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Abstract. In this paper, we focus on the mathematical foundations of reduced order model (ROM) closures.
First, we extend the verifiability concept from large eddy simulation to the ROM setting. Specifically, we call

a ROM closure model verifiable if a small ROM closure model error (i.e., a small difference between the true

ROM closure and the modeled ROM closure) implies a small ROM error. Second, we prove that the data-
driven ROM closure studied here (i.e., the data-driven variational multiscale ROM) is verifiable. Finally,

we investigate the verifiability of the data-driven variational multiscale ROM in the numerical simulation
of the one-dimensional Burgers equation and a two-dimensional flow past a circular cylinder at Reynolds

numbers Re = 100 and Re = 1000. Reduced order model and variational multiscale and data-driven model

and verifiability

1. Introduction

Full order models (FOMs) are computational models obtained with classical numerical methods (e.g.,
finite element or finite difference methods). In the numerical simulation of fluid flows, FOMs often yield
high-dimensional (e.g., O(106)) systems of equations. Thus, the computational cost of using FOMs in
important many-query fluid flow applications (e.g., uncertainty quantification, optimal control, and shape
optimization) can be prohibitively high.

Reduced order models (ROMs) are computational models that yield systems of equations whose dimen-
sions are dramatically lower than those corresponding to FOMs. For example, in the numerical simulation
of fluid flows that are dominated by recurrent spatial structures (e.g., flow past bluff bodies), the dimensions
of the resulting system of equations can be O(10) for ROMs and O(106) for FOMs, while the ROM and
FOM accuracy is of the same order. Thus, ROMs have been used in many-query fluid flow applications to
reduce the computational cost of FOMs. Probably the most popular type of ROM used in these applications
is the Galerkin ROM (G-ROM), which is constructed by using the Galerkin method. The G-ROM is based
on a simple yet powerful idea: Instead of using millions or even billions of general purpose basis functions
(as in classical Galerkin methods, such as the tent functions in the finite element method), G-ROM uses
a lower-dimensional data-driven basis. Specifically, the available numerical or experimental data is used to
build a few ROM basis functions that model the spatial structures that dominate the flow dynamics.

The G-ROM has been successful in the efficient numerical simulation of relatively simple laminar flows,
e.g., flow past a circular cylinder at low Reynolds numbers. However, the standard G-ROM generally fails
in the numerical simulation of turbulent flows. The main reason is that, in order to ensure a relatively low
computational cost, only a few ROM basis functions are used to build the standard G-ROM. These few
ROM basis functions can represent the simple dynamics of laminar flows, but not the complex dynamics of
turbulent flows. Thus, in the numerical simulation of turbulent flows, the standard G-ROM is equipped with
a ROM closure model, i.e., a correction term that models the effect of the discarded ROM basis functions
on the ROM dynamics.
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Over the last two decades, ROM closure modeling has witnessed a dynamic development. A survey of
current ROM closure modeling strategies is presented in [2]. Three main types of ROM closure models have
been proposed: (i) Functional ROM closures are constructed by using physical insight. Classical examples of
functional ROM closures include eddy viscosity models [53], in which the main role of the ROM closure model
is to dissipate energy. (ii) Structural ROM closures are a different class of models that are developed by
using mathematical arguments. Examples of structural ROM closures include the approximate deconvolution
ROM [56], the Mori-Zwanzig formalism [15, 34, 40], and the parameterizing manifolds [11, 12, 13]. (iii) The
most active research area in ROM closure modeling is in the development of data-driven ROM closures in
which available data is utilized to build the ROM closure model. An example of data-driven ROM closure
is the data-driven variational multiscale ROM (DD-VMS-ROM) that was proposed in [37, 54]. The DD-
VMS-ROM has been investigated numerically in [31, 36, 38, 37, 54, 55]. However, providing mathematical
support for the DD-VMS-ROM is an open problem.

In classical CFD, there exists extensive mathematical support for closure modeling. For example, the
monographs [9, 27, 45] present the mathematical analysis for many large eddy simulation (LES) models, as
well as the numerical analysis of their discretization. In contrast, despite the recent increased interest in
ROM closure modeling [2], the mathematical foundations of ROM closures are relatively scarce. Indeed,
the ROM closure models are generally assessed heuristically: The proposed ROM closure model is used in
numerical simulations and is shown to improve the numerical accuracy of the standard G-ROM and/or other
ROM closure models. However, fundamental questions in ROM numerical analysis are still wide open for
most of these ROM closure models: Is the proposed ROM closure model stable? Does the ROM closure
model converge? If so, what does it converge to?

Only the first steps in the numerical analysis of ROM closures have been taken. To our knowledge, the
first numerical analysis of a ROM closure model was performed in [10], where an eddy viscosity ROM closure
model (i.e., the Smagorinsky model) was analyzed in a simplified setting. Next, the numerical analysis of
eddy viscosity variational multiscale ROMs was carried out in [25, 26]. Finally, the numerical analysis of
the Samagorinsky model in a reduced basis method (RBM) setting was performed in [7, 44]. We note
that numerical analysis for regularized ROMs, which are related to but different from ROM closures, was
performed in [19, 57]; see also [5] for related work.

In this paper, we take a next step in the development of numerical analysis for ROM closures and prove
verifiability for a data-driven ROM closure model, i.e., the DD-VMS-ROM proposed in [37, 54]. Specifically,
we show that the ROM closure model in the DD-VMS-ROM is accurate in a precise sense. More importantly,
we prove that the DD-VMS-ROM is verifiable, i.e., we prove that since the DD-VMS-ROM closure model is
accurate, the DD-VMS-ROM solution is accurate. We note that this is not a trivial task: The Navier-Stokes
equations (and their filtered counterparts), which are the mathematical models that we use in this paper, are
nonlinear and sensitive to perturbations, so adding to them a relatively small term (i.e., the ROM closure
term) does not automatically imply that the resulting solution will be close to the original one. To prove
that the DD-VMS-ROM closure model is verifiable, we use the following ingredients: (i) We use ROM spatial
filtering to determine an explicit formula for the exact ROM closure term, which needs to be modeled. (ii)
We use data-driven modeling to construct the DD-VMS-ROM closure model and show that this closure
model is accurate, i.e., it is close to the exact ROM closure model. (iii) We use physical constraints to
increase the accuracy of our data-driven ROM closure model. We note that the verifiability concept was
defined in an LES context (see, e.g., [30] as well as [9] for a survey). However, to our knowledge, this is the
first time the verifiability concept is defined and investigated in a ROM context.

The rest of the paper is organized as follows: In Section 2, we outline the construction of the standard
G-ROM. In Sections 3 and 4, we use ROM spatial filtering to build LES-ROMs and utilize data-driven
modeling to build the closure model in the DD-VMS-ROM, respectively. In Section 5, we prove the main
theoretical result in this paper, i.e., we prove that the DD-VMS-ROM is verifiable. In Section 6, we illustrate
the theoretical developments. Specifically, for the Burgers equation and the two-dimensional flow past a
circular cylinder, we show the following: (i) the ROM closure error (i.e., the difference between the true
ROM closure term and the DD-VMS-ROM closure term) is small and it becomes smaller and smaller as
we increase the ROM dimension; and (ii) as the ROM closure error decreases, so does the ROM error (i.e.,
the DD-VMS-ROM is verifiable). Finally, in Section 7, we present the conclusions of our theoretical and
numerical investigations and outline several directions for future research.
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2. Galerkin ROM (G-ROM)

In this section, we outline the construction of the Galerkin ROM (G-ROM) for the Navier-Stokes equations
(NSE):

∂u

∂t
−Re−1∆u+ u · ∇u+∇p = f ,(2.1)

