetrahedral and prismatic elements, the SDRT and
FR-DG schemes and aforementioned ERK schemes. As it was observed for two-dimensional
elements, the results indicate that SDRT schemes present around 30% additional higher
τMAX number than that of FR-DG methods. Moreover, the CFL condition in tetrahedron and
prismatic elements is lower than that of quadrilateral cells.

Additional tests have been performed utilizing otherwave angle configurations and similar
conclusions have been obtained. Therefore, for the sake of brevity, the τMAX for other wave
angle configurations are not depicted in this work.

4 Von-Neumann Analysis with Diffusion

The Von-Neumann analysis depicted in Sect. 3 for the linear advection equation may also be
applied to the linear diffusion equation which reads

∂u(x, t)

∂t
+ ∇ · (μ∇u(x, t)) = 0. (59)

The dissipation and dispersion errors introduced by SEM when discretizing the latter equa-
tion may be predicted using similar tools as those introduced to analyze SEM in the linear
advection equation with uniform meshes. One of the modifications that need to be taken into
account is that, for the initial condition considered in Eq. 46, the analytical solution is given
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Table 2 τMAX number to ensure
linear stability in the linear
advection equation with uniform
meshes made up of
three-dimensional elements with
θ0 = π/6 and θ1 = π/4

τMAX

RK3 RK4 RK54

(a) SDRT hexahedral

SDRT1 0.345 0.403 0.552

SDRT2 0.187 0.222 0.304

SDRT3 0.117 0.131 0.196

SDRT4 0.081 0.094 0.136

(b) FR-DG hexahedral

FR-DG1 0.237 0.269 0.394

FR-DG2 0.122 0.146 0.204

FR-DG3 0.075 0.084 0.127

FR-DG4 0.052 0.061 0.088

(c) SDRT tetrahedra

SDRT1 0.151 0.172 0.262

SDRT2 0.106 0.124 0.170

SDRT3 0.067 0.076 0.117

SDRT4 0.034 0.037 0.062

(d) FR-DG tetrahedra

FR-DG1 0.123 0.138 0.216

FR-DG2 0.085 0.095 0.137

FR-DG3 0.055 0.061 0.097

FR-DG4 0.043 0.048 0.071

(e) SDRT prisms

SDRT1 0.345 0.403 0.552

SDRT2 0.187 0.222 0.304

SDRT3 0.117 0.131 0.196

SDRT4 0.081 0.094 0.136

(f) FR-DG prisms

FR-DG1 0.237 0.269 0.394

FR-DG2 0.122 0.146 0.204

FR-DG3 0.075 0.084 0.127

FR-DG4 0.052 0.061 0.088

by

u(x, t) = u(x, 0)e−μκ2t . (60)

Hence, the temporal wavenumber is ω = Iμκ2. The discretized version of the diffusion
equation reads

duρn

dt
= μ

h2
∑

i∈Cn
Jρiνuiν . (61)

For pure-diffusion problems, one may redefine the CFL number as

τ = μΔt

h2
. (62)
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In this study, only the RB1 scheme will be considered to compute the gradients and
viscous fluxes, i.e. β = 0. Moreover, the penalty term will be set to η = 0. Such choices are
motivated due to the fact that an appropriate and symmetric definition of the left and right
face connectivity in meshes made up of other than tensor-product elements is cumbersome. If
the latter mesh property is not ensured and the viscous solver is not symmetric (i.e., if β �= 0
and/or η �= 0), then the RHS Jacobian matrix will not possess circulant block properties, and
therefore, the process described in Sect. 3 to assess numerical dissipation and dispersion of
SEM would not be valid.

It is worth mentioning, that the use of the RB1 formulation has important consequences
in the analysis as, due to the non-compactness of the method, the number of neighbors with
non-zero contributions in the RHS Jacobianmatrix J is increasedwith respect to that obtained
in pure-advection problems. In particular, one should consider two face neighbor layers to
appropriately carry out the process to compute the dissipation and dispersion errors described
in Sect. 3. Hence, in pure-diffusion problems, the set Cn stores the unique indices of the direct
face neighbors of the element n and the face neighbors of the aforementioned neighbors.

After computing the eigenvalues from Eq. 50 resulting from the discretization of the
diffusion equation, one may compute the numerical temporal wavenumber ωδ , using the
dissipation and dispersion measures, following Eqs. 53 and 55. With such a value of the
temporal wavenumber, the error estimator of the numerical temporal wavenumber defined in
Eq. 57 may be used to assess the accuracy of the numerical schemes. As was found in [6],
no dispersion errors were obtained when analyzing the schemes developed in this work. The
reason behind the lack of dispersion errors when dealing with pure-diffusion linear equations
in SEM will be studied in future works.

Remark 5 Despite the fact that for pure-diffusion problems the RHS Jacobian is independent
of the wave angle, both the eigenvalues and eigenvectors shape of Eq. 50 are not. Therefore,
the numerical errors of SEMwhen discretizing pure-diffusion equations depend on the wave
angle.

Figure 10 depicts the dissipation errors obtained using quadrilateral and triangular ele-
ments, θ0 = π/6, exponential time integration and m = mc/10. When analyzing the order
of accuracy of the latter type of elements in pure-diffusion problems, it can be observed
that both FR-DG and SDRT schemes show 2p order of accuracy. Nevertheless, and as it
was observed in the pure-advection analysis, the SDRT order of accuracy p = 4 seems to
degrade for well-resolved waves. On the other hand, the order of accuracy with quadrilateral
elements behaves differently depending on whether p is even or odd. SDRT schemes present
2p order of accuracy, with the exception of the SDRT1 scheme, which shows 2p+ 2 order of
accuracy. Additionally, FR-DG methods show 2p and 2p + 2 order of accuracy for odd and
even polynomial degrees, respectively. The reason behind such a behavior of the schemes is
unknown.

To assess the influence of the number of iterations in the dissipation maps, Fig. 11a
illustrates the dissipation errors obtained using quadrilateral elements, θ0 = π/6, exponential
time integration and m = 10mc. Similarly, as it was observed in pure-advection problems,
the dissipation errors are not heavily distorted when increasing the number interations until
the first aliasing limit κh < π/ cos θ0. For non-aliased wavenumbers the dissipation errors
are very similar to those observed with m = mc/10 in Fig. 10a, with the exception of the
SDRT1 scheme which shows a reduction of its order of accuracy for well-resolved cases. On
the other hand, with aliasedwavenumbers the dissipation errors drastically increase for a high
number of iterations. Recently, Alhawwary andWang [6] indicated that the dissipation errors
for high wavenumbers with pure-diffusion and SEM reduced the dissipation, i.e., the errors
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(a) (b)

Fig. 10 Dissipation errors in pure-diffusion problems with exponential time integration obtained with two-
dimensional elements, a wave angle equal to θ0 = π/6 and m = mc/10

are related to the lack of appropriate diffusion provided by the numerical scheme. To further
validate this observation, Fig. 11b represents the dissipation errors from Eq. 57 removing
the absolute value from its expression. The figure illustrates that, for aliased wavenumbers
and high number of iterations, the dissipation errors are always negative (except for the
FR-DG1 scheme), i.e., the diffusion predicted by the schemes is smaller than expected.
Such an issue is important in conservation laws presenting diffusion terms, since for very
high wavenumbers the dissipation of the numerical schemes is close to zero, far away from
the physical dissipation expected for such high wavenumbers. Additionally, it can also be
observed that, the higher the polynomial degree, the lower the numerical diffusion.Moreover,
all SDRT schemes display increased dissipation errors than the FR-DG method, possibly
pointing out that SDRT schemesmight need of additional numerical dissipation in advection-
diffusion problems to avoid the accumulation of energy within the smallest scales.

Similarly, Fig. 12 shows the dissipation errors obtained with three-dimensional elements
with θ0 = π/6 and θ1 = π/4. The dissipation error of hexahedral elements is very similar
to that observed for quadrilateral elements in the two-dimensional analysis. FR-DG displays
a superconvergent 2p + 2 order of accuracy with even degree polynomials, while its order
of accuracy is reduced to 2p with odd degree polynomials. SDRT schemes show 2p order
of accuracy. On the other hand, the behavior of the numerical dissipation with tetrahedral
elements and SDRT schemes is slightly different than that observed with triangular elements.
In particular, as the polynomial degree increases, the order of accuracy for p ≥ 3 seems to
degrade for well-resolvedwaves. This issuemay be related to the influence of spuriousmodes
and/or the lack of superconvergence properties of the physical/spectral radius eigenmode. At
last, the dissipation errors with prismatic elements display an interesting behavior. For low
values of the cells per wavelength parameter λ/h < 5, the dissipation errors resemble those
of hexahedron elements, displaying superconvergent behavior for even degree polynomials
and FR-DG schemes. On the other hand, for well-resolved waves, the results are close to
those observed with tetrahedron elements.
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(a) (b)

Fig. 11 Dissipation errors in pure-diffusion problems with exponential time integration obtained with quadri-
lateral elements, a wave angle equal to θ0 = π/6 and m = 10mc . The figure on the left was computed using,
Eq. 57 while the figure on the right was obtained by removing the absolute value operator in Eq. 57

Remark 6 The discussion of discretization errors related to time integration schemes is
avoided for the sake of brevity, as similar conclusions than those addressed in Sect. 3.1.1
have been observed.

