Skip to main content
Log in

Nonlinear p-Multigrid Preconditioner for Implicit Time Integration of Compressible Navier–Stokes Equations with p-Adaptive Flux Reconstruction

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Within the framework of p-adaptive flux reconstruction, we aim to construct efficient polynomial multigrid (pMG) preconditioners for implicit time integration of the Navier–Stokes equations using Jacobian-free Newton–Krylov (JFNK) methods. We hypothesise that in pseudo transient continuation (PTC), as the residual drops, the frequency of error modes that dictates the convergence rate gets higher and higher. We apply nonlinear pMG solvers to stiff steady problems at low Mach number (\(\textrm{Ma}=10^{-3}\)) to verify our hypothesis. It is demonstrated that once the residual drops by a few orders of magnitude, improved smoothing on intermediate p-sublevels will not only maintain the stability of pMG at large time steps but also improve the convergence rate. For the unsteady Navier–Stokes equations, we elaborate how to construct nonlinear preconditioners using pseudo transient continuation for the matrix-free generalized minimal residual (GMRES) method used in explicit first stage, singly diagonally implicit Runge–Kutta (ESDIRK) methods, and linearly implicit Rosenbrock–Wanner (ROW) methods. Given that at each time step the initial guess in the nonlinear solver is not distant from the converged solution, we recommend a two-level \(p\{p_0\text {-}p_0/2\} \) or even \( p\{p_0\text {-}(p_0-1)\} \) p-hierarchy for optimal efficiency with a matrix-based smoother on the coarser level based on our hypothesis. It is demonstrated that insufficient smoothing on intermediate p-sublevels will deteriorate the performance of pMG preconditioner greatly. The nonlinear pMG preconditioner in this framework is found to be effective in reducing computational cost, as well as reducing the dimension of Krylov subspace for stiff systems arising from high-aspect-ratio elements and low Mach numbers. Specifically, the JFNK-pMG technique is demonstrated to be more than 5 times faster than pMG nonlinear solvers for unsteady problems. Compared to the EJ preconditioner, the pMG preconditioner can make ESDIRK and ROW methods up to 2 times faster for low-Mach-number flow and up to 1.5 times faster for highly anisotropic meshes. Moreover, the pMG preconditioner can reduce the dimension of Krylov subspace by one order of magnitude. With a pMG preconditioner, ROW methods are consistently more efficient than ESDIRK methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Vermeire, B.C., Witherden, F.D., Vincent, P.E.: On the utility of GPU accelerated high-order methods for unsteady flow simulations: a comparison with industry-standard tools. J. Comput. Phys. 334, 497–521 (2017)

    Article  MathSciNet  Google Scholar 

  2. Jia, F., Ims, J., Wang, Z., Kopriva, J., Laskowski, G.M.: Evaluation of second-and high-order solvers in wall-resolved large-eddy simulation. AIAA J. 57(4), 1636–1648 (2019)

    Article  Google Scholar 

  3. Boris, J.P.: On large eddy simulation using subgrid turbulence models. In: Whither Turbulence? Turbulence at the Crossroads, pp. 344–353. Springer, Berlin, Heidelberg (1990)

  4. Gassner, G.J., Beck, A.D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid Dyn. 27, 221–237 (2013)

    Article  Google Scholar 

  5. Wang, Z., Li, Y., Jia, F., Laskowski, G., Kopriva, J., Paliath, U., Bhaskaran, R.: Towards industrial large eddy simulation using the FR/CPR method. Comput. Fluids 156, 579–589 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jameson, A.: Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. In: 10th Computational Fluid Dynamics Conference, p. 1596 (1991)

  7. Jameson, A.: Solution of the Euler equations for two dimensional transonic flow by a multigrid method. Appl. Math. Comput. 13(3–4), 327–355 (1983)

    MathSciNet  MATH  Google Scholar 

  8. Mavriplis, D.J.: Multigrid strategies for viscous flow solvers on anisotropic unstructured meshes. J. Comput. Phys. 145(1), 141–165 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Venkatakrishnan, V., Mavriplis, D.J.: Agglomeration multigrid for the three-dimensional Euler equations. AIAA J. 33(4), 633–640 (1995)

    Article  MATH  Google Scholar 

  10. Katz, A., Jameson, A.: Multicloud: multigrid convergence with a meshless operator. J. Comput. Phys. 228(14), 5237–5250 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Rønquist, E.M., Patera, A.T.: Spectral element multigrid. I. Formulation and numerical results. J. Sci. Comput. 2(4), 389–406 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bassi, F., Rebay, S.: Numerical solution of the Euler equations with a multiorder discontinuous finite element method. In: Computational Fluid Dynamics 2002, pp. 199–204. Springer, Berlin, Heidelberg (2003)

  13. Helenbrook, B., Mavriplis, D., Atkins, H.: Analysis of “p”-Multigrid for Continuous and Discontinuous Finite Element Discretizations. In: 16th AIAA Computational Fluid Dynamics Conference, p. 3989 (2003)

  14. Fidkowski, K.J., Oliver, T.A., Lu, J., Darmofal, D.L.: \(p\)-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys. 207(1), 92–113 (2005)