∇ · u = 0,(2.2)

where u is the velocity, p the pressure, and Re the Reynolds number. The NSE (2.1)–(2.2) are equipped
with an initial condition and, for simplicity, homogeneous Dirichlet boundary conditions. To build the ROM
basis, we assume that we have access to the snapshots {u0

h, ...,u
M
h }, which are the coefficient vectors of the

FEM approximations of the NSE (2.1)–(2.2) at the time instances t0, t1, . . . , tM , respectively. The number
of snapshots, M , is an arbitrary positive integer. In what follows, we assume that M is fixed. Next, we use
these snapshots and the proper orthogonal decomposition (POD) [23, 52] to construct an orthonormal ROM

basis {ϕ1, ...,ϕd}, which generates the ROM space Xd defined as follows:

Xd := span{ϕ1, ...,ϕd},(2.3)

where d is the number of linearly independent snapshots {u0
h, ...,u

M
h }. Thus, d is the maximal dimension

of a basis that spans the same space as the space spanned by the given snapshots. By using the ROM basis
functions in (2.3), we construct ud, which is the d-dimensional ROM approximation of NSE velocity, u:

ud(x, t) =

d∑
i=1

(ad)i(t)ϕi(x).(2.4)

To find the vector of ROM coefficients ad in (2.4), we use the Galerkin projection, i.e., we replace u with

ud in the NSE (2.1)–(2.2), and then project the resulting equations onto the ROM space, Xd. This yields
the d-dimensional Galerkin ROM (G-ROM):

((ud)t,vd) +Re−1(∇ud,∇vd) + (ud · ∇ud,vd) = (f ,vd), ∀vd ∈Xd,(2.5)

where (·, ·) denotes the L2 inner product. We note that the G-ROM (2.5) does not include a pressure
term, since the ROM basis functions are assumed to be discretely divergence-free. This is the case if, e.g.,
the snapshots are discretely divergence-free. Indeed, when POD is used to construct the ROM basis (as
in our numerical investigation), the ROM basis functions are linear combinations of the snapshots. Since
the snapshots are discretely divergence-free, so are the ROM basis functions. We also note that alternative
formulations within the RBM framework are used in, e.g., [4, 6, 21, 22, 35, 42].

By using the backward Euler time discretization, we get the full discretization of the d-dimensional G-
ROM (2.5) as follows: ∀n = 1, ...,M(

un
d − u

n−1
d

∆t
,vd

)
+Re−1(∇un

d ,∇vd) + (un
d · ∇un

d ,vd) = (fn,vd), ∀vd ∈Xd,(2.6)

where the superscript n denotes the approximation at time step n. To obtain the finite-dimensional rep-
resentation of the d-dimensional G-ROM (2.6), we choose vd to be ϕ1, . . . ,ϕd, which yields the following
system of equations:

an
d − a

n−1
d

∆t
= bn +Aan

d + (an
d )>Ban

d ,(2.7)

where an
d is the vector of unknown ROM coefficients, b is a d × 1 vector, A is a d × d matrix, and B is a

d× d× d tensor. The system of equations in (2.7) can be written componentwise as follows:

(an
d )i − (an−1

d )i
∆t

= bni +

d∑
m=1

Aima
n
m +

d∑
m=1

d∑
k=1

Bimka
n
ma

n
k , 1 ≤ i ≤ d ,(2.8)
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where, for 1 ≤ i,m, k ≤ d,

bni = (fn,ϕi),(2.9)

Aim = −Re−1 (∇ϕm,∇ϕi) ,(2.10)

Bimk = −
(
ϕm · ∇ϕk,ϕi

)
.(2.11)

3. Large Eddy Simulation ROM (LES-ROM)

The ROM closure that we investigate in this paper (i.e., the DD-VMS-ROM presented in Section 4)
is a large eddy simulation ROM (LES-ROM). Thus, in this section, we briefly outline the construction of
LES-ROMs.

LES-ROMs are ROM closures that have been developed over the last decade (see [53, 56] and the survey
in Section V in [2], as well as related approaches in [17, 18]). LES-ROMs utilize mathematical principles
used in classical LES [9, 47] to construct ROM closure models for ROMs in under-resolved regimes, i.e.,
when the number of ROM basis functions is insufficient to represent the complex dynamics of the underlying
flows. Classical LES and LES-ROMs are similar in spirit: They both aim at approximating the large scales
in the flow at the available coarse resolution (e.g., coarse mesh in classical LES and not enough ROM basis
functions in LES-ROMs). Furthermore, they both use spatial filtering to define the large scales that need to
be approximated. We emphasize, however, that there are also major differences between classical LES and
LES-ROMs. One of the main differences is the type of spatial filtering used to define the large flow structures.
In classical LES, continuous filters (e.g., the Gaussian filter) are used to define the filtered equations at a
continuous level. In contrast, in LES-ROMs, due to the hierarchical structure of the ROM spaces, the ROM
projection (which is a discrete spatial filter) is generally used instead. (For a notable exception, see the
ROM differential filter, which is a continuous spatial ROM filter used in [56] to construct the approximate
deconvolution ROM closure.) The ROM projection is used, in particular, to build variational multiscale
(VMS) ROM closures (see, e.g., [8, 25, 26, 46, 49, 53] and the VMS-ROM survey in Section V.A in [2]), such
as the closure that we investigate in this paper, which we describe next.

To construct the DD-VMS-ROM, we start by choosing the “truth” solution, i.e., the most accurate ROM
solution that we can construct with the given snapshots.

Definition 3.1 (Truth Solution). For fixed M and d, we define the d-dimensional G-ROM solution of (2.6)
as our “truth” solution.

The goal of an LES-ROM is to construct an r-dimensional ROM whose solution, ur, approximates as
accurately as possible the large scale component of the truth solution, Pr(ud). We note that, since r � d,
the LES-ROM development takes place in an under-resolved regime.

In what follows, our goal is to use data to construct an LES-ROM (specifically, the DD-VMS-ROM) whose
solutions are as close as possible to Pr(ud), i.e., the ROM projection of the truth solution. Thus, in the
numerical analysis in Section 5, the DD-VMS-ROM solution will be compared to large scale component of
the truth solution, which will be considered as data.

In what follows, we use the LES-ROM framework to achieve the following objectives: (i) Use the ROM
projection to define the large ROM spatial scales; (ii) Use the ROM projection to filter the d-dimensional
G-ROM (2.6) and obtain the LES-ROM, i.e., the set of equations for the filtered ROM variables; and
(iii) Finally, use data-driven modeling to construct a ROM closure model for the filtered ROM equations
developed in step (ii). In this section, we discuss steps (i) and (ii); in the next section, we discuss step (iii),
i.e., we construct the DD-VMS-ROM.

To define the large ROM scales and build the VMS framework, we first decompose the d-dimensional
ROM space Xd into two orthogonal subspaces

Xr := span{ϕ1, ...,ϕr},(3.1a)

(Xr)⊥ := span{ϕr+1, ...,ϕd},(3.1b)

where Xr contains the first r dominant ROM basis functions, and (Xr)⊥, which is orthogonal to Xr,
contains the less energetic ROM basis functions. We also define the following orthogonal projections:
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Definition 3.2 (Orthogonal Projections). Let Pr : L2 → Xr be the orthogonal projection onto Xr, and
Qr : L2 → (Xr)⊥ be the orthogonal projection onto (Xr)⊥, which can be defined as

Pr(u) =

r∑
i=1

(u,ϕi)ϕi, u ∈ L2,(3.2a)

Qr(u) =

d∑
i=r+1

(u,ϕi)ϕi, u ∈ L2,(3.2b)

where L2 denotes the space of square integrable functions on the spatial domain.

Next, in the LES spirit, we decompose the most accurate ROM solution at time step n, un
d (i.e., the

d-dimensional G-ROM solution (2.6), which is the “truth” solution that is employed as a benchmark in our
investigation) as

un
d := Pr(un

d )︸ ︷︷ ︸
large scales

+ Qr(un
d )︸ ︷︷ ︸

small scales

,(3.3)

where Pr and Qr are the two orthogonal projections in Definition 3.2. Equation (3.3) represents the LES-
ROM decomposition of the “truth” solution, un

d , into its large scale component, Pr(un
d ), and its small scale

component, Qr(un
d ).

