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are treated by a standard perturbative discretization. The nonlinear terms are discretized fully explicitly
within the framework of the generalized positive auxiliary variable approach (GPAV). Artificial viscosity
stabilization that modifies the kinetic energy is introduced to improve accuracy of the GPAV ensemble
methods. Numerical results are presented to demonstrate the accuracy and robustness of the ensemble
algorithms.

Keywords MHD · SAV · uncertainty quantification · ensemble algorithm · unconditional stability

Mathematics Subject Classification (2010) 65M12 · 65M60 · 76T99

1 Introduction

Magnetohydrodynamics (MHD) flow describes electrically conducting fluid moving through a magnetic field.
It has important applications in fusion technology, submarine propulsion system, liquid metals in mag-
netic pumps, and so on. The mathematical model comprises the Navier-Stokes equations for fluid flow and
Maxwell’s equations for electromagnetics. In practical applications, the problem parameters such as viscosity
and magnetic resistivity, external body forcing and initial conditions, are invariably subject to uncertainty.
To quantify the impact of uncertainty and develop high-fidelity numerical simulations, one usually computes
the flow ensembles in which the MHD equations are solved repeatedly with different inputs. The aim of this
article is to develop efficient second-order accurate ensemble algorithms that are unconditionally stable and
suitable for long-time simulations. Therefore we consider solving J times the following MHD equations: for
j = 1, 2, ..., J , 

uj,t + uj · ∇uj − sBj · ∇Bj − νj∆uj +∇pj = fj in Ω × (0, T ),

∇ · uj = 0, in Ω × (0, T ),

Bj,t + uj · ∇Bj −Bj · ∇uj − γj∆Bj +∇λj = ∇× gj in Ω × (0, T ),

∇ ·Bj = 0, in Ω × (0, T ),

uj(x, 0) = u0
j (x), in Ω, Bj(x, 0) = B0

j (x), in Ω.
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Here uj is the fluid velocity, pj the pressure, Bj the magnetic field and λj is a Lagrange multiplier corre-
sponding to the solenoidal constraint onBj [1]. The body force fj(x, t) and ∇×gj are given, s is the coupling
number, νj is the kinematic viscosity, and γj is the magnetic resistivity. Dirichlet boundary conditions will be
imposed for both uj and Bj , though the numerical methods are also applicable to other boundary conditions
including ∇×Bj = 0 on ∂Ω. Note that we have adopted an equivalent formulation of the MHD equations,
cf. [1–4].

Ensemble methods have been extensively developed for solving the Navier-Stokes equations and related
fluid models [5–14]. The central idea in these ensemble methods is a perturbative time discretization that
utilizes the ensemble mean corrected by explicit treatment of the fluctuations in time marching of each
realization. As a result, at each time step the coefficient matrix of the resulting linear systems is identical
for all realizations, saving both storage and computational cost. Moreover, under some constraint on the
time-step and the size of fluctuations it is shown that the ensemble algorithms are long-time stable. A
similar ensemble method is developed in [15] and [16] for solving a reduced MHD system at low magnetic
Reynolds number. Based on the Elsasser formulation [17] and the perturbative time discretization, a first-
order decoupled and unconditionally stable ensemble algorithm is proposed and analyzed in [1,4] for solving
the full MHD model. An artificial eddy viscosity term is employed to ensure unconditional stability. Due to
the usage of Elsasser variables, the method appears to be limited to the case of Dirichlet boundary conditions.

Further computational efficiency gains can be achieved by fully explicit discretization of the nonlinear
terms so that the exact same coefficient matrix is shared across different time steps in ensemble simulations.
This approach would often incur a CFL condition that hinders the efficiency of the algorithm for long-
time simulation or for problems involving multiple scales. One remedy is the introduction of a Lagrange
multiplier for enforcement of the underlying energy estimate (energy dissipation or conservation). This idea
leads to recent development of the so-called Invariant Energy Quadratization (IEQ) method [18–21], and
the Scalar Auxiliary Variable (SAV) approach [22, 23] for solving phase field models. Extensions of these
methods are reported in [24–27] on the design of linear, decoupled, unconditionally stable numerical schemes
for solving general nonlinear equations satisfying an energy law. Based on the SAV approach proposed in [24],
a stabilized SAV ensemble algorithm is developed in [28] for parameterized flow problems where superior
accuracy is observed thanks to a penalization of the kinetic energy causing the high frequency mode to
quickly roll-off in the energy spectrum [29]. Stability and error analysis of a SAV method for the MHD
equations is recently conducted in [30].