    Article  MATH  Google Scholar 

  15. Luo, H., Baum, J.D., Löhner, R.: A \(p\)-multigrid discontinuous Galerkin method for the Euler equations on unstructured grids. J. Comput. Phys. 211(2), 767–783 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Liang, C., Kannan, R., Wang, Z.: A p-multigrid spectral difference method with explicit and implicit smoothers on unstructured triangular grids. Comput. Fluids 38(2), 254–265 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Knoll, D.A., Keyes, D.E.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, L., Yu, M.: Comparison of ROW, ESDIRK, and BDF2 for unsteady flows with the high-order flux reconstruction formulation. J. Sci. Comput. 83, 1–27 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Loppi, N.A., Witherden, F.D., Jameson, A., Vincent, P.E.: Locally adaptive pseudo-time stepping for high-order Flux Reconstruction. J. Comput. Phys. 399, 108913 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, L., Gobbert, M.K., Yu, M.: A dynamically load-balanced parallel \(p\)-adaptive implicit high-order flux reconstruction method for under-resolved turbulence simulation. J. Comput. Phys. 417, 109581 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bassi, F., Botti, L., Colombo, A., Ghidoni, A., Massa, F.: Linearly implicit Rosenbrock-type Runge–Kutta schemes applied to the Discontinuous Galerkin solution of compressible and incompressible unsteady flows. Comput. Fluids 118, 305–320 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shahbazi, K., Mavriplis, D.J., Burgess, N.K.: Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations. J. Comput. Phys. 228(21), 7917–7940 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Persson, P.-O., Peraire, J.: Newton-GMRES preconditioning for discontinuous Galerkin discretizations of the Navier-Stokes equations. SIAM J. Sci. Comput. 30(6), 2709–2733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, L., Yu, M.: A p-multigrid flux reconstruction method for the steady Navier-Stokes equations. In: AIAA Aviation 2019 Forum, p. 3061 (2019)

  25. Wang, L., Yu, M.: An implicit \( p \)-multigrid flux reconstruction method for simulation of locally preconditioned unsteady navier-stokes equations at low mach numbers. arXiv preprint arXiv:1908.03972 (2019)

  26. Franciolini, M., Fidkowski, K.J., Crivellini, A.: Efficient discontinuous Galerkin implementations and preconditioners for implicit unsteady compressible flow simulations. Comput. Fluids 203, 104542 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  27. Huynh, H.T.: A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods. In: 18th AIAA Computational Fluid Dynamics Conference, p. 4079 (2007)

  28. Wang, Z.J., Gao, H.: A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids. J. Comput. Phys. 228(21), 8161–8186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vincent, P.E., Castonguay, P., Jameson, A.: A new class of high-order energy stable flux reconstruction schemes. J. Sci. Comput. 47(1), 50–72 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wanner, G., Hairer, E.: Solving Ordinary Differential Equations II, vol. 375. Springer, Berlin, Heidelberg (1996)

    MATH  Google Scholar 

  31. Wang, L., Yu, M.: Compact direct flux reconstruction for conservation laws. J. Sci. Comput. 75(1), 253–275 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kennedy, C.A., Carpenter, M.H.: Diagonally Implicit Runge-Kutta Methods for Ordinary Differential Equations, a Review. National Aeronautics and Space Administration, Langley Research Center (2016)

  33. Bijl, H., Carpenter, M.H., Vatsa, V.N., Kennedy, C.A.: Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: laminar flow. J. Comput. Phys. 179(1), 313–329 (2002)

    Article  MATH  Google Scholar 

  34. Rang, J.: An analysis of the Prothero-Robinson example for constructing new DIRK and ROW methods. J. Comput. Appl. Math. 262, 105–114 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Steinebach, G.: Order-reduction of ROW-methods for DAEs and method of lines applications (1995)

  36. Mulder, W.A., Van Leer, B.: Experiments with implicit upwind methods for the Euler equations. J. Comput. Phys. 59(2), 232–246 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  37. Persson, P.-O., Peraire, J.: Sub-cell shock capturing for discontinuous galerkin methods. In: 44th AIAA Aerospace Sciences Meeting and Exhibit, p. 112 (2006)

  38. Weiss, J.M., Smith, W.A.: Preconditioning applied to variable and constant density flows. AIAA J. 33(11), 2050–2057 (1995)

    Article  MATH  Google Scholar 

  39. Wang, L., Yu, M.: An implicit high-order preconditioned flux reconstruction method for low-Mach-number flow simulation with dynamic meshes. Int. J. Numer. Meth. Fluids 91(7), 348–366 (2019)

    Article  MathSciNet  Google Scholar 

  40. Li, Y., Jameson, A., Allaneau, Y.: Continuous adjoint approach for adaptive mesh refinement. In: 20th AIAA Computational Fluid Dynamics Conference, p. 3982 (2011)

  41. Fidkowski, K.J., Darmofal, D.L.: Review of output-based error estimation and mesh adaptation in computational fluid dynamics. AIAA J. 49(4), 673–694 (2011)

    Article  Google Scholar 

  42. Ji, X., Shyy, W., Xu, K.: A p-multigrid compact gas-kinetic scheme for steady-state acceleration. arXiv preprint arXiv:2109.09965 (2021)

  43. Roe, P.L.: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  44. Selig, M., et al.: Summary of Low-Speed Airfoil Data, vol. 2. University of Illinois at Urbana-Champaign. SoarTech Publications, Virginia Beach Virginia (1997)

    Google Scholar 

  45. Jourdan de Araujo Jorge Filho, E., Wang, Z.J.: A Matrix-free GMRES Algorithm on GPU Clusters for Implicit Large Eddy Simulation. In: AIAA Scitech 2021 Forum, p. 1837 (2021)

  46. Li, S.-J., Luo, L.-S., Wang, Z.J., Ju, L.: An exponential time-integrator scheme for steady and unsteady inviscid flows. J. Comput. Phys. 365, 206–225 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author would like thank Tarik Dzanic for proofreading this manuscript.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai Wang.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Trojak, W., Witherden, F. et al. Nonlinear p-Multigrid Preconditioner for Implicit Time Integration of Compressible Navier–Stokes Equations with p-Adaptive Flux Reconstruction. J Sci Comput 93, 81 (2022). https://doi.org/10.1007/s10915-022-02037-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02037-w

Keywords

Navigation