The ROM spatial filter that we use to construct the LES-ROM is the ROM projection filter [39, 53],
i.e., the orthogonal projection Pr defined in Definition 3.2, which satisfies the following equation: For given
u ∈ L2, (

Pr(u),ϕi

)
=
(
u,ϕi

)
, ∀ i = 1, ..., r.(3.4)

To construct the LES-ROM, we need to construct the equation satisfied by the large scales, Pr(un
d ),

defined in (3.3). We note that, by using Definition 3.2 and the ROM orthogonality property, we obtain the
following formula for the large scale component Pr(un

d ):

Pr(un
d ) =

r∑
i=1

(an
d )iϕi.(3.5)

To construct the LES-ROM satisfied by Pr(un
d ), we apply the ROM spatial filter, Pr, to the equation

satisfied by the “truth” solution, un
d (i.e., to the full discretization of the d-dimensional G-ROM (2.6)), we

restrict the test functions in (2.6) to the r-dimensional ROM subspace Xr defined in (3.1a), and we use
the decomposition (3.3). This yields the equations satisfied by the large scales, Pr(un

d ), i.e., the LES-ROM
equations: (

Pr(un
d )− Pr(un−1

d )

∆t
,vr

)
+Re−1(∇Pr(un

d ),∇vr) + (Pr(un
d ) · ∇Pr(un

d ),vr)

+ En + (τFOM (un
d ),vr) = (fn,vr) , ∀vr ∈Xr,

(3.6)

where we used that, by (3.4), (Pr(fn),vr) = (fn,vr). In the LES-ROM equations (3.6), the Reynolds stress
tensor τFOM (un

d ) and commutation error E are defined as follows:

τFOM (un
d ) := un

d · ∇un
d − Pr(un

d ) · ∇Pr(un
d ),(3.7)

En := Re−1(∇Qr(un
d ),∇vr),(3.8)

respectively. We note that, to obtain the LES-ROM equations (3.6), we used the fact that the term
(Qr(un

d ),vr) vanishes sinceQr(un
d ) is orthogonal to any vector inXr. We also note that the term (∇Qr(un

d ),∇vr)
in the commutation error term (3.8) does not vanish since the ROM basis functions are only L2-orthogonal,
not H1

0 -orthogonal.

Remark 3.1 (Commutation Error). In [31], we investigated the effect of the commutation error (3.8) on
ROMs. We showed that the commutation error is generally nonzero, but becomes negligible for large Re.
Since our current investigation centers around LES-ROMs for turbulent flows, for simplicity, we do not
consider the commutation error.
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Definition 3.3 (Closure Model). A closure model consists of replacing the Reynolds stress tensor τFOM (un
d )

in (3.6) with another tensor τROM (Pr(un
d )) depending only on Pr(un

d ).

Thus, the role of the closure model τROM is to replace the true closure model τFOM (un
d ) (which cannot

be computed in Xr) with a term that can actually be computed in Xr. Since a closure model cannot in
general be exact (i.e., τFOM (un

d ) 6= τROM (Pr(un
d ))), when τROM (Pr(un

d )) is inserted for τFOM (un
d ) in

(3.6) the solution of the resulting system is just an approximation to Pr(un
d ). We denote this LES-ROM

approximation to Pr(un
d ) as un

r , which can be written as

un
r =

r∑
i=1

(an
r )iϕi.(3.9)

Thus, the LES-ROM equations for un
r are(

un
r − un−1

r

∆t
,vr

)
+Re−1(∇un

r ,∇vr) + (un
r · ∇un

r ,vr) + (τROM (un
r ),vr) = (fn,vr), ∀vr ∈Xr.(3.10)

Inserting (3.9) into (3.10) yields the following matrix form of the LES-ROM:

an
r − an−1

r

∆t
= bn +Aan

r + (an
r )TBan

r + [−(τROM (un
r ),ϕi)i=1,...,r],(3.11)

where the vector bn, the matrix A, and the tensor B are defined in (2.9)-(2.11), but here are truncated to
the first r components, i.e., the indices i, k,m in (2.9)-(2.11) are restricted between 1 and r. We opt for this
slight abuse of notation in order to avoid introducing new variables that would overload the presentation.
We also note that [−(τROM (un

r ),ϕi)i=1,...,r] in (3.11) denotes the r × 1 vector whose ith component is
given by −(τROM (un

r ),ϕi).

4. Data Driven Variational Multiscale ROM (DD-VMS-ROM)

In this section, we outline the construction of the data-driven variational multiscale ROM (DD-VMS-
ROM) closure model proposed in [37, 54]. We also describe the physical constraints that we add to the
DD-VMS-ROM in order to increase its stability and accuracy. The construction of the DD-VMS-ROM is
carried out within the LES-ROM framework described in Section 3.

To construct the DD-VMS-ROM, we start from the LES-ROM equations (3.11). First, we notice that since
we used the ROM projection as a spatial filter, the LES-ROM (3.11) is in fact a variational multiscale ROM
(VMS-ROM). However, the VMS-ROM (3.11) is not closed since the closure term τROM (un

r ) still needs
to be determined. To construct a VMS-ROM closure model, we use data-driven modeling. Specifically, we
first postulate a linear ansatz for the VMS-ROM closure term, and then we determine the parameters in
the linear ansatz that best match the FOM data. The linear ansatz for the VMS-ROM closure term can be
written as follows:

[−(τROM (un
r ),ϕi)i=1,...,r] ≈ Ã an

r ,(4.1)

where an
r is the vector of ROM coefficients of the solution un

r ; cf. (3.9). To determine the r× r matrix Ã in
(4.1), in the offline stage, we solve the following low-dimensional least squares problem:

min
Ã

M∑
n=1

∥∥∥∥−[(un
d · ∇un

d − Pr(un
d ) · ∇Pr(un

d ) , ϕi

)
i=1,...,r

]
− [

(
Ã bnr

)
i=1,..,r

]︸ ︷︷ ︸
:=[(τROM (Pr(un

d )),ϕi)i=1,...,r]

∥∥∥∥2

,(4.2)

where un
d and Pr(un

d ) are obtained from the available FOM data and are defined in (2.4) and (3.5), respec-
tively, and bnr is the r-dimensional vector that contains the first r entries of the vector an

d .
6



Physical Constraint. In the numerical investigation in [16], it was shown that, in the mean, the LES-ROM
closure model dissipates energy. Thus, to mimic this behavior, in [36] we equipped the DD-VMS-ROM with
a similar physical constraint. Specifically, in the least squares problem (4.2), we added the constraint that

Ã be negative semidefinite:

(an
r )T Ãan

r ≤ 0 ∀an
r ∈ IRr.(4.3)

For the numerical results presented in Section 6, this condition (4.3) is guaranteed by enforcing a particular

structure on Ã. Specifically, we require the entries of Ã to satisfy the following relations:

(4.4) Ãij = −Ãji, ∀ i 6= j, and Ãii ≤ 0, ∀ i.
Solving the least squares problem (4.2) with the physical constraint (4.3), using the resulting matrix

Ã in the linear ansatz (4.1), and plugging this in the VMS-ROM (3.11) yields the data-driven variational
multiscale ROM (DD-VMS-ROM):

an
r − an−1

r

∆t
= bn + (A+ Ã)an

r + (an
r )TBan

r .(4.5)

5. Verifiability of the DD-VMS-ROM

In this section, we prove the verifiability of the DD-VMS-ROM described in Section 4. In Section 5.1,
we introduce the verifiability and mean dissipativity concepts in the ROM setting. In Section 5.2, we prove
that the DD-VMS-ROM is verifiable.