In this article we propose two linear, second-order accurate, unconditionally stable ensemble methods
with shared coefficient matrix across different realizations and time steps for solving the MHD model. The
parameters are treated by the usual perturbative method. We employ the Generalized Positive Auxiliary
Variable framework (GPAV) from [25] in the discretization of the nonlinear terms. The advantages of the
GPAV method include: linearity of the algebra equation for the scalar variable; provable positivity of the
scalar variable; and flexibility in handling complex boundary conditions. These Lagrange multiplier type
approaches often suffer from poor accuracy especially for long time simulation of advection-dominated flow,
cf. [31] for a careful benchmark comparison study of the SAV approach. This drop in accuracy is also discussed
and demonstrated in the numerical tests from [25]. In [32] a post-processing procedure is introduced to
improve accuracy of the SAV method for the Cahn-Hilliard equation. In our method we adopt the stabilization
technique of artificial viscosity that proves robust and efficient in past studies [28, 29]. The stabilization
introduces a penalty term in the kinetic energy which leads to a quick roll-off of the under-resolved modes in
the energy spectrum thus curtailing the inertial range and making the system more computable, cf. [29]. This
mechanism is well-known in the Navier-Stokes-α model for large eddy simulation of turbulence [33, 34]. We
perform extensive numerical tests to gauge the accuracy, efficiency and robustness of the proposed ensemble
methods.

To start, we define the ensemble mean and the fluctuation of the viscosity terms νnj and the electric
potential γnj at timestep n respectively

ν̄n =
1

J

J∑
j=1

νnj and γ̄n =
1

J

J∑
j=1

γnj , (mean)

ν′nj = νnj − ν̄n and γ′nj = γnj − γ̄n, (fluctuation)

ν′max = max
j

max
x∈Ω
|ν′nj (x)| and γ′max = max

j
max
x∈Ω
|γ′nj (x)|,
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where in our considerations νnj = νj , γ
n
j = γj are constants and tn = n∆t (n = 0, 1, 2, ...). Define

vn+1/2 =
1

2
(vn+1 + vn), ṽn+1/2 = 2vn−1/2 − vn−3/2, (2)

v∗n+1/2 =
3

2
vn − 1

2
vn−1, ṽn+1 = 2vn − vn−1. (3)

We define a shifted energy of the form

Ej(t) = E[uj ,Bj ] =

∫
Ω

1

2
|uj |2dΩ +

∫
Ω

s

2
|Bj |2dΩ + C0, (4)

where E[uj ,Bj ] is the total kinetic energy of the system, which for physical examples is bounded from below,
and C0 is an arbitrarily small positive constant chosen in such a way that Ej(t) > 0 for 0 ≤ t ≤ T . Next, let
F be any one-to-one increasing differentiable function with F−1 = G such that{

F (χ) > 0, χ > 0, (5)

G (χ) > 0, χ > 0. (6)

The scalar variable Rj(t) is defined by

Rj(t) = G (Ej), (7)

Ej(t) = F (Rj). (8)

With Ej as in (4), Rj(t) then satisfies

F ′(Rj)
dRj
dt

=

∫
Ω

uj ·
∂uj
∂t

dΩ +

∫
Ω

sBj ·
∂Bj

∂t
dΩ. (9)

Since
F(Rj)
Ej

= 1 for all j, we may write

F ′(Rj)
dRj
dt

=

∫
Ω

[
uj ·

∂uj
∂t

+ sBj ·
∂Bj

∂t

]
dΩ +

[
F (Rj)

Ej
− 1

] [ ∫
Ω

uj ·
(
νj∆uj −∇pj + fj

)
dΩ (10)

+

∫
Ω

sBj ·
(
γj∆Bj −∇λj +∇× gj

)
dΩ

]
+

F (Rj)

Ej

[ ∫
Ω

uj · [Bj · ∇Bj − uj · ∇uj ]dΩ −
∫
Ω

uj · [Bj · ∇Bj − uj · ∇uj ]dΩ

+

∫
Ω

sBj · [Bj · ∇uj − uj · ∇Bj ]dΩ −
∫
Ω

sBj · [Bj · ∇uj − uj · ∇Bj ]dΩ

]
=

∫
Ω

[
uj ·

∂uj
∂t

+ sBj ·
∂Bj

∂t

]
dΩ

−
∫
Ω

uj ·
(
νj∆uj −∇pj +

F (Rj)

Ej
[Bj · ∇Bj − uj · ∇uj ] + fj

)
dΩ

−
∫
Ω

sBj ·
(
γj∆Bj −∇λj +

F (Rj)

Ej
[Bj · ∇uj − uj · ∇Bj ] +∇× gj

)
dΩ

+
F (Rj)

Ej

[ ∫
Ω

uj · [Bj · ∇Bj − uj · ∇uj + fj ]dΩ

+

∫
Ω

sBj · [Bj · ∇uj − uj · ∇Bj +∇× gj ]dΩ
]
.

