Skip to main content
Log in

Cut-Off Error Splitting Technique for Conservative Nonconforming VEM for N-Coupled Nonlinear Schrödinger–Boussinesq Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, the error splitting technique combined with cut-off function method is designed to derive unconditionally optimal error estimates for a fully implicit conservative numerical method of the N-coupled nonlinear Schrödinger–Boussinesq equations, which is constructed by an implicit Crank–Nicolson-type method in time and new nonconforming virtual element methods in space. The numerical scheme is conservative in the senses of discrete mass and energy, and the cut-off error splitting technique is innovative to remove the standard time-step conditions \(\tau =o(h^{d/4})\) and \(\tau =o(h^{d/2})\). Finally, several numerical examples are given to confirm our theoretical results. The analytical technique in this work could be used to study other implicit numerical methods of nonlinear physical models, including but not limited to conforming and nonconforming finite element methods/virtual element methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66, 376–391 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully-discrete Galerkin methods of second-order accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59, 31–53 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28, 387–407 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Antonietti, P.F., Manzini, G., Verani, M.: The fully nonconforming virtual element method for biharmonic problems. Math. Models Methods Appl. Sci. 28, 387–407 (2018)

    MathSciNet  MATH  Google Scholar 

  7. Ayuso de Dios, B., Lipnikov, K., Manzini, G.: The nonconforming virtual element method. ESAIM Math. Model. Numer. Anal. 50, 879–904 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Bai, D., Wang, J.: The time-splitting Fourier spectral method for the coupled Schrödinger–Boussinesq equations. Commun. Nonl. Sci. Numer. Simul. 17, 1201–1210 (2012)

    MATH  Google Scholar 

  9. Bai, D., Zhang, L.: The quadratic B-spline finite-element method for the coupled Schrödinger–Boussinesq equations. Int. J. Comput. Math. 88, 1714–1729 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Bao, W., Cai, Y.: Uniform error estimates of finite difference methods for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Analy. 50, 492–521 (2012)

    MATH  Google Scholar 

  11. Bao, W., Cai, Y.: Uniform and optimal error estimates of an exponential wave integrator sine pseudospectral method for the nonlinear Schrödinger equation with wave operator. SIAM J. Numer. Analy. 52, 1103–1127 (2014)

    MATH  Google Scholar 

  12. Bao, W., Dong, X.: Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime. Numer. Math. 120, 189–229 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199–214 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Beirão da Veiga, L., Lovadina, C., Russo, A.: Stability analysis for the virtual element method. Math. Mod. Methods Appl. Sci. 27, 2557–2594 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Bilige, S., Chaolu, T., Wang, X.: Application of the extended simplest equation method to the coupled Schrödinger–Boussinesq equation. Appl. Math. Comput. 224, 517–523 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond., J. Math. Pures Appl., pp. 55–108 (1872)

  17. Brenner, S.C., Sung, L.-Y.: Virtual element methods on meshes with small edges or faces. Math. Models Methods Appl. Sci. 28, 1291–1336 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Brezzi, F., Marini, L.D.: Virtual element methods for plate bending problems. Comput. Methods Appl. Mech. Eng. 253, 455–462 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Cangiani, A., Manzini, G., Sutton, O.J.: Conforming and nonconforming virtual element methods for elliptic problems. IMA J. Numer. Anal. 37, 1317–1354 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Chen, L., Huang, J.: Some error analysis on virtual element methods. Calcolo 55, 5 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Chen, L., Huang, X.: Nonconforming virtual element method for 2mth order partial differential equations in \(R^n\). Math. Comput. 89, 1711–1744 (2020)

    MATH  Google Scholar 

  22. Da Veiga, L.B., Brezzi, F., Marini, L.D., Russo, A.: H(div) and h (curl)-conforming virtual element methods. Numer. Math. 133, 303–332 (2016)