5.1. Definition of Verifiability and Mean Dissipativity. The goal of this subsection is to define the
verfiability of ROM closure models. Verifiability of closure models has been investigated for decades in
classical CFD (see, e.g., [30] as well as [9] for a survey of verifiability methods in LES). We emphasize,
however, that, to our knowledge, the verifiability concept has not been defined in a ROM context. In this
section, we take a first step in this direction and define verifiability of ROM closure models. We also define
the mean dissipativity of ROM closures, which will be used in Section 5.2 to prove the verifiability of the
DD-VMS-ROM.

In the remainder of this paper, we also use the following notation:

Definition 5.1 (Generic Constant C). We denote with C a generic constant that can depend on the fixed
data (e.g., the solution, u, the number of snapshots, M , the number of linearly independent snapshots, d,
and the “truth” solution, ud), but not on the ROM parameters (e.g., the ROM dimension, r, and the ROM
solution, ur).

Definition 5.2 (Verifiability). Let the number of snapshots, M , (and, thus, the number of linearly indepen-
dent snapshots, d) be fixed. A ROM closure model is verifiable in the L2 norm, || · ||, if there is a constant
C such that, for all r ≤ d and for all n = 1, . . . ,M , the following a priori error bound holds:

||Pr(un
d )− un

r ||2 ≤ C
1

n

n∑
j=1

||Pr( τFOM (uj
d)− τROM (Pr(uj

d) )||2,(5.1)

where uj
d represents the “truth” solution (i.e., the d-dimensional G-ROM solution of (2.6)) at t = tj , j =

1, . . . ,M , and un
r solves the ROM equipped with the given ROM closure model at t = tn, n = 1, . . . ,M .

Definition 5.2 says that a ROM closure model is verifiable if a small average error in the ROM closure
term implies a small error in the LES-ROM approximation.

Remark 5.1 (A Priori Error Bound). We emphasize that inequality (5.1) in the verifiability definition is
an a priori error bound. This ROM error bound is similar to the a priori error bounds for classical FOMs,
e.g., the FE method, which are often of the following form (see, e.g., Theorem 1.5 in [51]):

error ≤ C (hp1 + ∆tp2) ,(5.2)

where h is the spatial mesh size, ∆t is the time step, p1 and p2 are exponents that depend on the particular
finite element and time discretization used, and C is a generic constant that can depend on the problem data
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(including the solution of the continuous problem), but not on the discretization parameters. As explained
in Section 2.4 of [33], the a priori error bound (5.2) shows asymptotic convergence as h → 0 and ∆t → 0,
and can give the asymptotic rate of convergence with respect to the spatial and temporal discretizations. We
emphasize that one essential feature of the FE a priori error bound (5.2) is that it can be proven before
actually running the FE model (which explains the error bound’s a priori qualifier). We note, however, that
since the constant C on the right-hand side of (5.2) can depend on the unknown solution of the continuous
problem, the a priori error bound (5.2) cannot be used to decide where the spatial mesh should be refined or
coarsened. For that purpose, one could instead use a posteriori error bounds, in which the right-hand side
depends entirely on computable quantities, e.g., the FE solution [3].

The ROM error bound (5.1) in the verifiability definition is similar to the a priori FE error bound (5.2).
Indeed, the right-hand side of (5.1) does not depend on the ROM solution and can be evaluated before
actually running the ROM. Thus, the ROM error bound (5.1) is an a priori error bound, just like the FE
error bound (5.2). Furthermore, the right-hand side of (5.1) is the product of a generic constant that does
not depend on the ROM discretization parameters, and a term that can be tuned by the user (i.e., the average
ROM closure error term). Thus, as the average ROM closure error in (5.1) decreases, we expect the ROM
error to decrease at the same rate. Our numerical investigation in Section 6 shows that this is indeed the
case. There is, however, a difference between the a priori ROM error bound (5.1) and the a priori FE error
bound (5.2): The latter depends on two FE parameters that can be easily adjusted (i.e., the spatial mesh
size, h, and the time step, ∆t). The former, however, depends on the average ROM closure error, which can
be tuned by varying the parameters in the numerical discretization of the least squares problem (4.2). This
process is explained in Sections 6.1 and 6.2.

Remark 5.2. We note that the terms on the right-hand side of (5.1) in the verifiability definition are the
same as those used in the least squares problem (4.2). Furthermore, the L2 norm is used in both (5.1)
and (4.2). Thus, solving the least squares problem (4.2) to construct the DD-VMS-ROM and proving that
the DD-VMS-ROM is verifiable (as we will do in Theorem (5.2)) should yield accurate DD-VMS-ROM
approximations. The numerical investigation in Section 6 will show that, as expected, the DD-VMS-ROM
approximations are accurate.

Definition 5.3 (Mean Dissipativity). A ROM closure model satisfies the mean dissipativity condition if for
the un

d ,u
n
r , and n given in Definition 5.2, the following inequalities are satisfied:

0 ≤ (τROM (Pr(un
d ))− τROM (un

r ) , Pr(un
d )− un

r ) <∞.(5.3)

5.2. Proof of DD-VMS-ROM’s Verifiability. In this section, we first prove that the DD-VMS-ROM is
mean dissipative. Then, we use this result to prove that the DD-VMS-ROM is verifiable.

Theorem 5.1. The DD-VMS-ROM with linear ansatz (4.5) and physical constraint (4.3) satisfies mean
dissipativity according to Definition 5.3.

Proof. The least squares problem (4.2) yields the ROM operator Ã for −(τROM (Pr(un
d ),ϕi), which is

the VMS-ROM closure term. We note that the same ROM operator Ã is used to construct the VMS-

ROM closure term −(τROM (un
r ),ϕi). Specifically, the ROM operator Ã that is created by solving the

least squares problem (4.2) for the VMS-ROM closure term −(τROM (Pr(un
d ),ϕi) is used in the linear

ansatz −(τROM (Pr(un
d ),ϕi)i=1,...,r ≈ Ã br, where bnr is the r-dimensional vector defined in (4.2), i.e., the r-

dimensional vector that contains the first r entries of the vector an
d . The same ROM operator Ã is also used in

the linear ansatz (4.1) for the VMS-ROM closure term −(τROM (un
r ),ϕi): −(τROM (un

r ),ϕi)i=1,...,r ≈ Ã ar.
We approximate the VMS-ROM closure terms with these ansatzes and obtain the following equalities:

(τROM (Pr(un
d ))− τROM (un

r ) , ϕi) =
(
τROM (Pr(un

d )) , ϕi

)
−
(
τROM (un

r ) , ϕi

)
= (−Ã bnr )i − (−Ã an

r )i

=
(
− Ã (bnr − an

r )
)
i

∀i = 1, .., r.

(5.4)
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To prove that the inner product (τROM (Pr(un
d )) − τROM (un

r ) , Pr(un
d ) − un

r ) is non-negative, we use the
definitions of Pr(un

d ) in (3.5) and un
r in (3.9), and rewrite it as follows:(

τROM (Pr(un
d ))− τROM (un

r ) , Pr(un
d )− un

r

)
=
(
τROM (Pr(un

d ))− τROM (un
r ) ,

r∑
i=1

(an
d − an

r )iϕi

)
=

r∑
i=1

(an
d − an

r )i

(
τROM (Pr(un

d ))− τROM (un
r ) , ϕi

)
.

(5.5)

By applying (5.4) to (5.5) and using the physical constraint (4.3), we get

(τROM (Pr(un
d ))− τROM (un

r ) , Pr(un
d )− un

r ) =

r∑
i=1

(an
d − an

r )i
(
− Ã (bnr − an

r )
)
i

= −(bnr − an
r )T Ã (bnr − an

r ) ≥ 0,

(5.6)

since Ã is negative semi-definite. In (5.6), we have used that bnr is an r-dimensional vector that contains the
first r entries of the an

d . The inequality in (5.6) concludes the proof. �

Remark 5.3. We note that in Theorem 5.1 we proved the ROM mean dissipativity property only for Pr(un
d )

and un
r . This is contrast with the FEM context, where mean dissipativity is proven for general FEM functions

(see, e.g., [30]). However, the result presented in Theorem 5.1 is sufficient for proving the verifibility property
given in Theorem 5.2 below.