5 Numerical Experiments

5.1 Linear Advection Diffusion

To experimentally assess the order-of-accuracy of the SDRT in linear test cases, the linear
advection-diffusion equation is solved in two-dimensional and three-dimensional configura-
tions within a domain Ω ∈ [0, 2πL]ND with periodic boundary conditions

f(x, t) = cu(x, t) − μ∇u(x, t), (63)

subject to the initial condition

u(x, 0) = sin
ND−1∑

i=0

xi
L

. (64)

The latter initial field is related to the imaginary part of a Fourier mode with wavenumber
κ = √

ND/L and wavelength λ = 2πL/
√
ND. The analytical solution of the previous

problem is given by

u(x, t) = u(x − ct, 0)e−μNDt/L2
. (65)

The behavior of the linear advection diffusion equation is governed by the Peclet number,

Pe = c

μL
. (66)
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(a) (b)

(b)

Fig. 12 Dissipation errors in pure-diffusion problems with exponential time integration and m = mc/10
obtained with three-dimensional elements and wave angles equal to θ0 = π/6 and θ1 = π/4

Such a non-dimensional parameter plays a similar role to the Reynolds number in the Navier-
Stokes equations. High values of the Peclet number are related to advection-dominated
solutions, while low numbers of it imply diffusion-dominated solutions. To ease the analysis
of the numerical errors in future sections, all components of the advection velocity vector
are supposed constant.

5.1.1 Asymptotic Order of Accuracy with Pure Advection

In order to validate the numerical accuracy described in Sects. 3 and 4, it is important to
avoid taking into account the initial projection error of the solution on the polynomial basis
of the schemes [20]. This is ensured by computing the L2-norm of the solution error using
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the numerical solution as the reference solution

L2(h,m) =
√

1

|Ω|
∫

Ω

[
uδ

(
x,

2mπL

c0

)
− uδ

(
x,

2(m − 1)πL

c0

)]2
dΩ (67)

where m in the number of periods and Ω is the domain volume. Such a choice allows
distinguishing the numerical errors associated with the physical eigenmode by ensuring the
dissipation of all other spurious eigenmodes which appear due to the projection of the initial
condition on the solution nodal basis. In this study, the norm defined in Eq. 67 is assessedwith
a quadrature of sufficient degree, i.e., such that it integrates exactly at least a 2p polynomial
by interpolating the numerical solution to the correspondent quadrature points.

Under certain conditions, the previously described methodology allows observing the
numerical accuracy predicted in Sect. 3 with linear analysis [20]. If one computes the error
norm using the analytical solution as the reference solution, i.e., if m = 1, then the schemes
will show p + 1 order of accuracy due to the strong dissipation and dispersion of the eigen-
modes other than the physical mode characteristic of the first steps of the simulation [18, 20].
To minimize the temporal discretization errors, RK54 [12] with τ = 0.0025 is employed.
Nevertheless, it is worth mentioning that the use of very higher-order RK methods is rec-
ommended to observe the appropriate order of accuracy of spatial discretization schemes cf.
[20].

Figure 13 show the error norm for p = 1, 2, 3 and 4 FR-DG and SDRT schemes with
quadrilateral elements using m = 1 and m = 2. The results illustrate that SDRT and FR-DG
schemes display p+1 order errors whenm = 1 as predicted by Guo et al. [20]. Furthermore,
when using m = 2 the predicted 2p and 2p + 1 order of accuracy of SDRT and FR-DG
schemes in pure advection problems is observed for p ≤ 3. With p = 4 the expected order
of accuracy is not obtained. This could be explained due to the lower dissipation rates of
the spurious modes and due to the use of a fourth order accurate RK method. It is worth
noting that the data indicate that FR-DG schemes present reduced error values compared to
SDRT schemes in quadrilateral elements for both m = 1 and 2. For the sake of brevity, the
computation of the order of accuracy of three-dimensional elements is not included in the
main text of this work. The interested reader is referred to “Appendix Appendix E” for an
analysis of such results.

5.1.2 Order of Accuracy with Pe = 10

This section aims to validate the order of accuracy of the FR-DG and SDRT schemes utilizing
the error norm

L2(h,m) =
√

1

|Ω|
∫

Ω

[
uδ

(
x,

2πL

c0

)
− u

(
x,

2πL

c0

)]2
dΩ, (68)

and Peclet number Pe = 10, with τ = 2.5 · 10−3 (ensuring that both the pure-advection
and pure-diffusion τ numbers are below the latter threshold). The same quadrature rules as
those described in Sect. 5.1.1, were used to evaluate Eq. 68. For the sake of simplicity, the
results are only presented for p = 3. As stated in the previous section, the expected order
of accuracy is p + 1 = 4 due to the initial projection error, despite the fact that, to the best
of the authors’ knowledge, no published work regarding the asymptotic order of accuracy of
pure-diffusion problems discretized with SEM can be found.

Table 3 displays the error norm obtained with SDRT schemes and all the element types
studied in this work, utilizing meshes with a total of NNDNp cells. As expected, the order
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(a) (b)

Fig. 13 L2-norm of the solution error evaluated using Eq. 67 withm = 1 (left) andm = 2 (right) and obtained
using different schemes together with meshes made up of quadrilateral elements

(a) (b)

Fig. 14 L2-norm of the solution error evaluated using Eq. 67 withm = 1 (left) andm = 2 (right) and obtained
using different schemes together with meshes made up of triangular elements

of accuracy is p + 1. Furthermore, tetrahedral meshes show the lowest error, followed by
prismatic and hexahedralmeshes. This can be explained due to the higher number of elements
and solution points found in the tetrahedral meshes used in this work. Table 4 illustrates the
same results obtained with FR-DGmethods. As it was observed for SDRT schemes, the order
of accuracy of the schemes is p + 1, and tetrahedral meshes always present the lowest error
norm value. It is worth mentioning that FR-DG schemes always display lower errors than
SDRT schemes for all element types.
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Table 3 L2-norm of the solution error in the linear advection diffusion test case with Pe = 10, SDRT schemes
and different element types and meshes

quad tri hex pri tet

L2 Order L2 Order L2 Order L2 Order L2 Order

N = 10 1.32e−05 – 5.47e−06 – 9.01e−06 – 6.00e−06 – 2.32e−06 –

N = 20 8.96e−07 3.88 3.04e−07 4.17 6.14e−07 3.87 3.92e−07 3.93 1.33e−07 4.12

N = 30 1.78e−07 3.98 5.68e−08 4.14 1.23e−07 3.96 7.79e−08 3.99 2.57e−08 4.06

All results were obtained with p = 3

Table 4 L2-norm of the solution error in the linear advection diffusion test case with Pe = 10, FR-DG
schemes and different element types and meshes

quad tri hex pri tet

L2 Order L2 Order L2 Order L2 Order L2 Order

N = 10 9.76e−06 – 3.89e−06 – 6.80e−06 – 4.50e−06 – 1.57e−06 –

N = 20 6.80e−07 3.84 2.42e−07 4.01 4.78e−07 3.83 3.08e−07 3.87 9.80e−08 4.00

N = 30 1.38e−07 3.93 4.77e−08 4.00 9.79e−08 3.91 6.27e−08 3.93 1.94e−08 4.00

All results were obtained with p = 3

5.2 Isentropic Euler Vortex

This section is devoted to the analysis of polynomial aliasing errors which appear in non-
linear test cases. In particular, the Isentropic Euler Vortex [49] will be analyzed following the
considerations of Spiegel et al. [48], Cox et al. [16]. The Isentropic Euler vortex problem is
commonly used to test the order of accuracy of numerical methods for conservation lawswith
non-linear fluxes, in particular the Euler equations. These equations may be represented as a
system of conservation laws that describes the dynamics of inviscid fluids. The conservative
variables of this set of equations are

u =
⎛

⎝
ρ

ρv

ρE

⎞

⎠ . (69)

where ρ is the fluid, ρv is the fluid momentum, v is the fluid velocity and the total energy
is given by ρE (being E the total energy per unit of mass). The flux operator of the Euler
equations presents only convective terms and can be written as

f(u) =
⎛

⎝
ρv

ρv ⊗ v + p I
ρvE + pv

⎞

⎠ . (70)