Note that all the additional terms above amount to adding zero to (9). Using integration by parts we get
the equality∫

Ω

uj · [Bj · ∇Bj − uj · ∇uj + fj ]dΩ +

∫
Ω

sBj · [Bj · ∇uj − uj · ∇Bj +∇× gj ]dΩ (11)
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= −
∫
Ω

(νj |∇uj |2 + sγj |∇Bj |2)dΩ +

∫
Ω

(fj · uj + s(∇× gj) ·Bj)dΩ +

∫
Γ

BS(uj ,Bj)dΓ,

where BS(uj ,Bj) represents the forcing terms on the boundary, defined as

BS(uj ,Bj) =

∫
Γ

(
− 1

2
|uj |2uj −

s

2
|Bj |2uj + νj∇uj · uj − pjuj (12)

+ s(Bj · uj)Bj + sγj∇Bj ·Bj − sλjBj

)
· n̂ dΓ

and n̂ is the unit normal vector to the boundary. We use this equality and write

F ′(Rj)
dRj
dt

=

∫
Ω

[
uj ·

∂uj
∂t

+ sBj ·
∂Bj

∂t

]
dΩ (13)

−
∫
Ω

uj ·
(
νj∆uj −∇pj +

F (Rj)

Ej
[Bj · ∇Bj − uj · ∇uj ] + fj

)
dΩ

−
∫
Ω

sBj ·
(
γj∆Bj −∇λj +

F (Rj)

Ej
[Bj · ∇uj − uj · ∇Bj ] +∇× gj

)
dΩ

+
F (Rj)

Ej

[
−
∫
Ω

(νj |∇uj |2 + sγj |∇Bj |2)dΩ +

∫
Ω

(fj · uj + s(∇× gj) ·Bj)dΩ

+

∫
Γ

BS(uj ,Bj)dΓ

]
+

[
1− F (Rj)

Ej

]∣∣∣∣∣
∫
Ω

(fj · uj + s(∇× gj) ·Bj)dΩ +

∫
Γ

BS(uj ,Bj)dΓ

∣∣∣∣∣,
As will be seen later, we consider this reformulation (including the addition of the terms within absolute
value brackets) as a means of constructing numerical schemes that inherit unconditional stability with re-
spect to the modified energy F (Rj) and guaranteed positivity of a computed scalar variable ξj to be defined.

With Dirichlet boundary conditions, a Crank-Nicolson scheme for 1 becomes

Algorithm 1. Given unj , Bn
j , qnj and pnj , find un+1

j , Bn+1
j , qn+1

j and pn+1
j satisfying(

un+1
j − unj
∆t

)
= −ξj

(
ũ
n+1/2
j · ∇

)
ũ
n+1/2
j + sξj

(
B̃
n+1/2
j · ∇

)
B̃
n+1/2
j + ν̄n∆u

n+1/2
j (14)

+ ν′nj ∆ũ
n+1/2
j −∇pn+1/2

j + f
n+1/2
j ,

∇ · un+1
j = 0, (15)(

Bn+1
j −Bn

j

∆t

)
= ξj

(
B̃
n+1/2
j · ∇

)
ũ
n+1/2
j − ξj

(
ũ
n+1/2
j · ∇

)
B̃
n+1/2
j + γ̄n∆B

n+1/2
j (16)

+ γ′nj ∆B̃
n+1/2
j −∇λn+1/2

j +∇× gn+1/2
j ,

∇ ·Bn+1
j = 0, (17)

ξj =
F (Rn+1

j )

E(ūn+1
j , B̄n+1

j )
, (18)

E(ūn+1
j , B̄n+1

j ) =
1

2
‖ūn+1

j ‖2 +
s

2
‖B̄n+1

j ‖2 + C0, (19)

F (Rn+1
j )−F (Rnj )

∆t
=

∫
Ω

u
n+1/2
j ·

(
un+1
j − unj
∆t

)
dΩ +

∫
Ω

sB
n+1/2
j ·

(
Bn+1
j −Bn

j

∆t

)
dΩ (20)