Next, we prove that the DD-VMS-ROM is verifiable. We note that, as explained in Section 3, the goal
for the DD-VMS-ROM solution is to approximate as accurately as possible Pr(un

d ), which is the large scale
component of the d-dimensional G-ROM solution (2.6), i.e., the “truth” solution that is employed as a
benchmark in our investigation. Furthermore, as explained in the second paragraph following Definition 3.1,
the “truth” solution, ud, will be considered as given data. We also note that Pr(un

d ) satisfies the LES-ROM
equations (3.6), which, for clarity, we rewrite below:

(
Pr(un

d )− Pr(un−1
d )

∆t
,vr) +Re−1(∇Pr(un

d ),∇vr) + (Pr(un
d ) · ∇Pr(un

d ),vr)

+(τFOM (un
d ),vr) = (fn,vr),

(5.7)

where we used the fact that (τFOM (un
d ),vr) is equal to (Pr(τFOM (un

d )),vr). We also rewrite the full
discretization of the DD-VMS-ROM (3.10):

(
un
r − un−1

r

∆t
,vr) +Re−1(∇un

r ,∇vr) + (un
r · ∇un

r ,vr)

+(τROM (un
r ),vr) = (fn,vr).

(5.8)

Furthermore, we use the linear ansatz (4.1) and the physical constraint (4.3) for the ROM closure model in
the DD-VMS-ROM (5.8). We also choose the initial condition u0

r = Pr(u0
d).

The DD-VMS-ROM error at time step n, which we denote with en, is defined as the difference between the
large scale component of the “truth” solution, Pr(un

d ) (which is the solution of (5.7)), and the DD-VMS-ROM
solution of (5.8), un

r : en = Pr(un
d )− un

r .
To prove the DD-VMS-ROM’s verifiability, we use the following bound on the nonlinear term, which is

given in Lemma 22 in [33] (see also Lemma 61.1 in [48]):

Lemma 5.1. Let Ω ⊂ Rq be an open, bounded set of class C2, with q = 2 or 3. For all u,v,w ∈ [H1
0(Ω)]q,

b(u,v,w) ≤ C(Ω)
√
||u|| ||∇u|| ||∇v|| ||∇w||,(5.9)

where the trilinear form b(·, ·, ·) [33, 50] is defined as

b(u,v,w) = (u · ∇v,w).(5.10)
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Theorem 5.2. The DD-VMS-ROM (5.8) with linear ansatz (4.1), physical constraint (4.3), and the initial
condition u0

r = Pr(u0
d) is verifiable: For a small enough time step, ∆t dj < 1, ∀ j = 1, ...,M , where dj =(

27(Re)3C(Ω)4

16 ||∇Pr(uj
d)||4 +Re

)
and C(Ω) is the constant in Lemma 5.1, the following inequality holds for

all n = 1, . . . ,M :

||en||2 + ∆t

n∑
j=1

Re−1||∇ej ||2 ≤

exp
(

∆t

n∑
j=1

dj
1−∆tdj

)(
∆t

n∑
j=1

Re−1||Pr(τFOM (uj
d)−τROM (Pr(uj

d))) ||2
)
,

(5.11)

where en = Pr(un
d )− un

r .

Proof. We subtract (5.8) from (5.7), and replace n with j to get the error equation:

(
ej − ej−1

∆t
,vr) +Re−1(∇ej ,∇vr) + b(Pr(uj

d), Pr(uj
d),vr)− b(uj

r,u
j
r,vr)

+
(
τROM (Pr(uj

d))− τROM (uj
r),vr

)
= −

(
τFOM (uj

d)− τROM (Pr(uj
d)),vr

)
.

(5.12)

We set vr = ej in (5.12), add and subtract b(uj
r, Pr(uj

d), ej), and use the fact that b(uj
r, e

j , ej) = 0 to get
the following equation:

∆t−1(ej − ej−1, ej) +Re−1||∇ej ||2 + b(ej , Pr(uj
d), ej)

+ (τROM (Pr(uj
d))− τROM (uj

r), ej) = −(τFOM (uj
d)− τROM (Pr(uj

d)), ej).
(5.13)

From Theorem 5.1, we have the following inequality:

(τROM (Pr(uj
d))− τROM (uj

r), ej) ≥ 0.(5.14)

By applying (5.14) to (5.13), we get the following inequality:

∆t−1
(
ej − ej−1, ej

)
+Re−1||∇ej ||2 ≤ −b(ej , Pr(uj

d), ej)−
(
τFOM (uj

d)− τROM (Pr(uj
d)), ej

)
.(5.15)

Applying Hölder’s and Young’s inequalities to the terms (ej−ej−1, ej) and−(τFOM (uj
d)−τROM (Pr(uj

d)), ej)
in (5.15) we obtain that, for any C1, C2 > 0, the following inequalities hold:

(ej − ej−1, ej) = ||ej ||2 − (ej , ej−1)

≥ ||ej ||2 − ||ej || ||ej−1||

≥ ||ej ||2 − C1

2
||ej ||2 − 1

2C1
||ej−1||2

(5.16)

and

| − (τFOM (uj
d)− τROM (Pr(uj

d)), ej)| = | − (Pr(τFOM (uj
d)− τROM (Pr(uj

d))), ej)|

≤ 1

2C2
||Pr(τFOM (uj

d)− τROM (Pr(uj
d))) ||2 +

C2

2
||ej ||2.

(5.17)

Applying Lemma 5.1 to the term −b(ej , Pr(uj
d), ej), we obtain the following inequality for any C3 > 0:

| − b(ej , Pr(uj
d), ej)| ≤ C(Ω) ||∇ej ||3/2 ||∇Pr(uj

d)|| ||ej ||1/2

≤ 3C3C(Ω)

4
||∇ej ||2 +

C(Ω)

4(C3)3
||∇Pr(uj

d)||4||ej ||2,
(5.18)

where C(Ω) is the constant in Lemma 5.1.
By choosing C1 = 1, C2 = Re, and C3 = 2Re−1/3C(Ω), we get the following inequality:

1

2∆t
(||ej ||2 − ||ej−1||2) +

Re−1

2
||∇ej ||2

≤
(27(Re)3C(Ω)4

32
||∇Pr(uj

d)||4 +
Re

2

)
||ej ||2 +

Re−1

2
||Pr(τFOM (uj

d)− τROM (Pr(uj
d))) ||2.

(5.19)
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By multiplying (5.19) by 2∆t and summing the resulting inequalities from j = 1 to n, we obtain the
following inequality:

||en||2 + ∆t

n∑
j=1

Re−1||∇ej ||2 ≤ ||e0||2 + ∆t

n∑
j=1

(27(Re)3C(Ω)4

16
||∇Pr(uj

d)||4 +Re
)
||ej ||2

+∆t

n∑
j=1

Re−1||Pr(τFOM (uj
d)− τROM (Pr(uj

d))) ||2.
(5.20)

To apply the discrete Gronwall’s lemma, we first make the following notation:

aj := ||ej ||2 ≥ 0,

bj := Re−1||∇ej ||2 ≥ 0,

dj :=
(27(Re)3C(Ω)4

16
||∇Pr(uj

d)||4 +Re
)
≥ 0,

cj := Re−1||Pr(τFOM (uj
d)− τROM (Pr(uj

d))) ||2 ≥ 0,

H := ||e0||2 ≥ 0.

