Skip to main content
Log in

An Efficient QSC Approximation of Variable-Order Time-Fractional Mobile-Immobile Diffusion Equations with Variably Diffusive Coefficients

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose a QSC-L1 method to solve the two-dimensional variable-order time-fractional mobile-immobile diffusion (TF-MID) equations with variably diffusive coefficients, in which the quadratic spline collocation (QSC) method is employed for the spatial discretization, and the classical L1 formula is used for the temporal discretization. We show that the method is unconditionally stable and convergent with first-order in time and second-order in space with respect to some discrete and continuous \(L^2\) norms. Then, combined with the reduced basis technique, an efficient QSC-L1-RB method is proposed to improve the computational efficiency. Numerical examples are attached to verify the convergence orders, and also the method is applied to identify parameters of the variable-order TF-MID equations. Numerical results confirm the contributions of the reduced basis technique, even when the observation data is contaminated by some levels of random noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. Abbaszadeh, M., Dehghan, M.: A POD-based reduced-order Crank–Nicolson/fourth-order alternating direction implicit (ADI) finite difference scheme for solving the two-dimensional distributed-order Riesz space-fractional diffusion equation. Appl. Numer. Math. 158, 271–291 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abdulle, A., Budáč, O.: A reduced basis finite element heterogeneous multiscale method for Stokes flow in porous media. Comput. Methods Appl. Mech. Eng. 307, 1–31 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alikhanov, A.A.: A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 280, 424–438 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Antil, H., Chen, Y., Narayan, A.: reduced basis methods for fractional Laplace equations via extension. SIAM J. Sci. Comput. 41, A3552–A3575 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Benson, D., Wheatcraft, S.W., Meerschaert, M.M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)

    Article  Google Scholar 

  6. Binev, P., Cohen, A., Dahmen, W., DeVore, R., Petrova, G., Wojtaszczyk, P.: Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal. 43, 1457–1472 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Buffa, A., Maday, Y., Patera, A.T., Prud’homme, C., Turinici, G.: A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM Math. Model. Numer. Anal. 46, 595–603 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chaturantabut, S., Sorensen, D.C., Steven, J.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C., Liu, H., Zheng, X., Wang, H.: A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection.diffusion equations. Comput. Math. Appl. 79, 2771–2783 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, W., Liang, Y., Hu, S., Sun, H.: Fractional derivative anomalous diffusion equation modeling prime number distribution. Frac. Cal. Appl. Anal. 18, 789–798 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, Y., Gottlieb, S.: Reduced collocation methods: reduced basis methods in the collocation framework. J. Sci. Comput. 55, 718–737 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Christara, C.C.: Quadratic spline collocation methods for elliptic partial differential equations. BIT 34, 33–61 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Christara, C.C., Chen, T., Dang, D.M.: Quadratic spline collocation for one-dimensional parabolic partial differential equations. Numer. Algorithm 53, 511–553 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fu, H., Wang, H., Wang, Z.: POD/DEIM reduced-order modeling of time-fractional partial differential equations with applications in parameter identification. J. Sci. Comput. 74, 220–243 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fu, H., Zhu, C., Liang, X., Zhang, B.: Efficient spatial second/fourth-order finite difference ADI methods for multi-dimensional variable-order time-fractional diffusion equations. Adv. Comput. Math. 47, 58 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gerner, A.L., Veroy, K.: Certified reduced basis methods for parametrized saddle point problems. SIAM J. Sci. Comput. 34, A2812–A2836 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ghaffari, R., Ghoreishi, F.: Error analysis of the reduced RBF model based on POD method for time-fractional partial differential equations. Acta Appl. Math. 168, 33–55 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESIAM Math. Model. Num. 42, 277–302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hesthaven, J.S., Rozza, G., Stamm, B.: Certified Reduced Basis Methods for Parametrized Partial Differential Equations. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  20. Houstis, E.N., Christara, C.C., Rice, J.R.: Quadratic-spline collocation methods for two-point boundary value problems. Int. J. Numer. Methods Eng. 26, 935–952 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang, W., Liu, N.: A numerical method for solving the time variable fractional order mobile/immobile advection-dispersion model. Appl. Numer. Math. 119, 18–32 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, X., Xu, C.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li, Z., Wang, H., Xiao, R., Yang, S.: A variable-order fractional differential equation model of shape memory polymers. Chaos Solitons Fract. 102, 473–485 (2017)