    MathSciNet  MATH  Google Scholar 

  23. de Dios, B.A., Lipnikov, K., Manzini, G.: The nonconforming virtual element method, ESAIM: Math. Model. Numer. Anal. 50, 879–904 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Deng, D., Wu, Q.: Analysis of the linearly energy-and mass-preserving finite difference methods for the coupled Schrödinger–Boussinesq equations. Appl. Numer. Math. 170, 14–38 (2021)

    MathSciNet  MATH  Google Scholar 

  25. Deng, D., Wu, Q.: Linearized and decoupled structure-preserving finite difference methods and their analyses for the coupled Schrödinger–Boussinesq equations. Numer. Methods Part. Differ. Equ. 37, 2924–2951 (2021)

    Google Scholar 

  26. Di Pietro, D.A., Droniou, J.: The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications. Simulation and Applications Modeling. Springer, Berlin (2020)

    MATH  Google Scholar 

  27. Farah, L.G., Pastor, A.: On the periodic Schrödinger–Boussinesq system. J. Math. Anal. Appl. 368, 330–349 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Gao, H.: Optimal error analysis of Galerkin FEMs for nonlinear Joule heating equations. J. Sci. Comput. 58, 627–647 (2014)

    MathSciNet  MATH  Google Scholar 

  29. Gong, Y., Wang, Q., Wang, Y., Cai, J.: A conservative fourier pseudo-spectral method for the nonlinear Schrödinger equation. J. Comput. Phys. 328, 354–370 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Gross, E.P.: Structure of a quantized vortex in boson systems. Nuovo Cimento 20, 454–477 (1961)

    MathSciNet  MATH  Google Scholar 

  31. Guo, B.: The global solution of the system of equations for complex Schrödinger field coupled with Boussinesq type self-consistent field. Acta Math. Sin. 26, 295–306 (1983)

    MATH  Google Scholar 

  32. Guo, B., Chen, F.: Finite dimensional behavior of global attractors for weakly damped nonlinear Schrödinger–Boussinesq equations. Phys. D 93, 101–118 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Guo, B., Du, X.: Existence of the periodic solution for the weakly damped Schrödinger–Boussinesq equation. J. Math. Anal. Appl. 262, 453–472 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Huang, L.-Y., Jiao, Y.-D., Liang, D.-M.: Multi-symplectic scheme for the coupled Schrödinger–Boussinesq equations. Chin. Phys. B 22, 070201 (2013)

    Google Scholar 

  35. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Int. J. Numer. Anal. Model. 10, 622–633 (2012)

    MathSciNet  MATH  Google Scholar 

  36. Li, D., Wang, J., Zhang, J.: Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 39, A3067–A3088 (2017)

    MATH  Google Scholar 

  37. Li, M., Shi, D., Wang, J.: Unconditional superconvergence analysis of a linearized Crank-Nicolson Galerkin FEM for generalized Ginzburg–Landau equation. Comput. Math. Appl. 79, 2411–2425 (2020)

    MathSciNet  MATH  Google Scholar 

  38. Li, M., Zhao, J., Huang, C., Chen, S.: Nonconforming virtual element method for the time fractional reaction-subdiffusion equation with non-smooth data. J. Sci. Comput. 81, 1823–1859 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Li, M., Zhao, J., Wang, N., Chen, S.: Conforming and nonconforming conservative virtual element methods for nonlinear Schrödinger equation: a unified framework. Comput. Methods Appl. Mech. Eng. 380, 113793 (2021)

    MATH  Google Scholar 

  40. Li, Y., Chen, Q.: Finite dimensional global attractor for dissipative Schrödinger–Boussinesq equations. J. Math. Anal. Appl. 205, 107–132 (1997)

    MathSciNet  MATH  Google Scholar 

  41. Liao, F., Zhang, L., Wang, S.: Time-splitting combined with exponential wave integrator Fourier pseudospectral method for Schrödinger–Boussinesq system. Commun. Non. Sci Numer. Simul. 55, 93–104 (2018)

    MATH  Google Scholar 

  42. Liao, F., Zhang, L., Wang, T.: Unconditional \(l^\infty \) convergence of a conservative compact finite difference scheme for the N-coupled Schrödinger–Boussinesq equations. Appl. Numer. Math. 138, 54–77 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Liao, F., Zhang, L., Wang, T.: Two energy-conserving and compact finite difference schemes for two-dimensional Schrödinger–Boussinesq equations. Numer. Algor. 85, 1335–1363 (2020)