(5.21)

We also recall that, by the small time step assumption, the following inequality holds: ∆t dj < 1, ∀j. By
using the notation in (5.21), we rewrite (5.20) as follows:

an + ∆t

n∑
j=1

bj ≤ ∆t

n∑
j=1

dj aj + ∆t

n∑
j=1

cj +H.(5.22)

By using the discrete Gronwall’s lemma (see Lemma 27 in [33]) in (5.22), we obtain the following inequality:

an + ∆t

n∑
j=1

bj ≤ exp
(

∆t

n∑
j=1

dj
1−∆tdj

)(
∆t

n∑
j=1

cj +H
)
.(5.23)

We note that choosing the initial condition u0
r = Pr(u0

d), implies that e0 = u0
r − Pr(u0

d) = 0, and thus
H = 0. As a result, (5.23) implies that (5.11) holds.

�

Remark 5.4. We note that the small time step assumption that we made in the theorem, i.e., that ∆t dj <
1 ∀j = 1, ...,M , is also made in a FE context (see Lemma 27 and the proof of Theorem 24 in [33]).

Remark 5.5. In this paper, we used backward Euler time discretization to obtain the full discretizations of
the ROMs. However, other time discretization schemes could be applied as well.

6. Numerical Results

In Theorem 5.2, we proved that the DD-VMS-ROM presented in Section 4 is verifiable. In this section,
we present numerical support for the theoretical results in Theorem 5.2. In Section 6.1, we provide details
on the numerical implementation of the DD-VMS-ROM. We numerically show that the DD-VMS-ROM is
verifiable for the Burgers equation in Section 6.3 and for the flow past a cylinder in Section 6.4.

6.1. Numerical Implementation.
“Truth” Solution. For computational efficiency, instead of solving the very large-dimensional G-ROM (2.5)
to get the “truth” solution, ud, we simply project the FOM data on the ROM space, i.e., ud = Pr(uh), r = d.
In our numerical investigation, the two approaches yield similar results (i.e., the difference between the two
approaches is on the order of the time discretization error). Thus, using the projection of the FOM data as
“truth” solution does not affect our numerical investigation of the DD-VMS-ROM’s verifiability.
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Algorithm 1: Least Squares Regularization: Truncated SVD

1: Formulate the standard linear least squares problem for the unknown vector xu:

min
xu

∥∥Exu − f
∥∥2
,(6.1)

where E ∈ RMr×r2 is a matrix whose entries are determined by ad(tj), j = 1, · · · ,M , f ∈ RMr×1 is a

vector whose entries are determined by Pr(τFOM (tj)), and xu ∈ Rr2×1, j = 1, · · · ,M , is a vector whose

entries are determined by Ã.
2: Calculate the SVD of E:

E = UΣV >.(6.2)

3: Specify a tolerence tol.

4: Keep the entries in Σ that are larger than tol; the resulting matrix is Σ̃ (σ̃ = σ if σ > tol; the singular
values of E can be chosen as tol values).

5: Construct Ẽ, the truncated SVD of E:

Ẽ = Ũ Σ̃Ṽ >,(6.3)

where Ũ and Ṽ are the entries of U and V that correspond to Σ̃, respectively.
6: The solution is given by

xu =
(
Ṽ Σ̃−1Ũ>

)
f .(6.4)

Least Squares Regularization: Truncated SVD. As is often the case in data-driven modeling [41], the least

squares problem (4.2) that we need to solve in order to determine the entries in the ROM closure operator Ã
used to construct the DD-VMS-ROM (4.5) can be ill conditioned. To alleviate the ill conditioning of the least
squares problem, we proposed the use of the truncated SVD [54, 37] as a regularization method [20, Chapter 4]
(see also [58] for a related approach). For completeness, in Algorithm 1, we outline the construction of the
DD-VMS-ROM with the truncated SVD procedure.

The tolerance tol specified in step 3 of Algorithm 1 (which yields the truncation parameter k, i.e., the index

of the lowest singular value retained in the matrix Σ̃ constructed in step 4 of Algorithm 1; see equations (4.2)
and (4.3) in [20, Chapter 4]) plays an important role in the numerical implementation of the DD-VMS-ROM.
Specifying a large tol value yields a well conditioned least squares problem in step 1 and, as a result, minimizes
the numerical errors in the least squares problem. However, a large tol value also decreases the accuracy of
the least squares problem, i.e., yields a DD-VMS-ROM closure operator Ã that does not accurately match
the FOM data. On the other hand, choosing a small tol value does not significantly decrease the accuracy of
the DD-VMS-ROM closure operator Ã, but does not significantly alleviate the ill conditioning of the least
squares problem either. In our numerical investigation, a careful choice of the tolerance tol yields optimal
DD-VMS-ROM results.

If physical constraints such as that given by (4.4) are added when solving the minimization problem

(6.1), then the optimal Ã given by (6.4) associated with a specified tol should be replaced by the solution

of a constrained linear least squares solver with Ẽ given by (6.3) as the data matrix. For all the numerical
results presented in Section 6.3 and Section 6.4, we use the Matlab built-in solver lsqlin for this purpose.
Specifically, we use the interior-point algorithm option for lsqlin with ConstraintTolerance = 1E-10,
OptimalityTolerance = 1E-9, StepTolerance = 1E-12, and MaxIter = 1000.
Time Discretization. Although the DD-VMS-ROM’s verifiability was proven in Theorem 5.2 for the backward
Euler time discretization, in the numerical investigation of the flow past a cylinder (Section 6.4), we use the
linearized BDF2 time discretization. We use this higher-order time discretizations in order to decrease the
impact of the time discretization error onto the LES-ROM error, which is the main focus of the numerical
investigation in this section. Furthermore, we believe that the mathematical arguments used to prove the
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DD-VMS-ROM’s verifiability in Theorem 5.2 can be extended to higher-order time discretizations such as
that considered in Section 6.4.
Criteria. To illustrate numerically the DD-VMS-ROM verifiability proven in Theorem 5.2, we use the follow-
ing approach, which was outlined in Section 3 (see, e.g., the discussion after Definition 3.1) and Section 5
(see, e.g., Definitions 5.1 and 5.2): First, we fix the number of snapshots, M . Therefore, the maximal di-
mension of the ROM space, d, is also fixed. Furthermore, the “truth” solution ud (i.e., the solution of the
d-dimensional G-ROM (2.5)) is also fixed. The goal of our numerical investigation is to show that, for fixed
M,d, and ud, there exists a constant C (see Definition 5.1) such that for varying r values and for varying tol
values, the inequality (5.11) is satisfied. Thus, the goal is to bound the error between the DD-VMS-ROM
solution, ur, and the large scale component of the “truth” solution, Pr(ud).

To this end, we use the following metrics: To quantify the LES-ROM error, i.e., the averaged error
associated with the first term on the LHS of inequality (5.11) (see also the LHS of (5.1)), we use the
following average L2 norm:

E(L2) =
1

M

M∑
n=1

‖Pr(un
d )− un

r ‖2 =
1

M

M∑
n=1

‖en‖2 .(6.5)

To quantify the LES-ROM closure error, i.e., the term on the RHS of inequality (5.11), we use the following
metric:

η(L2) =
1

M

M∑
n=1

∥∥Pr(τFOM (un
d )− τROM (Pr(un

d ) ) )
∥∥2

L2 .(6.6)

Note that the ROM error E(L2) and the closure error η(L2) depend on both the dimension r of the LES-
ROM and the aforementioned tolerance index (i.e., truncation parameter) k associated with the tolerance of

the truncated SVD used for constructing Ã for the given r. We suppressed these dependencies to simplify
the notation. It should be clear from the context which parameter is varied for each of the numerical results
presented below.