Here, the symbol ⊗ represents the dyadic operator, p is the pressure and I ∈ R
ND×ND is the

identity matrix. The non-linear system is closed with the equation of state

ρE = p

γ − 1
+ 1

2
ρv · v and/or p = ρrΘ. (71)

where γ denotes the adiabatic constant, r is the perfect gas constant and Θ is the fluid
temperature.
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In this section, the Isentropic Euler Vortex configuration used in [67] is replicated, and
special emphasis will be placed on the study of aliasing properties of FR-DG, SDRT and
FR-SDRT. The analytical solution of this test case is

ρ(x, t) = ρ∞
(
1 − S2Ma2(γ − 1)e2 f

8π2

)1/(γ−1)

p(x, t) = p∞
(

ρ

ρ∞

)γ

v(x, t) = v∞
(
S ŷe f

2πR
, 1 − Sx̂e f

2πR

)
. (72)

where x̂ = (x̂, ŷ) = (x, y−v∞t), f = (1− x̂2− ŷ2)/(2R2), S = 13.5 is the vortex strength,
Ma = 0.4 is the free-streamMach number and R = 1.5 is the vortex radius. The free-stream
values with ∞ sub-index are set as: ρ∞ = 1, v∞ = 1 and p∞ = ρ∞v2∞/(γMa2∞) to match
the conditions imposed in [67]. Simulations are carried out in a domain Ω ∈ [−L, L]2
with R/L = 0.075. Such a choice of domain size ensures that the velocity and density
perturbations are well below the machine round-off errors. Periodic boundary conditions are
imposed at boundaries with constant y coordinate, while the limiting values of the initial
conditions (i.e., those obtained with x → ∞) were used to define the boundary conditions
at boundaries with constant x coordinate. This allows to further reduce numerical errors and
instabilities which are introduced when solving the Isentropic Euler Vortex with periodic
boundary conditions [49]. The common fluxes are computed using the Rusanov–Riemann
solver. To measure the order of accuracy the L2 norm of the density error, defined as,

L2(h,m) =
√

1

|Ω̂|
∫

Ω̂

[
ρδ (x,mtc) − ρ (x, t = 0)

]2
dΩ, (73)

is utilized. In the latter equation, tc = L is the characteristic convective time of the vortex,
m is an arbitrary positive integer, Ω̂ is a the volume of the mesh region comprised within
x ∈ [−L/10, L/10]2. To evaluate Eq. 73, the same quadrature rules as those described in
Sect. 5.1.1 were used. This domain is chosen in order to avoid including spurious oscillations
that result from the use of periodic boundary conditions in the evaluation of the error norm
[67]. The time step of the simulations is chosen as Δt = 1.25 ·10−3 to ensure that the spatial
discretization errors are predominant over temporal discretization errors.

Remark 7 As has been shown in [16, 49, 67] the order of accuracy obtained from these
simulations is heavily dependent on the parameter m and meshes used to evaluate the error
norm. In particular, it was observed that the higher the value of m the higher the order of
accuracy, provided that the time step is sufficiently low. Nevertheless, in the authors’ opinion,
the reason behind this superconvergence behavior of the error norm is not fully determined.
Studies usually explain this observation using the propagation of projection error of the initial
condition [67], similar to what it is observed for linear cases [20]. However, it is not clear
whether this linear theory can be applied to non-linear problems.

Figure 15 represents the L2-norm of the solution error evaluated with m = 2, p = 3 and
different schemes for quadrilateral and triangular elements. The results for tensor-product
elements showsimilar errors as those found in [16], i.e., FR-DGschemes show the lowest error
values followed by SDRT and FR-SDRT schemes. On the other hand, the results obtained
with triangles display that SDRT schemes show the highest error, even higher than FR-SDRT.
The reasoning behind such disparities is not straightforward. For example, we demonstrated
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(a) (b)

Fig. 15 L2-norm of the solution error in the Isentropic Euler Vortex evaluated using Eq. 73 withm = 2, p = 3
and obtained using different schemes together withmeshesmade up of quadrilateral (left) and triangular (right)
elements

in Sect. 5.1 that FR-SDRT and SDRT schemes are equivalent in linear problems. However,
such equivalence is lost in non-linear problems and hence the differences between simulations
performedwith FR-SDRT and SDRTmay only be explained using non-linear tools. In theory,
SDRT schemes should present better aliasing properties than FR schemes due to the use of
a staggered-grid approach and Raviart–Thomas flux bases to project the fluxes, hence its
numerical error should be lower than that of FR-SDRT. Nevertheless, such an advantage is
only observed in this test case when using tensor-product elements and when comparing
FR-SDRT and SDRT schemes. Additionally, FR-DG methods always provide the lowest
error values in this test case. It is even possible that SDRT schemes are non-linearly weakly
unstable. These issues will be studied in future works since, in the authors’ opinion, the
explanation of such inconsistent conclusions requires tools beyond the linear analysis.

5.3 Taylor–Green-Vortex

This section analyzes the accuracy of the SDRT and FR-DG methods using the Taylor–
Green-Vortex [60], which is a standard validation test case used to assess the accuracy of
numerical schemes with turbulent-like flows using the Navier-Stokes equation. The Navier-
Stokes equations describe the motion of viscous fluids and share the same convective flux as
the Euler equations. Additionally, they present a viscous flux term which is formulated as

f(u,∇u) =
⎛

⎝
ρv

ρv ⊗ v + p I
(ρE + p)v

⎞

⎠ +
⎛

⎝
0

−τ

−μcp
Pr ∇Θ − τ · v

⎞

⎠ , (74)

whereμ is the kinematic viscosity, cp is the specific heat of the fluid for constant pressure, Pr
is the Prandtl number and τ is the viscous stress tensor which may be written for Newtonian
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fluids and under the Stokes hypothesis as

τ = μ

(
∇v + (∇v

)T − 2

3
∇ · v I

)
. (75)

The initial condition of the TGV reads

v0 = v∞ sin
x

L
cos

y

L
cos

z

L

v1 = −v∞ cos
x

L
sin

y

L
cos

z

L
v2 = 0

p = p∞ + ρ∞v2∞
16

[
cos

2x

L
+ cos

2y

L

] [
cos

2z

L
+ 2

]

ρ = p

rΘ∞
. (76)

In the latter,Θ∞ is the initial temperature field supposed constant and v∞, p∞ and ρ∞ allow
defining the non-dimensional parameters Reynolds number ReL and Mach number Ma∞ as

ReL = ρ∞v∞L

μ
= 1600 , Ma∞ = v∞√

γ
p∞
ρ∞

= 10−1. (77)

Such a value of the Mach number is imposed to obtain results with compressible solvers
close to those obtained with incompressible formulations. Moreover, the flow is supposed to
present a constant Prandtl number Pr = 0.71. The simulations are performed in a periodic
domain Ω ∈ [−πL, πL]3.

Such a flow configuration experiences a transition to a weakly turbulent state, with the
creation of small scales, followed by a decay phase similar to decaying homogeneous tur-
bulence, yet not isotropic according to [60]. DNS data from this case is often available in
the incompressible limit of the Navier–Stokes equations and for a wide range of Reynolds
number (see [53] for example).

The comparison of simulations with reference DNS data is usually carried out through
the computation of the ensemble average 〈�〉 over all the domain of a certain quantity. This
operator is defined as

〈�〉 = 1

|Ω|
∫

Ω

�dΩ. (78)

In this work the non-dimensional dissipation of the non-dimensional ensemble average com-
pressible kinetic energy E∗ = 1

ρ∞v2∞
ρv · v is defined as

ε1 = −d〈E∗〉
dt∗

. (79)

Here, t∗ = t/tc is the non-dimensional time variable and tc = L/v∞ is the characteristic
time. The analysis of the equation describing the temporal evolution of the kinetic energy
allows the estimation of numerical errors through the comparison of each of the components
of the kinetic energy balance equation [40] which are defined as follows

ε2 = 2μtc
ρ∞v2∞

〈Sd : S
d〉,

ε3 = − tc
ρ∞v2∞

〈p∇ · v〉,
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ε1 = ε2 + ε3. (80)

In the latter, Sd = 1
2

(∇v + ∇vT
)− 1

3∇ ·v I is the deviatoric strain-rate tensor. Additionally,
ε2 is the strain rate dissipation and ε3 is the pressure dissipation.

Remark 8 Under the incompressibility hypothesis ε3 = 0, ε2 becomes the classical enstrophy
dissipation term [17].