    Article  MathSciNet  Google Scholar 

  24. Liao, H., Li, D., Zhang, J.: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations. SIAM J. Numer. Anal. 56, 1112–1133 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, J., Fu, H., Wang, H., Chai, X.: A preconditioned fast quadratic spline collocation method for two-sided space-fractional partial differential equations. J. Comput. Appl. Math. 360, 138–156 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, J., Fu, H., Zhang, J.: A QSC method for fractional subdiffusion equations with fractional boundary conditions and its application in parameters identification. Math. Comput. Simulat. 174, 153–174 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, J., Zhu, C., Chen, Y., Fu, H.: A Crank–Nicolson ADI quadratic spline collocation method for two-dimensional Riemann–Liouville space-fractional diffusion equations. Appl. Numer. Math. 160, 331–384 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. Liu, J.C., Li, H., Liu, Y., Fang, Z.C.: Reduced-order finite element method based on POD for fractional Tricomi-type equation. Appl. Math. Mech.-Engl. 37, 647–658 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, Z., Cheng, A., Li, X.: A second order finite difference scheme for quasilinear time fractional parabolic equation based on new fractional derivative. Int. J. Comput. Math. 95, 396–411 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Luo, W., Huang, T., Wu, G., Gu, X.: Quadratic spline collocation method for the time fractional subdiffusion equation. Appl. Math. Comput. 276, 252–265 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Marsden, M.J.: Quadratic spline interpolation. Bull. Am. Math. Soc. 80, 903–906 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  33. Metler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Metler, R., Klafter, J.: The restaurant at the end of random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. 37, 161–208 (2004)

    Article  MathSciNet  Google Scholar 

  35. Negri, F., Rozza, G., Manzoni, A., Quarteroni, A.: Reduced basis method for parametrized elliptic optimal control problems. SIAM J. Sci. Comput. 35, A2316–A2340 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Obembe, A.D., Hossain, M.E., Abu-Khamsin, S.A.: Variable-order derivative time fractional diffusion model for heterogeneous porous media. J. Pet. Sci. Eng. 152, 391–405 (2017)

    Article  Google Scholar 

  37. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  38. Qiu, W., Xu, D., Chen, H., Guo, J.: An alternating direction implicit Galerkin finite element method for the distributed-order time-fractional mobile-immobile equation in two dimensions. Comput. Math. Appl. 80, 3156–3172 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Quarteroni, A., Rozza, G., Manzoni, A.: Certified reduced basis approximation for parametrized partial differential equations and applications. J. Math. Ind. 1, 3 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Schumer, R., Benson, D.A., Meerschaert, M.M., Baeumer, B.: Fractal mobile/immobile solute transport. Water Resour. Res. 39, 1–12 (2003)

    Article  Google Scholar 

  41. Sun, H.G., Chang, A.L., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Frac. Cal. Appl. Anal. 22, 27–59 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  42. Sun, Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Lecture Notes in Mathematics, vol. 1054. Springer, New York (1984)

    MATH  Google Scholar 

  44. Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778–1802 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, Y.: A high-order compact finite difference method and its extrapolation for fractional mobile/immobile convection-diffusion equations. Calcolo 54, 733–768 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yu, B., Jiang, X., Qi, H.: Numerical method for the estimation of the fractional parameters in the fractional mobile/immobile advection–diffusion model. Int. J. Comput. Math. 95, 1131–1150 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976–A3000 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile-immobile advection–dispersion model. Comput. Math. Appl. 66, 693–701 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zheng, X., Cheng, J., Wang, H.: Uniqueness of determining the variable fractional order in variable-order time-fractional diffusion equations. Inverse Probl. 35, 125002 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zheng, X., Wang, H.: Wellposedness and regularity of a variable-order space-time fractional diffusion equation. Anal. Appl. 18, 615–638 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zheng, X., Wang, H.: Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions. IMA. J. Numer. Anal. 41, 1522–1545 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of H. Fu was supported in part by the National Natural Science Foundation of China (Nos. 11971482, 12131014), the Fundamental Research Funds for the Central Universities (No. 202264006), and by the OUC Scientific Research Program for Young Talented Professionals. The work of J. Liu was supported in part by the Shandong Provincial Natural Science Foundation (Nos. ZR2021MA020, ZR2020MA039), the Fundamental Research Funds for the Central Universities (Nos. 22CX03016A, 20CX05011A), and the Major Scientific and Technological Projects of CNPC (No. ZD2019-184-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfei Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Fu, H. An Efficient QSC Approximation of Variable-Order Time-Fractional Mobile-Immobile Diffusion Equations with Variably Diffusive Coefficients. J Sci Comput 93, 44 (2022). https://doi.org/10.1007/s10915-022-02007-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02007-2

Keywords

Navigation