    MATH  Google Scholar 

  44. Linares, F., Ponce, G.: Introduction to Nonlinear Dispersive Equations. Springer, Berlin (2014)

    MATH  Google Scholar 

  45. Makhankov, V.: On stationary solutions of the Schrödinger equation with a self-consistent potential satisfying Boussinesq’s equation. Phys. Lett. A 50, 42–44 (1974)

    Google Scholar 

  46. Makhankov, V.: Dynamics of classical solitons, in non-integrable systems. Phys. Rep. 35, 1–128 (1978)

    MathSciNet  Google Scholar 

  47. Si, Z., Wang, J., Sun, W.: Unconditional stability and error estimates of modified characteristics FEMs for the Navier–Stokes equations. Numer. Math. 134, 139–161 (2016)

    MathSciNet  MATH  Google Scholar 

  48. Thomee, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    MATH  Google Scholar 

  49. Wang, J.: A new error analysis of Crank–Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation. J. Sci. Comput. 60, 390–407 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Wang, J.: Unconditional stability and convergence of Crank–Nicolson Galerkin FEMs for a nonlinear Schrödinger–Helmholtz system. Numer. Math. 139, 479–503 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Wang, T., Guo, B., Xu, Q.: Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)

    MathSciNet  MATH  Google Scholar 

  52. Wang, T., Zhao, X.: Optimal \(l^\infty \) error estimates of finite difference methods for the coupled Gross–Pitaevskii equations in high dimensions. Sci. China Math. 57, 2189–2214 (2014)

    MathSciNet  MATH  Google Scholar 

  53. Wang, T., Zhao, X., Jiang, J.: Unconditional and optimal \(H^2\)-error estimates of two linear and conservative finite difference schemes for the Klein–Gordon–Schr ödinger equation in high dimensions. Adv. Comput. Math. 44, 477–503 (2018)

    MathSciNet  Google Scholar 

  54. Wei, H., Huang, X., Li, A.: Piecewise divergence-free nonconforming virtual elements for stokes problem in any dimensions. SIAM J. Numer. Anal. 59, 1835–1856 (2021)

    MathSciNet  MATH  Google Scholar 

  55. Yajima, N., Satsuma, J.: Soliton solutions in a diatomic lattice system. Prog. Theor. Phys. 62, 370–378 (1979)

    Google Scholar 

  56. Yao, R., Li, Z.: Exact explicit solutions of the nonlinear Schrödinger equation coupled to the Boussinesq equation. Acta Math. Sci. 23, 453–460 (2003)

    MathSciNet  MATH  Google Scholar 

  57. Zhang, L., Bai, D., Wang, S.: Numerical analysis for a conservative difference scheme to solve the Schrödinger–Boussinesq equation. J. Comput. Appl. Math. 235, 4899–4915 (2011)

    MathSciNet  MATH  Google Scholar 

  58. Zhao, J., Chen, S., Zhang, B.: The nonconforming virtual element method for plate bending problems. Math. Models Methods Appl. Sci. 26, 1671–1687 (2016)

    MathSciNet  MATH  Google Scholar 

  59. Zhao, J., Zhang, B.: The curl–curl conforming virtual element method for the quad–curl problem. Math. Models Methods Appl. Sci. 31, 1659–1690 (2021)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

There is only one author in this manuscript. The author ML contributed to the whole study process of this work.

Corresponding author

Correspondence to Meng Li.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by NSF of China (Nos. 11801527), China Postdoctoral Science Foundation (Nos. 2018M632791).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M. Cut-Off Error Splitting Technique for Conservative Nonconforming VEM for N-Coupled Nonlinear Schrödinger–Boussinesq Equations. J Sci Comput 93, 86 (2022). https://doi.org/10.1007/s10915-022-02050-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02050-z

Keywords

Mathematics Subject Classification

Navigation