Since, all the dissipation terms can be numerically computed from simulation data, devi-
ations of ε2 + ε3 from ε1 can be linked to numerical dissipation provided that the terms are
computed with appropriate numerical quadratures. In this work, a quadrature of degree 10 is
used to assess the ensemble averages. As in [16, 40] the error estimator εδ may be expressed
as

εδ = ε1 − ε2 − ε3. (81)

All simulations will be performed with β = 0.5 and τ = 0.1 which are common choices
for simulations of the TGV test case (see [57]) and also add a certain amount of numerical
dissipation to the viscous terms, which improves the stability of under-resolved simula-
tions. Furthermore, the common convective fluxes are computed using theRusanov–Riemann
solver. Additionally, the RK54 time integrator coupled with a PI adaptive controller [11] are
utilized to carry out the simulations using adaptive time-stepping. The latter adaptive time-
stepping controller is configured with relative and absolute tolerances equal to 10−8 and
using the L∞ norm as error estimator.

5.3.1 Validation

To validate the SDRT implementation with hexahedral elements, the TGV test case is simu-
lated using a mesh containing 643 hexahedral elements and p = 3. The results are compared
with data from [16] which were obtained with their in-house SD solver implementation.
Figure 16 represents the different dissipation terms as a function of the non-dimensional
time. The results are very close to each other, validating the SDRT implementation in PyFR
with hexahedral elements. Differences found in the numerical dissipation estimator could be
related to the use of a different quadrature, the values of β and τ , variations in the adaptive
time-stepping method of choice, post-processing issues, etc.

Remark 9 It is worthmentioning that the computation of the ε3 parameter is highly dependent
on the method used to post-process the velocity gradients. In particular, it was observed that
if the parameter ε3 is not assessed using the LDG approach, then its temporal evolution
displayed much higher values than those from reference data.

5.3.2 Under-Resolved Configuration

Herein, results of simulations carried out with p = 2, 3 and 4, number of cells equal to
323Np and different element types utilizing SDRT, FR-DG and FR-SDRT schemes will be
analyzed. Figure 17 represents the temporal evolution of the ε2 in the aforementioned con-
figuration for different element types and polynomial degrees. With hexahedral elements the
different schemes display a stable behavior and the FR-SDRT and SDRT schemes display
higher values of the viscous dissipation than FR-DG methods. Since this viscous dissipation
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(a) (b) (c)

Fig. 16 Temporal evolution of different dissipation terms in the TGV test case obtained with 643 hexahedral
elements and the SDRT3 scheme. Reference data from [16] obtained with an in-house SD solver and p = 3
are used for validation purposes

parameter is proportional to the enstrophy under incompressibility assumptions, higher val-
ues of the enstrophy values are often related to higher accuracy, provided that the solution
does not present local instabilities. With prismatic elements and, p = 2 the SDRT2 scheme
shows the highest value of the ε2 parameter. Nevertheless, for higher polynomial degree the
solution displays a certain degree of unstable behavior, showing a very pronounce dissipation
maximum at t∗ ≈ 8 with p = 3 and yielding a simulation divergence for p = 4 at t∗ ≈ 11.
On the other hand, FR-SDRT schemes remain stable and display slightly higher values of
the viscous dissipation for p = 3 and p = 4. At last, results with tetrahedral elements are
similar to those obtained with p = 2 and prismatic elements. However, simulations with
SDRT schemes diverge for p > 2 and those carried out with FR-SDRT methods diverge for
p = 4.

Different tests were performed to assess the root cause of the divergence of simulations
performed FR-SDRT and SDRT schemes. For example,modifying the values ofβ, increasing
the penalty parameter τ , reducing the tolerances of the PI adaptive time-stepping controller,
etc. Nevertheless, neither of these approaches allowed to stabilize the simulations. The reason
behind the simulations’ divergence observed with FR-SDRT and SDRT schemes must be
related to non-linear instabilities, since the linear stability of the schemes was demonstrated
(for the polynomial degrees studied) in Sects. 3 and 4. Non-linear instabilities are known
to arise due to polynomial aliasing issues or merely due to the non-linear energy stability
analysis [27]. Future studies should be carried out to further understand which are the reasons
behind the unstable behavior of FR-SDRT and SDRT schemes in non-linear test cases with
three-dimensional simplex elements. Similarly, future studies should assess the effect that
aliasing has on the non-linear stability. This could be carried out by over-integrating the
volume flux further to determine if the stability properties of the SDRT scheme are improved
with respect to the FR-SDRT method.

Park et al. [42] showed that the use of adaptive time-stepping with dealising techniques
in FR-DG simulations yielded higher values of the time step. The reason behind such a
fact is not determined. To assess if this time step increase is also observed when using FR-
SDRT and SDRT schemes, Table 5 represents the average time step of the aforementioned
simulations of the TGV test case for different schemes, polynomial degrees and element
types. The results indicate that, as it was illustrated in linear problems, FR-SDRT and SDRT
schemes yield higher time step values than FR-DG methods when combined with adaptive
time-stepping methods and when using hexahedral and prismatic elements. With tetrahedral
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 17 Temporal evolution of the ε2 viscous dissipation in the TGV test case with a mesh consisting of
323Np , different element types and polynomial degrees

elements, only the FR-SDRT and SDRT schemes with p = 2 displayed increased time step
values. The increase is substantial, and the ratios are close to those observed in the linear anal-
ysis (see Sect. 3.1.1). Such an increased temporal stability is special interesting for unsteady
simulations, since it allows to further advance the simulations for a same simulation wall
time. However, as previously discussed, several combinations of element types and schemes
resulted in unstable simulations, in particular SDRT3, SDRT4 and FR-SDRT4 showed diver-
gent results with tetrahedral elements, while the SDRT4 scheme was unstable with prismatic
elements.

To better compare the performance of the different schemes, it is also important to assess
the computational performance of the different methods on an iteration-per-iteration basis.
The interested reader is referred to “Appendix Appendix C” for an in-depth study on the
iteration-per-iteration computational performance of the different schemes with GPUs.
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Table 5 Average time step (in s) obtained in the simulation of the TGV with 323Np cells, different element
types, polynomial degrees and SDRT, FR-DG and FR-SDRT schemes

hex pri tet

SDRT FR-DG FR-SDRT SDRT FR-DG FR-SDRT SDRT FR-DG FR-SDRT

p = 2 2.35e−02 1.75e−02 2.38e−02 2.07e−02 1.63e−02 2.18e−02 1.62e−02 1.38e−02 1.66e−02

p = 3 1.35e−02 1.05e−02 1.36e−02 1.16e−02 1.00e−02 1.22e−02 ✗ 9.21e−03 9.15e−03

p = 4 9.02e−03 6.62e−03 9.14e−03 ✗ 6.82e−03 7.66e−03 ✗ 6.39e−03 ✗

The symbol ✗ indicates that the combination of polynomial degree, scheme and element type resulted in
unstable simulations

6 Conclusions and Perspectives

In this study, the SDRT formulation has been generalized for two and three-dimensional ele-
ments including triangular, tetrahedral and prismatic elements. Additionally, the equivalence
between FR and the SDRTwas proven when solving linear equations with uniformmesh and
when one utilizes a subset of the RT nodal flux basis to build the vector correction functions
of the FR method, resulting in the FR-SDRT formulation. To the best of the authors’ knowl-
edge, aside from the FR-DGmethod and the ESFR schemes, the FR-SDRTmethod is the only
generalized FR scheme that recovers high-order stable (under certain conditions) schemes
with three-dimensional simplex elements. All these developments were implemented in the
open-source PyFR solver. The dissipation and dispersion of the SDRT method were com-
pared to that of the FR-DG formulation with linear advection and linear diffusion equations
with two and three-dimensional tensor-product and simplex elements. These analyses were
performed using a combined-mode method, i.e., by taking into account the information of
all eigenmodes in the dissipation and dispersion error measures. To the best of the authors’
knowledge, this study is thefirst to analyze of the dissipation anddispersion properties of SEM
with three-dimensional elements using the aforementioned method. The results showed that
the FR-DG maintains 2p+ 1 order of accuracy even with simplex elements, while the SDRT
method shows 2p order of accuracy. Nevertheless, the numerical errors of the SDRT method
with respect to FR-DG schemes were shown to increase significantly with the polynomial
degree of the considered schemes. Moreover, through temporal linear stability, the SDRT
method was shown to provide increased τMAX values with respect to FR-DG, proving that
SDRT schemes might be an appropriate choice to carry out high-order numerical simulations
with simplex three-dimensional elements. Nonetheless, it is worth noting that some SDRT
schemes were found to be unstable for triangular, tetrahedron and prismatic elements for
p ≥ 5. The analytical findings were validated through linear analyses, which demonstrated
the predicted order of accuracy of the schemes through numerical experiments. Additionally,
the SDRT, FR-DG and FR-SDRT were tested in the non-linear isentropic Euler vortex test
case yielding non-intuitive results since FR-SDRT schemes were found to be more accurate
than SDRT schemes analysis. At last, the SDRT method with other than tensor-product ele-
ments was shown to yield unstable simulations of the Taylor-Green-Vortex for p ≥ 3. Since
these methods were shown to be linearly stable for p < 5, SDRT schemes are thought to be
non-linearly unstable. Hence, newmathematical tools need to be used to analyze these issues.
It is worth noting that the FR-SDRTmethodwas found to bemore stable than SDRT schemes,
which is not intuitive. Further work is required to determine the effect of aliasing in the non-
linear stability of SDRT and FR-SDRT schemes. Future works will be directed towards the
extension of the SDRT method for pyramid elements, the reduction of the round-off errors
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introduced in the computation of the inverse Vandermonde matrix in the SDRT method and
the theoretical assessment of the linear stability of the SDRT method with simplex elements.
Finally, future lines of research could involve the extension the work of Abgrall et al. [4] to
develop an entropy-stable SDRT formulation.
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Appendix A Raviart–Thomas (RT) Basis and Degree of Freedom
Distribution