6.2. Assessment of Results. To illustrate numerically the DD-VMS-ROM verifiability proven in Theo-
rem 5.2, we need to show that as η(L2) in (6.6) decreases, so does E(L2) in (6.5). Specifically, according to
(5.11) (see also Definition 5.2), we should see log(η(L2)) and log(E(L2)) obey the following relation:

(6.7) log(E(L2)) ≤ α log(η(L2)) + β,

with α = 1 and some β > 0. As pointed out above, both E(L2) and η(L2) depend on two parameters:
the ROM dimension r and the tolerance index k in the truncated SVD. In the numerical investigation, we
perform two types of experiments:

(i) For a fixed r, we aim to show that (6.7) holds with α ≥ 1 as k is varied;
(ii) For each r, we pick the corresponding k that minimizes E(L2), and aim to show that (6.7) holds

with α ≥ 1 as r is varied.

Since in practice one is interested in the settings for which η(L2) is relatively small, a rate α > 1 indicates
a better rate than the rate predicted by Theorem 5.2.

We would like to note that our numerical investigation is somewhat different from the standard investi-
gations used in the numerical analysis literature. While increasing the ROM dimension r is analogous to
reducing the mesh size h in numerical analysis, the tolerance index k for the truncated SVD (which is tied
specifically to the data-driven aspect of the LES-ROM closure examined here) has no analogue in classical
numerical analysis.

6.3. Burgers Equation. In this section, we investigate the DD-VMS-ROM verifiability in the numerical
simulation of the one-dimensional viscous Burgers equation:

(6.8)


ut − νuxx + uux = 0 , x ∈ (0, 1), t ∈ (0, 1],

u(0, t) = u(1, t) = 0 , t ∈ (0, 1],

u(x, 0) = u0(x) , x ∈ [0, 1],
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with non-smooth initial condition (6.9):

(6.9) u0(x) =

{
1, x ∈ (0, 1/2],

0, x ∈ (1/2, 1].

This test problem has been used in, e.g., [1, 32, 54].
Snapshot Generation. We generate the FOM results by using a linear finite element (FE) spatial discretization
with mesh size h = 1/2048, a backward Euler time discretization with timestep size ∆t = 5 × 10−4, and a
viscosity coefficient ν = 10−2. Due to the parabolic nature of the Burgers equation (6.8), the discontinuity in
the initial data (6.9) is smoothed out as soon as t > 0. It becomes a (smooth) viscous shock with relatively
steep gradient due to the small viscosity used, and persists for the whole duration of the time integration,
i.e., for t in [0, 1]. See also [14, 24], where a stochastic version of this type of viscous shocks is considered
within a reduced order modeling context.
ROM Construction. We run the FOM from t = 0 to t = 1, which yields a total of 2001 solution snapshots.
Since the spatial derivatives of the FOM solution are involved in the τFOM part of the closure error η(L2)
(see (3.7)) and the initial condition given by (6.9) is discontinuous, we remove the FOM solution in the time
interval [0, 0.01), and thus collect a total of 1981 equally spaced snapshots in the time interval [0.01, 1] to

generate the ROM basis functions. To train the DD-VMS-ROM closure operator Ã, we use FOM data on
the same time interval [0.01, 1]. We also test the DD-VMS-ROM on the time interval [0.01, 1]. That is, each
ROM is initialized at t = 0.01 using the projected FOM data and run up to t = 1, and the ROM error E(L2)
in (6.5) and the closure error η(L2) in (6.6) are both computed over the time interval [0.01, 1]. Thus, we
consider the reconstructive regime. The ROMs are integrated with the backward Euler time discretization
and the same timestep size as that used for the FOM.
Numerical Results. We begin by presenting the results obtained for the first type of experiments outlined
in Section 6.2. That is, we fix the ROM dimension r, and examine how E(L2) in (6.5), which measures
the DD-VMS-ROM error, and η(L2) in (6.6), which measures the DD-VMS-ROM closure error, vary as the
tolerance index k in the truncated SVD used in the data-driven modeling part is varied. Specifically, we
monitor the decaying rate of E(L2) with respect to η(L2) as k is varied. The results in Figure 1, for r = 8, 14,
and 20, generally show that, as η(L2) decreases (red curves), so does E(L2) (blue curves). We note, however,
that as shown for r = 8 and r = 14 in Figure 1, the global minimum of the ROM error E(L2) may not be
achieved at k = r2, which corresponds to the case when the full SVD is used for constructing the data-driven

closure term Ã; see the caption of Figure 1. We also note that larger local fluctuations in both curves are
displayed for r = 14 and r = 20, which is due to the fact that the condition number of the data matrix E>E
increases significantly for these two values. Indeed, the condition number of E>E is 6.35 × 106 for r = 20,
1.2× 105 for r = 14, and 1.6× 103 for r = 8 1.

With the k-dependence data available, we turn now to examining the relation (6.7) for fixed r values
while k is varied. For this purpose, in Figure 2, we plot the corresponding linear regression (LR) slope. We
note that the LR slopes shown in Figure 2 are computed based on those (E(L2), η(L2)) data pairs for which
η(L2) ≤ 100 since most of the data pairs are aggregated below that threshold and, more importantly, the
cases with small η(L2) are those of practical interest. The results in Figure 2 show that (6.7) holds with α
either greater than 1 or just slightly below 1.

1For the case r = 20, for about 5% of the total 400 possible k values, the constrained linear least squares solver lsqlin fails
to converge. These k values are scattered around k = 300. We did not include the corresponding E(L2) and η(L2) data in

Figure 1 and we also excluded them when computing the corresponding linear regression slope presented in Figure 2.
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Figure 1. Burgers equation (6.8), reconstructive regime: E(L2) and η(L2) for three fixed
r values and different tolerance index k values in the truncated SVD. Recall that E(L2) and
η(L2) are defined by (6.5) and (6.6), respectively. As mentioned in Section 6.1, the tolerance
values in the truncated SVD take the form of the truncation index k, which is the index

of the lowest singular value retained in the matrix Σ̃ constructed in step 4 of Algorithm 1.
For an r-dimensional ROM, the matrix E in Algorithm 1 is of dimension Mr× r2; cf. (6.1).
Thus, the tolerance index k can take values between 1 and r2. As a result, there are r2 data
points in each of the three panels for both E(L2) (blue curve) and η(L2) (red curve).

Figure 2. Burgers equation (6.8), reconstructive regime: linear regression for E(L2) and
η(L2) for fixed r values and different tolerance values in the truncated SVD. The red dots in
each panel correspond to the data points (E(L2), η(L2)) shown in the corresponding panel
in Figure 1. The linear regression for E(L2) in terms of η(L2) in each panel is indicated by
the solid black line.

Next, we consider the other type of experiments, in which we vary r, and for each r we pick the corre-
sponding k that minimizes E(L2). These results are plotted in Figure 3, which shows again that (6.7) holds
with α ≥ 1, this time when r is varied.
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Figure 3. Burgers equation (6.8), reconstructive regime: E(L2) and η(L2) as r increases.
For each r, the tolerance index k in the truncated SVD is chosen to minimize the corre-
sponding ROM error E(L2).

Overall, the results in this section provide strong numerical support to the theoretical understanding put
forth in Theorem 5.2 in the Burgers equation setting.

6.4. Flow Past A Cylinder. In this section, we investigate the DD-VMS-ROM verifiability in the numerical
simulation of a 2D channel flow past a circular cylinder at Reynolds numbers Re = 100 and Re = 1000. This
test problem has been used in, e.g., [36, 37, 54].
Computational Setting. As a mathematical model, we use the NSE (2.1)–(2.2). The computational domain
is a 2.2× 0.41 rectangular channel with a cylinder of radius 0.05, centered at (0.2, 0.2), see Figure 4.

0.2

0.2 0.05
0.41

2.2

Figure 4. Geometry of the flow past a circular cylinder numerical experiment.