Let P be a polynomial basis, described in [10], such that

Pp(̃x0) ≡ span{xi0} with 0 ≤ i ≤ p or

Pp(̃x0, x̃1) ≡ span{xi0x j
1 } with 0 ≤ i, j and i + j ≤ p or

Pp(̃x0, x̃1, x̃2) ≡ span{xi0x j
1 x

k
2 } with 0 ≤ i, j, k and i + j + k ≤ p, (82)

where each each basis of P presents ND dimensions (depending on the considered element
in which these polynomial bases are described). Within ND-dimensional bases, only one
component is non-zero. The index of such non-zero component may be deduced from the
context and from the examples provided for each elements. Additionally, let us define P as

Pp(̃x0) ≡ span{xi0} with i = p or

Pp(̃x0, x̃1) ≡ span{xi0x j
1 } with i + j = p or

Pp(̃x0, x̃1, x̃2) ≡ span{xi0x j
1 x

k
2 } with i + j + k = p. (83)

At last, we introduce the polynomial Q

Qn,m (̃x0, x̃1) ≡ span{xi0x j
1 } with 0 ≤ i, j ≤ n,m or

Qn,m,l (̃x0, x̃1, x̃2) ≡ span{xi0x j
1 x

k
2 } with 0 ≤ i, j, k ≤ n,m, l. (84)

This polynomial also presents ND-dimensional.
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The operator × indicates the Cartesian product of bases while operator ⊕ indicates addi-
tion. The interested reader is referred to the RT basis examples provided within the following
sections to better understand the nomenclature.

Appendix A.1 Triangles and Tetrahedrons Elements

The reference triangle and tetrahedron are defined such that

Ω̃e ∈ x̃i ≥ −1;
∑

i

x̃i ≤ 0. (85)

The RT modal bases of a SDRT scheme of degree p for triangle and tetrahedron elements
are given by

ψ ( f )(̃x) ≡ Pp(̃x)ND ⊕ x̃Pp(̃x). (86)

To give an example of such polynomial basis, the RT basis for a triangular element with
p = 1 reads

ψ (̃x) ≡
[
1
0

]
,

[
x̃
0

]
,

[
ỹ
0

]
,

[
0
1

]
,

[
0
x̃

]
,

[
0
ỹ

]
,

[
x̃2

x̃ ỹ

]
,

[
x̃ ỹ
ỹ2

]
, (87)

while the RT basis for a tetrahedron element with p = 1 is given by

ψ (̃x) ≡
⎡

⎣
1
0
0

⎤

⎦ ,

⎡

⎣
x̃
0
0

⎤

⎦ ,

⎡

⎣
ỹ
0
0

⎤

⎦ ,

⎡

⎣
z̃
0
0

⎤

⎦ ,

⎡

⎣
0
1
0

⎤

⎦ ,

⎡

⎣
0
x̃
0

⎤

⎦ ,

⎡

⎣
0
ỹ
0

⎤

⎦ ,

⎡

⎣
0
z̃
0

⎤

⎦ ,

⎡

⎣
0
0
1

⎤

⎦ ,

⎡

⎣
0
0
x̃

⎤

⎦ ,

⎡

⎣
0
0
ỹ

⎤

⎦ ,

⎡

⎣
0
0
z̃

⎤

⎦ ,

⎡

⎣
x̃2

x̃ ỹ
x̃ z̃

⎤

⎦ ,

⎡

⎣
x̃ ỹ
ỹ2

ỹ̃z

⎤

⎦ ,

⎡

⎣
x̃ z̃
ỹ̃z
z̃2

⎤

⎦ . (88)

In triangular elements, the orthogonal basis described in [39] are utilized to define the
modal basis. For tetrahedron elements, onemay rely on theH(div) hierarchical basis described
in [10] to reduce the condition number of the flux Vandermonde matrix. Such choices have
proven crucial to reduce the condition number of the flux Vandermonde matrix in this work.

To distribute the degrees of freedomwithin triangle and tetrahedron elements, external flux
points are related to a single degree of freedom equal to the unitary normal in the reference
space at the considered points. On the other hand, ND degrees of freedom oriented along
each of the unitary principal axis of the reference element are imposed at unique internal flux
points.

Within triangular elements, external flux points are located at Gauss-Legendre quadrature
points resulting in p+1 points per edge. On the other hand, internal flux points are located at
Williams–Shunn quadrature points [65] with p(p+1)

2 unique points. Figure 18a represents the
distribution of such solution and flux points distribution along the reference triangle element.

For tetrahedron elements, Williams-Shunn quadrature points of degree p with (p+1)(p+2)
2

points are considered at triangular faces, while internal flux points are set at Williams-Shunn
quadrature points of degree p − 1 with a total of p(p+1)(p+2)

6 unique points. Figure 19a
represents the distribution of such solution and flux points distribution along the reference
tetrahedron element.

Solution points are also particularized at Williams-Shunn quadrature points such that
N (u)
e = (p+1)(p+2)

2 and N (u)
e = (p+1)(p+2)(p+3)

6 for triangular and tetrahedron elements
respectively.
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Appendix A.2 Tensor-Product Elements

The reference tensor-product element is defined as

Ω̃e ∈ x ∈ [−1, 1]ND . (89)

The RT modal bases of a SDRT scheme of degree p for two-dimensional tensor-product
elements read

ψ (̃x) ≡ Qp+1,p(x̃) × Qp,p+1(x̃), (90)

and for three-dimensional tensor-product elements

ψ (̃x) ≡ Qp+1,p,p(x̃) × Qp,p+1,p(x̃) × Qp,p,p+1(x̃). (91)

An example of the RT bases for a two-dimensional tensor-product element with p = 1 is
given by

ψ (̃x) ≡
[
1
0

]
,

[
x̃
0

]
,

[
ỹ
0

]
,

[
x̃ ỹ
0

]
,

[
x̃2

0

]
,

[
x̃2 ỹ
0

]
,

[
0
1

]
,

[
0
x̃

]
,

[
0
ỹ

]
,

[
0
x̃ ỹ

]
,

[
0
ỹ2

]
,

[
0
x̃ ỹ2

]
.

(92)

On the other hand, the RT basis of hexahedron elements with p = 1 are

ψ (̃x) ≡
⎡

⎣
1
0
0

⎤

⎦ ,

⎡

⎣
x̃
0
0

⎤

⎦ ,

⎡

⎣
ỹ
0
0

⎤

⎦ ,

⎡

⎣
z̃
0
0

⎤

⎦ ,

⎡

⎣
x̃ ỹ
0
0

⎤

⎦ ,

⎡

⎣
x̃ z̃
0
0

⎤

⎦ ,

⎡

⎣
ỹ̃z
0
0

⎤

⎦ ,

⎡

⎣
x̃2

0
0

⎤

⎦ ,

⎡

⎣
x̃2 ỹ
0
0

⎤

⎦ ,

⎡

⎣
x̃ 2̃z
0
0

⎤

⎦ ,

⎡

⎣
0
1
0

⎤

⎦ ,

⎡

⎣
0
x̃
0

⎤

⎦ ,

⎡

⎣
0
ỹ
0

⎤

⎦ ,

⎡

⎣
0
z̃
0

⎤

⎦ ,

⎡

⎣
0
x̃ ỹ
0

⎤

⎦ ,

⎡

⎣
0
x̃ z̃
0

⎤

⎦ ,

⎡

⎣
0
ỹ̃z
0

⎤

⎦ ,

⎡

⎣
0
ỹ2

0

⎤

⎦ ,

⎡

⎣
0
x̃ ỹ2

0

⎤

⎦ ,

⎡

⎣
0
z̃ ỹ2

0

⎤

⎦ ,

⎡

⎣
0
0
1

⎤

⎦ ,

⎡

⎣
0
0
x̃

⎤

⎦ ,

⎡

⎣
0
0
ỹ

⎤

⎦ ,

⎡

⎣
0
0
z̃

⎤

⎦ ,

⎡

⎣
0
0
x̃ ỹ

⎤

⎦ ,

⎡

⎣
0
0
x̃ z̃

⎤

⎦ ,

⎡

⎣
0
0
ỹ̃z

⎤

⎦ ,

⎡

⎣
0
0
z̃2

⎤

⎦ ,

⎡

⎣
0
0
x̃ z̃2

⎤

⎦ ,

⎡

⎣
0
0
ỹ̃z2

⎤

⎦ .

To arrange the location of the flux points, (p + 1)ND−1 external flux points are located at
Gauss-Legendre quadrature points of degree p while a total of ND sets of (p + 2)(p + 1)ND

points are utilized to define the internal flux points. Such internal flux points are located
at Gauss-Legendre quadrature points of degree p − 1 with a tensor-product arrangement in
each direction. The interested reader is referred to [32] for further description of such a point
arrangement.

For tensor-product elements, there exist N ( f )
e unique physical solution points, each of

it has a unique degree of freedom assigned to it. Solution points are also particularized at
Gauss-Legendre quadrature points such that N (u)

e = (p + 1)ND . Figure 18b represents the
distribution of such solution and flux points distribution along the reference quadrilateral
element.

Remark 10 Due to the tensor-product arrangement of the polynomial bases, it is possible
to rely on orthonormal or Lagrange polynomials to build the modal basis of tensor-product
elements. This allows to improve the condition number of theVandermondematrix associated
to the flux nodal basis.
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Appendix A.3 Triangular Prismatic Elements

The reference triangular prismatic element is defined as

Ω̃e ∈ x̃, ỹ ≥ −1 ; x̃ + ỹ ≤ 0 and z̃ ∈ [−1, 1]. (93)

The RT modal bases of a SDRT scheme of degree p for triangular prismatic elements read

ψ (̃x) ≡ [Pp(̃x0, x̃1)
2 ⊕ (̃x0, x̃1)Pp(̃x0, x̃1)

]Pp(̃x2) × Pp(̃x0, x̃1)Pp+1(̃x2). (94)

For the sake of clarity, an example of such basis for p = 1 is provided in the following

ψ (̃x) ≡
⎡

⎣
1
0
0

⎤

⎦ ,

⎡

⎣
x̃
0
0

⎤

⎦ ,

⎡

⎣
ỹ
0
0

⎤

⎦ ,

⎡

⎣
0
1
0

⎤

⎦ ,

⎡

⎣
0
x̃
0

⎤

⎦ ,

⎡

⎣
0
ỹ
0

⎤

⎦ ,

⎡

⎣
x̃2

x̃ ỹ
0

⎤

⎦ ,

⎡

⎣
x̃ ỹ
ỹ2

0

⎤

⎦ ,

⎡

⎣
z̃
0
0

⎤

⎦ ,

⎡

⎣
x̃ z̃
0
0

⎤

⎦ ,

⎡

⎣
ỹ̃z
0
0

⎤

⎦ ,

⎡

⎣
0
z̃
0

⎤

⎦ ,

⎡

⎣
0
x̃ z̃
0

⎤

⎦ ,

⎡

⎣
0
ỹ̃z
0

⎤

⎦ ,

⎡

⎣
x̃ 2̃z
x̃ ỹ̃z
0

⎤

⎦ ,

⎡

⎣
x̃ ỹ̃z
ỹ2̃z
0

⎤

⎦ ,

⎡

⎣
0
0
1

⎤

⎦ ,

⎡

⎣
0
0
x̃

⎤

⎦ ,

⎡

⎣
0
0
ỹ

⎤

⎦ ,

⎡

⎣
0
0
z̃

⎤

⎦ ,

⎡

⎣
0
0
z̃ x̃

⎤

⎦ ,

⎡

⎣
0
0
ỹ̃z

⎤

⎦ ,

⎡

⎣
0
0
z̃2

⎤

⎦ ,

⎡

⎣
0
0
z̃2 x̃

⎤

⎦ ,

⎡

⎣
0
0
z̃2 ỹ

⎤

⎦ .

To the best of the authors’ knowledge no orthonormal RT basis for prismatic elements can be
found in the literature, hence the flux Vandermonde matrix presents high condition numbers.

To arrange the external flux points, (p+1)2 Gauss-Legendre points are utilizedwithin each
of the three quadrilateral faces of the prism, while (p+1)(p+2)

2 Williams-Shunn quadrature
points are utilized at triangular elements. Only a single degree of freedom is assigned to
external flux points, equal to the normal of the reference-element at the considered flux point

To arrange internal flux points, two different sets are considered. The first one is made
up of the triangular arrangement of internal flux points duplicated (p + 1) times in the x̃2
direction using one-dimensional Gauss-Legendre quadrature points in the latter direction.
Two-dimensional degrees of freedom, coinciding with those imposed for internal flux points
of triangular elements, are imposed to the aforementioned internal flux points. The second
one consists of p duplications of the (p+1)(p+2)

2 quadrature points of the triangular faces
extruded with x̃2 coordinate equal to pGauss-Legendre quadrature points. The latter internal
flux points are assigned a unique degree of freedom in the x̃2 direction. Such an arrangement
may be visualized in Fig. 19b. The first group of internal flux points is represented in blue
spheres, while the second one is depicted with red spheres.

Solution points are also particularized at tensor-product configurations of p + 1 Gauss-
Legendre quadrature points in the extrusion direction and (p+1)(p+2)

2 quadrature points of

triangles. This yields a total of N (u)
e = (p+1)2(p+2)

2 solution points.

Appendix A.4 Summary

Tables 6 and 7 represent the number of solution points, external flux points, internal flux
points and unique flux points for each element type and as a function of the polynomial
degree p.

123



Journal of Scientific Computing (2022) 93 :48 Page 43 of 54 48

Fig. 19 Representation of the different points distribution in the reference domain for the tetrahedron (a) and
prismatic (b) elements. Solution points (green cubes), external flux points (red spheres for triangular faces and
yellow spheres for quadrilateral faces), internal flux points (blue spheres) (Color figure online)

Table 6 Number of solution and
flux points within each of the
elements considered in this work

N (u)
e N ( f )

e

Triangle (p+1)(p+2)
2 (p + 1)(p + 3)

Quadrilateral (p + 1)2 2(p + 1)(p + 2)

Tetrahedron (p+1)(p+2)(p+3)
6

(p+1)(p+2)(p+4)
2

Hexahedron (p + 1)3 3(p + 1)2(p + 2)

Prism (p+1)2(p+2)
2

(p+1)(3p2+12p+10)
2

Table 7 Number of external, internal and unique internal flux points within each of the elements considered
in this work

N ( f e)
e N ( f i)

e N ( f iu)
e N ( f i)

e /N ( f iu)
e

Triangle 3(p + 1) p(p + 1) p(p+1)
2 2

Quadrilateral 4(p + 1) 2p(p + 1) 2p(p + 1) 1

Tetrahedron 2(p + 1)(p + 2) p(p+1)(p+2)
2

p(p+1)(p+2)
6 3

Hexahedron 6(p + 1)2 3p(p + 1)2 3p(p + 1)2 1

Prism (p + 1)(4p + 5) p(p+1)(3p+4)
2

p(p+1)(2p+3)
2

3p+4
2p+3
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Appendix B Matrix Form of the SDRTMethod

As it is the case for the FR formulation [67], the SDRT may be recast in matrix-matrix and
matrix-vector operations. To avoid clashing between the formulation presented in this work
and that of the FR formalism in [67], the matrices indices will start at 12. To do so, let us
start by defining the state matrices of each element type n of a given mesh

(
U (u)

e

)

ρnα
= u(u)

eρnα with dimU (u)
e = N (u)

e × NV|Ωe|,
(
U ( f e)

e

)

ρnα
= u( f e)

eρnα with dimU ( f e)
e = N ( f e)

e × NV|Ωe|,
(
U ( f i)

e

)

ρnα
= u( f i)

eρnα with dimU ( f i)
e = N ( f i)

e × NV|Ωe|,
(
U ( f iu)

e

)

ρnα
= u( f iu)

eρnα with dimU ( f iu)
e = N ( f iu)

e × NV|Ωe|, (95)

The augmented transformation from unique internal flux points to duplicated internal flux
points can be carried out using the permutation matrix

(Pe)σρ with dim Pe = N ( f i)
e × N ( f iu)

e , (96)

such that

U ( f i)
e = PeU

( f iu)
e . (97)

Here, it is worth mentioning that the permutation matrix is the identity matrix for tensor-
product elements.