We prescribe no-slip boundary conditions on the walls and cylinder, and the following inflow and outflow
profiles [28, 36, 43]:

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
y(0.41− y),(6.10)

u2(0, y, t) = u2(2.2, y, t) = 0,(6.11)

where u = 〈u1, u2〉. There is no forcing and the flow starts from rest.
Snapshot Generation. For the spatial discretization, we use the pointwise divergence-free, LBB stable (P2, P

disc
1 )

Scott-Vogelius finite element pair on a barycenter refined regular triangular mesh [29]. The mesh yields 103K
(102962) velocity and 76K (76725) pressure degrees of freedom. We use the linearized BDF2 temporal dis-
cretization and a time step size ∆t = 0.002 for both FOM and ROM time discretizations. On the first time
step, we use a backward Euler scheme so that we have the two initial time step solutions required for the
BDF2 scheme.
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ROM Construction. The FOM simulations settle down to periodic dynamics at different time instances for
the two Reynolds numbers used in the numerical investigation: For Re = 100 after t = 5, and for Re = 1000
after t = 13. To construct the ROM basis functions, we use 10 time units of FOM data. Thus, to ensure
a fair comparison of the numerical results at different Reynolds numbers, we collect FOM snapshots on the
following time intervals: For Re = 100 from t = 7 to t = 17, and for Re = 1000 from t = 13 to t = 23.

To train the DD-VMS-ROM closure operator Ã, we use FOM data for one period. The period length
of the FOM dynamics is different for the two different Reynolds numbers: From t = 7 to t = 7.332 for
Re = 100, and from t = 13 to t = 13.268 for Re = 1000. Thus, we collect 167 snapshots for Re = 100, and
135 snapshots for Re = 1000.

6.4.1. Numerical Results for Re = 100. In Figure 5, for three different r values, we plot E(L2) in (6.5),
which measures the DD-VMS-ROM error, and η(L2) in (6.6), which measures the DD-VMS-ROM closure
error. To compute E(L2) and η(L2), we fix the r value and decrease the tolerance index k in the truncated
SVD, which is used in the data-driven modeling part. As the tolerance decreases, we monitor the decaying
rate of E(L2) with respect to η(L2). The results in Figure 5, for r = 4, 6, and 8, generally show that, as
η(L2) decreases, so does E(L2). We note that, in each panel, the minimal E(L2) value is actually achieved

at k = r2, i.e., when the full SVD is used in constructing the closure term Ã. This is due to the fact that
for all the r values considered, the condition number of the corresponding data matrix E>E is always below
103. The same observation is true for the Re = 1000 test case presented in Section 6.4.2.

Figure 5. Flow past a cylinder, Re = 100, reconstructive regime: E(L2) and η(L2) values
for fixed r values and different tolerance index k values in the truncated SVD.

In Figure 6, for r = 4, 6, and 8, we plot the LR slope for E(L2) with respect to η(L2). For r = 4, the
LR slope is 0.56, for r = 6 the LR slope is 0.99, and for r = 8 the LR slope is 1.03. These results indicate
an almost linear correlation between E(L2) and η(L2), again in agreement with (6.7) with α = 1, except for
r = 4. One possible explanation for the r = 4 case is that, due to the low-dimensionality of the ROM, we
do not have sufficient data points to accurately estimate the LR slope.

When we vary r and choose the tolerance index k in the truncated SVD to minimize the corresponding
E(L2), the results are shown in Figure 7. This figure shows again that (6.7) holds with α = 1 in the varying
r setting.

Overall, the results in Figures 5–7 support the theoretical results in Theorem 5.2.
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Figure 6. Flow past a cylinder, Re = 100, reconstructive regime: linear regression for
E(L2) and η(L2) for fixed r values and different tolerance values in the truncated SVD.

Figure 7. Flow past a cylinder, Re = 100, reconstructive regime: E(L2) and η(L2) values
as r increases. For each r, the tolerance index k in the truncated SVD is chosen to minimize
the corresponding ROM error E(L2).

6.4.2. Numerical Results for Re = 1000. In Figure 8, for three different r values, we plot E(L2) in (6.5),
which measures the DD-VMS-ROM error, and η(L2) in (6.6), which measures the DD-VMS-ROM closure
error. To compute E(L2) and η(L2), we fix the r value and decrease the tolerance in the truncated SVD,
which is used in the data-driven modeling part. As the tolerance decreases, we monitor the decaying rate
of E(L2) with respect to η(L2). The results in Figure 8, for r = 4, 6, and 8, generally show that, as η(L2)
decreases, so does E(L2).
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Figure 8. Flow past a cylinder, Re = 1000, reconstructive regime: E(L2) and η(L2) values
for fixed r values and different tolerance index k values in the truncated SVD.

In Figure 9, for r = 4, 6, and 8, we plot the LR slope for E(L2) with respect to η(L2). For r = 4, the LR
slope is 1.71, for r = 6 the LR slope is 2.07, and for r = 8 the LR slope is 1.00. These results indicate that
E(L2) decays at least linearly as η(L2) is reduced, again in agreement with (6.7) with α ≥ 1.

When we vary r and choose the tolerance index k in the truncated SVD to minimize the corresponding
E(L2), the results are shown in Figure 10. This figure shows again that (6.7) holds with α ≥ 1 in this varying
r setting.

Overall, the results in Figures 8–10 support the theoretical results in Theorem 5.2, yielding the same
conclusion as that in Section 6.4.1.

Figure 9. Flow past a cylinder, Re = 1000, reconstructive regime: linear regression for
E(L2) and η(L2) for fixed r values and different tolerance values in the truncated SVD.
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Figure 10. Flow past a cylinder, Re = 1000, reconstructive regime: E(L2) and η(L2)
values as r increases. For each r, the tolerance index k in the truncated SVD is chosen to
minimize the corresponding ROM error E(L2).

7. Conclusions and Future Work

Over the last two decades, a plethora of ROM closure models have been developed for reduced order
modeling of convection-dominated flows. Various ROM closure models have been constructed by using
physical insight, mathematical arguments, or data. Although these ROM closure models are built by using
different arguments, they are constructed by using the same heuristic algorithm: (i) In the offline stage, the
ROM closure model is built so that it is as close as possible (in some norm) to the “true” ROM closure
term. (ii) In the online stage, one needs to check whether the ROM closure model yields a ROM solution
that is as close as possible to the filtered FOM solution. If the ROM solution is an accurate approximation
of the filtered FOM solution, the ROM closure model is deemed accurate. This heuristic algorithm is the
most popular approach used in assessing the success of the current ROM closure models. However, a natural
question is whether one can actually prove anything about these ROM closure models. For example, can
one prove that an accurate ROM closure model (constructed in the offline phase) yields an accurate ROM
solution (in the online phase)?

In this paper, we took a step in this direction and answered the above question by extending the verifiability
concept from classical LES to a ROM setting. Specifically, we defined a ROM closure model as verifiable
if the ROM error is bounded (in some norm) by the ROM closure model error. Furthermore, we proved
that a recently introduced data-driven ROM closure model (i.e., the DD-VMS-ROM [37, 54]) is verifiable.
Finally, we showed numerically that the DD-VMS-ROM closure is verifiable. Specifically, in the numerical
simulation of the one-dimensional Burgers equation and the two-dimensional flow past a circular cylinder
at Reynolds numbers Re = 100 and Re = 1000, we showed that by reducing the error in the ROM closure
term, we can achieve a decrease in the ROM error, as predicted by the theoretical results.

There are several natural research directions that can be pursued in the quest to lay mathematical founda-
tions for ROM closure models. For example, one could investigate the verifiability of (functional, structural,
or data-driven) ROM closure models that are different from the DD-VMS-ROM investigated in this paper.
One could also extend the verifiability concept to ROM closures that are built from experimental data. In
that case, one could replace the high-dimensional “truth” solution used in this paper with the experimental
solution interpolated onto a discrete mesh. Another potential research direction is the investigation of differ-
ent norms (e.g., the H1 norm) in the least squares problem (4.2), verifiability definition (i.e., Definition 5.2),
and verfiability theorem (i.e., Theorem 5.2). Finally, one could consider other mathematical concepts that
are used in classical LES (see, e.g., [9]) and extend them to a ROM setting.
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