The interpolation procedures may be expressed using the following matrices

(
M0

e

)
σρ

= l(u)
eρ

(
x̃( f e)
eσ

)
with dim M0

e = N ( f e)
e × N (u)

e ,

(
M12

e

)
σρ

= l(u)
eρ

(
x̃( f iu)
eσ

)
with dim M12

e = N ( f iu)
e × N (u)

e . (98)

Hence,

U ( f e)
e = M0

eU
(u)
e ,

U ( f iu)
e = M12

e U (u)
e ,

U ( f i)
e = M12

e PeU
(u)
e . (99)

To compute the transformed gradients at solution points, let
(
M15

e

)

σρ
= ˆ̃n( f i)

eρ [∇ · l( f i)eρ (̃x(u)
eσ )] with dim M15

e = NDN
(u)
e × N ( f i)

e ,

(
M16

e

)
σρ

= ˆ̃n( f e)
eρ [∇ · l( f e)eρ (̃x(u)

eσ )] with dim M16
e = NDN

(u)
e × N ( f e)

e ,
(
C( f e)
e

)

ρnα
= Cαu

( f e)
eρnα with dimU ( f e)

e = N ( f e)
e × NV|Ωe|,

(
Q̃

(u)

e

)

ρnα
= q̃(u)

eρnα with dim Q̃
(u)

e = NDN
(u)
e × NV|Ωe|. (100)

Therefore,

Q̃
(u)

e = M16
e C( f e)

e + M15
e U ( f i)

e = M16
e C( f e)

e + M15
e PeM12

e U (u)
e . (101)
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The interpolation of the gradients may be carried out using the following operators

M5
e = blockdiag

(
M0

e, . . . , M
0
e

)
dim M5

e = NDN
( f e)
e × NDN

(u)
e ,

M18
e = blockdiag

(
M12

e , . . . , M12
e

)
dim M18

e = NDN
( f iu)
e × NDN

(u)
e ,

(
Q(u)

e

)

ρnα
= q(u)

eρnα with dim Q(u)
e = NDN

(u)
e × NV|Ωe|,

(
Q( f e)

e

)

ρnα
= q( f e)

eρnα with dim Q( f e)
e = NDN

( f e)
e × NV|Ωe|,

(
Q( f iu)

e

)

ρnα
= q( f iu)

eρnα with dim Q( f iu)
e = NDN

( f iu)
e × NV|Ωe|, (102)

hence

Q( f e)
e = M5

e Q
(u)
e ,

Q( f iu)
e = M18

e Q(u)
e . (103)

To compute the divergence of the fluxes at the solution points, let us define the following
matrices

(
M13

e

)
σρ

= ∇ · l( f i)eρ

(
x̃(u)
eσ

)
with dim M13

e = N (u)
e × N ( f i)

e ,

(
M14

e

)
σρ

= ∇ · l( f e)eρ

(
x̃(u)
eσ

)
with dim M14

e = N (u)
e × N ( f e)

e ,

(
D̃

( f e⊥)
e

)

ρnα
= Fα̃f

( f e⊥)
eρnα with dim D̃

( f e⊥)
e = N ( f e)

e × NV|Ωe|,
(
F̃

( f i⊥)
e

)

ρnα
= f̃

( f i⊥)
eρnα with F̃

( f i⊥)
e = N ( f i)

e × NV|Ωe|,
(
F̃

( f iu)
e

)

ρnα
= f̃

( f iu)
eρnα with dim F̃

( f iu)
e = NDN

( f iu)
e × NV|Ωe|,

(
P2
e

)
σρ

= blockdiag (Pe, . . . , Pe) with dim P2
e = NDN

( f i)
e × NDN

( f iu)
e ,

(
M19

e

)
σρ

= ˆ̃n( f i)
eν with dim M19

e = N ( f i)
e × NDN

( f iu)
e ,

(
R̃

(u)
e

)

ρnα
= (∇̃ · f̃)(u)

eρnα with dim R̃
(u)
e = N (u)

e × NV|Ωe|, (104)

Hence,
(
R̃

(u)
e

)

ρnα
= M14

e D̃
( f e⊥)
e + M13

e F̃
( f i⊥)
e = M14

e D̃
( f e⊥)
e + M13

e M19
e P2

e F̃
( f iu)
e . (105)

to further optimize the computational performance, numerical solvers may take advantage
of the fact that, for certain element types, specific columns of the operator M19

e P2
e are zero.

The number of null columns is related to the ratio between the internal flux points the unique
internal flux points and the RT basis of the considered element type (see Appendix A.4
and Appendix A). For example, with tensor-product elements, only one component of the
transformed flux at each unique internal flux point is needed to update the residual. On the
other hand, with triangular and tetrahedron elements, all ND components of the transformed
flux at each unique internal flux point are needed to compute the residual, i.e. no additional
optimization is possible. With prismatic elements, a middle ground between tensor-product
and tetrahedron elements is found. Taking into account such an a priori knowledge of the
degrees-of-freedom associated with unique internal flux points allows to further optimize
the computational performance by avoiding additional FLOPs related to the multiplication
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of the metric terms by the fluxes at unique internal flux points, at the cost of additional code
complexity.

It is worth mentioning that the FR-SDRT and SDRT methods’ equivalence may also be
proven using the matrix form of the SDRT method compared to that of the FR formulation
described in [67]. This demonstration is left as an exercise for the reader.

Appendix C Performance Comparison

In this section a comparison of the perforamance-per-iteration obtained with SDRT, FR-DG
and FR-SDRT methods will be presented. To measure the performance, the parameter PM
(measured in ns) defined in [67] as

PM = T

NiterN
(u)
e NV|Ωe|NRK

109(ns), (106)

is evaluated in the TGV test case (see Sect. 5.3). In the latter equation, T is the wall time
needed to perform Niter time integration steps, NV = 5 is the number of conserved variables
and NRK = 5 is the number of stages of the RK54 time integrator used in the simulations.
The mesh utilized consists of a total of |Ωe| = 403 tensor-product elements, which are
subsequently subdivided in Np cells to obtain meshes made up of prismatic or tetrahedral
elements (following the procedure described Sect. 3). This parameter is evaluated four times
with Niter = 50 after the initialization and warm up of the simulation, and it is then averaged.
Additionally, the simulations are carried out using constant time step, neglecting possible
issues arising from the use of adaptive time stepping.

Table 8 displays the performance parameter obtained with different type of elements,
numerical schemes and polynomial degrees. The performance was measured using a single
NVIDIA V100 GPU. Since all operations which involve parallel communications in SDRT
schemes are equivalent to those found in FR methods, the strong and weak scaling of SDRT
and FR schemes should be rather similar. Hence, the interested reader is referred to the work
of [68] to further details of the parallel scalability of the SDRT schemes implemented in
this work. The results indicate that FR-DG and FR-SDRT present the same performance,
illustrating that FR-SDRT and FR-DGmatrices have similar sparsity patterns. Moreover, the
SDRT method shows degraded performance with hexahedral and prismatic elements when
compared to FR schemes. As can be deduced from “Appendix Appendix B”, this issue is
mostly related to additional interpolations that need to be carried out in the SDRT method
and also due to the increased size of the divergence correction kernel related to the internal
flux points. Nevertheless, SDRT and FR methods applied to tetrahedral elements show very
similar performance. This could be due to an improved sparsity pattern of the divergence
correction kernel related to the internal flux points with SDRT schemes. Future studies will
analyze the FLOPs associated to each method to further understand the reasoning behind the
differences in the performance measure obtained with each element type.

In the study presented herein, the performance is measured on an iteration-per-iteration
basis. Nevertheless, it is worth considering that the time step arising from the adaptive
time-stepping method of PyFR yields different values depending on the utilized scheme.
In particular, it was observed (in Sect. 5.3) that both SDRT and FR-SD schemes present
approximately 30% higher adaptive time step than FR-DG methods in certain configura-
tions. Such variability of the time step was also observed in [42] when utilizing anti aliasing
techniques in FR-DG simulations. The reason behind such a disparity of adaptive time step
values is not yet understood, although it should indicate that unsteady simulations using FR-
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Table 8 Performance parameter Eq. 106 values obtained in the TGV test case with a mesh consisting of
403Np cells as a function of the polynomial degree and the element type

hex pri tet

SDRT FR-DG FR-SDRT SDRT FR-DG FR-SDRT SDRT FR-DG FR-SDRT

p = 1 1.02 0.93 0.93 1.02 0.98 0.98 1.12 1.15 1.15

p = 2 0.90 0.75 0.75 0.91 0.82 0.82 0.99 1.00 1.00

p = 3 0.85 0.67 0.67 0.87 0.77 0.77 0.97 0.98 0.98

p = 4 0.97 0.70 0.70 0.93 0.79 0.79 0.95 0.91 0.91

A single NVIDIA V100 GPU was used to evaluate this performance parameter

SDRT and SDRT schemes may be capable of collecting more meaningful data for a same
computational wall time.

Remark 11 It is worth recalling that the performance parameter is non-dimensionalized with
the number of solution points. Since, for a given polynomial degree, the element types present
a different amount of solution points, the comparison of the data presented in Table 8 could
be slightly misleading.

Remark 12 The performance of the SDRT schemes with prismatic elements could be further
optimized by building specific kernels which exploit the number of degrees of freedom asso-
ciated to each unique internal flux point (as explained “Appendix Appendix B”). The results
depicted for hexahedral elements already present this optimization. Since all unique internal
flux points contribute to ND degrees of freedom in tetrahedral elements, this optimization
procedure is not possible for such elements.

Appendix D Wavenumber Aliasing

From Eq. 50, the numerical solution of a linear problem in the asymptotic limit m → ∞ can
be written as

lim
m→∞Uρ(mΔt) = WρSPΛm

SPγSP , (107)

provided that the spectral radius is unique. In the latter equation, the index SP refers to the
index of the spectral radius eigenmode. Eq. 107 indicates that the numerical solution tends
to align with the spectral radius eigenvector in the asymptotic limit. If the spectral radius
is not unique, then Eq. 107 would need to be modified by adding the contribution of the
eigenmodes whose absolute value of the their associated eigenvalue is equal to the spectral
radius.

Using the Matrix-Power-Method theory [54], the ratio between the numerical solution
norm and the initial condition norm in the asymptotic limit m → ∞ (which measures the
dissipation of the numerical solution) is given by

lim
m→∞

‖U (mΔt)‖
‖U (0)‖ ≈

∥∥WρSPΛm
SPγSP

∥∥
∥∥WρνΛm

ν γν

∥∥ . (108)

Hence, the dissipation in the asymptotic limit depends on the spectral radius and the initial
energy contribution of the spectral radius eigenmode. If one considers the ratio of dissipation
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from a given iteration m and a second iteration m − q with q � m then

lim
m→∞

‖U (mΔt)‖
‖U ((m − q)Δt)‖ ≈

∥∥WρSPΛm
SPγSP

∥∥
∥∥∥WρSPΛ

m−q
SP γSP

∥∥∥
= |ΛSP |q . (109)

Therefore, the ratio of dissipation in the asymptotic limit, measured in an iteration-per-
iteration basis is just given by the spectral radius. If the physical eigenmode is equivalent to the
spectral radius and its energy contribution is much bigger than that of the other eigenmodes,
then Eqs. 108 and 109 are certainly equivalent. If the physical eigenmode is not coincident
with the spectral radius, then the asymptotic dissipation measured from Eq. 108 is heavily
perturbed by the fact that the physical eigenmode is not coincident with the spectral radius
eigenmode. Hence, the dissipation will be governed by the initial dissipation of the physical
eigenmode until the solution aligns with the spectral radius eigenvector. Nevertheless, the
asymptotic dissipation measured from an iteration-to-iteration perspective will always be
given by the spectral radius, independently of its energy contribution to the initial condition.
This might induce wavenumber aliasing issues that had not been previously discussed in the
literature.

Remark 13 For the sake of brevity, the discussion of the asymptotic behavior of the dispersion
is avoided, since similar conclusions to those drawn from the dissipation analysis can be
obtained as was demonstrated in [54].

Appendix D.1 Spectral Radius and Aliasing

The numerical solution characteristics of a linear problem in a structured and periodic mesh
are governed by the eigenvalues and eigenvectors of matrixG (see Sect. 3), which is obtained
as

Gρν =
∑

n∈C
Jρnνe

Iκ ·(xn−x0). (110)

Let us recall the following wave/wavenumber aliasing identities

eIa = conj(e−Ia) and eIa = eI(a+2πm). (111)

In one-dimensional problems and when using the structured mesh arrangement illus-
trated in Eq. 47, it follows that matrix G is uniquely defined in the range κh ∈ [−π, π]
due to the aforementioned aliasing identities. Hence, the spectral radius for any given
κh > π is related to that obtained with ceil(κh/π)π − κh if ceil(κh/π) is even and κh
mod 2π if ceil(κh/π) is odd, i.e. the spectral radius is aliased. Such a fact is also observed
in FDM and FVM, although in the latter methods the solution is always characterized by a
single eigenmode. Nevertheless, the energy contribution of each eigenvector in SEM is not
uniquely defined in κh ∈ [0, π ], i.e. its range is κh ∈ [−∞,∞). From a posteriori analyses
[7], it can be observed that the physical eigenmode only coincides with the spectral radius for
κh < π . Therefore, the asymptotic regime dissipation will only be well-characterized by the
physical eigenmode for κh < π . At κh = π the spectral radius is multi-valued, indicating
the existence of a branch cut, where the spectral radius ceases to coincide with the physi-
cal mode. For other κh > π , aliasing will appear implying that the numerical dissipation
and dispersion are highly unsteady and that the asymptotic dissipation on an iteration-per-
iteration basis are reduced since the spectral radius is aliased. This behavior is similar to that
observed in aliased wavenumbers with FDM and FVM. However, SEM present an additional
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dissipation mechanism due to the mismatch between the physical and the spectral radius
eigenmodes.

Remark 14 For the sake of simplicity, the extension of this analysis for two and three-
dimensional cases is avoided, since there exist different types of wave aliasing in those
configurations. Nevertheless, as itas was demonstrated in Sect. 3 similar observations regard-
ing the aliasing behavior of the solution may be obtained in two and three-dimensional
configurations.

Appendix E Asymptotic Order of Accuracy with Pure Advection and
Three-Dimensional Elements

Following what was developed in Sect. 5.1.1, Figs. 14, 20, 21 and 22 represent the afore-
mentioned error norm depicted in Eq. 67, hexahedral, prismatic and tetrahedral elements
respectively. The error norm for most elements behaves similarly as that of quadrilateral ele-
ments. Nevertheless, it is worth mentioning the degraded accuracy of error norm computed
for m = 2 with tetrahedral elements and p = 3. Such a behavior was also observed in the
analysis of the dispersion errors Sect. 3 and it may be related to the accuracy and configu-
ration of the different eigenmodes of the SDRT method applied with tetrahedral elements,
since this accuracy degradation is not observed for m = 1.

Appendix F Numerical Equivalence Between SDRT and FR

This section is devoted to the a posteriori assessment of the equivalence between the FR-
SDRT and SDRTmethods in two and three-dimensional elements. This allows to demonstrate
the theoretical observations that were drawn in Sect. 2.3. To do so, the differences between
simulations conducted with Pe = 10, N = 30 and FR-SDRT or SDRT schemes will be

(a) (b)

Fig. 20 L2-norm of the solution error evaluated using Eq. 67 withm = 1 (left) andm = 2 (right) and obtained
using different schemes together with meshes made up of hexahedral elements
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(a) (b)

Fig. 21 L2-norm of the solution error evaluated using Eq. 67 withm = 1 (left) andm = 2 (right) and obtained
using different schemes together with meshes made up of prismatic elements

(a) (b)

Fig. 22 L2-norm of the solution error evaluated using Eq. 67 withm = 1 (left) andm = 2 (right) and obtained
using different schemes together with meshes made up of tetrahedral elements

compared using a L∞ norm evaluated at t = 2π/c0, i.e., the biggest absolute difference of
the numerical solution value at the solution points between FR-SDRT and SDRT simulations.
For the sake of brevity, the results will only be presented for p = 3 and p = 4, although
the equivalence has been validated a posteriori for all degrees p ∈ [1, 4]. Table 9 illustrates
the biggest absolute difference of the solution points value between FR-SDRT and SDRT
simulations for different element types and p = 3 and p = 4.Since this difference is of
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Table 9 Absolute difference (measured in the discrete L∞ norm) of the solution points value between FR-
SDRT and SDRT simulations for different element types and p = 3 and 4 in the simulation of the linear
advection diffusion test case with Pe = 10

quad tri hex pri tet

p = 3 6.11e−16 8.26e−16 5.93e−16 1.25e−15 3.30e−16

p = 4 6.66e−16 1.50e−15 3.11e−16 2.27e−15 5.59e−16

the same order of magnitude as machine round-off errors for all elements, the equivalence
between FR-SDRT and SDRT schemes stated in Sect. 2.3 is also demonstrated through
numerical experiments.
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