−
∫
Ω

u
n+1/2
j ·

[
− ξj

(
ũ
n+1/2
j · ∇

)
ũ
n+1/2
j + sξj

(
B̃
n+1/2
j · ∇

)
B̃
n+1/2
j
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+ ν̄n∆u
n+1/2
j + ν′nj ∆ũ

n+1/2
j −∇pn+1/2

j + f
n+1/2
j

]
dΩ

−
∫
Ω

sB
n+1/2
j ·

[
ξj

(
B̃
n+1/2
j · ∇

)
ũ
n+1/2
j − ξj

(
ũ
n+1/2
j · ∇

)
B̃
n+1/2
j

+ γ̄n∆B
n+1/2
j + γ′nj ∆B̃

n+1/2
j −∇λn+1/2

j +∇× gn+1/2
j

]
dΩ

+ ξj

[
−
∫
Ω

(
νj |∇ūn+1/2

j |2 + sγj |∇B̄n+1/2
j |2

)
dΩ +

∫
Ω

f
n+1/2
j · ūn+1/2

j dΩ

+

∫
Ω

s(∇× gn+1/2
j ) · B̄n+1/2

j dΩ +

∫
Γ

BS(f
n+1/2
b j

,∇× gn+1/2
b j

, ū
n+1/2
j , B̄

n+1/2
j )dΓ

]
+ (1− ξj)

∣∣∣∣ ∫
Ω

f
n+1/2
j · ūn+1/2

j dΩ +

∫
Ω

s(∇× gn+1/2
j ) · B̄n+1/2

j dΩ

+

∫
Γ

BS(f
n+1/2
b j

,∇× gn+1/2
b j

, ū
n+1/2
j , B̄

n+1/2
j )dΓ

∣∣∣∣.
Here ūn+1

j , ū
n+3/2
j , B̄n+1

j and B̄
n+3/2
j are second order approximations of un+1

j , u
n+3/2
j , Bn+1

j , and B
n+3/2
j

that will be defined later.

Again for Dirichlet boundary conditions, a BDF2 scheme is

Algorithm 2. Given unj , Bn
j , qnj and pnj , find un+1

j , Bn+1
j , qn+1

j and pn+1
j satisfying(

3un+1
j − 4unj + un−1

j

2∆t

)
= −ξj

(
ũn+1
j · ∇

)
ũn+1
j + sξj

(
B̃n+1
j · ∇

)
B̃n+1
j + ν̄n∆un+1

j (21)

+ ν′nj ∆ũ
n+1
j −∇pn+1

j + fn+1
j ,

∇ · un+1
j = 0, (22)(

3Bn+1
j − 4Bn

j +Bn−1
j

2∆t

)
= ξj

(
B̃n+1
j · ∇

)
ũn+1
j − ξj

(
ũn+1
j · ∇

)
B̃n+1
j + γ̄n∆Bn+1

j (23)

+ γ′nj ∆B̃
n+1
j −∇λn+1

j +∇× gn+1
j ,

∇ ·Bn+1
j = 0, (24)

ξj =
F (R
∗n+3/2
j )

E(ū
n+3/2
j , B̄

n+3/2
j )

, (25)

E(ū
n+3/2
j , B̄

n+3/2
j ) =

1

2
‖ūn+3/2

j ‖2 +
s

2
‖B̄n+3/2

j ‖2 + C0, (26)

F (R
∗n+3/2
j )−F (R

∗n+1/2
j )

∆t
=

∫
Ω

un+1
j ·

(
3un+1

j − 4unj + un−1
j

2∆t

)
dΩ

+

∫
Ω

sBn+1
j ·

(
3Bn+1

j − 4Bn
j +Bn−1

j

2∆t

)
dΩ (27)

−
∫
Ω

un+1
j ·

[
− ξj

(
ũn+1
j · ∇

)
ũn+1
j + sξj

(
B̃n+1
j · ∇

)
B̃n+1
j

+ ν̄n∆un+1
j + ν′nj ∆ũ

n+1
j −∇pn+1

j + fn+1
j

]
dΩ

−
∫
Ω

sBn+1
j ·

[
ξj

(
B̃n+1
j · ∇

)
ũn+1
j − ξj

(
ũn+1
j · ∇

)
B̃n+1
j

+ γ̄n∆Bn+1
j + γ′nj ∆B̃

n+1
j −∇λn+1

j +∇× gn+1
j

]
dΩ
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+ ξj

[
−
∫
Ω

(
νj |∇ūn+1

j |2 + sγj |∇B̄n+1
j |2

)
dΩ +

∫
Ω

fn+1
j · ūn+1

j dΩ

+

∫
Ω

s(∇× gn+1
j ) · B̄n+1

j dΩ +

∫
Γ

BS(fn+1
b j

,∇× gn+1
b j

, ūn+1
j , B̄n+1

j )dΓ

]
+ (1− ξj)

∣∣∣∣ ∫
Ω

fn+1
j · ūn+1

j dΩ +

∫
Ω

s(∇× gn+1
j ) · B̄n+1

j dΩ

+

∫
Γ

BS(fn+1
b j

,∇× gn+1
b j

, ūn+1
j , B̄n+1

j )dΓ

∣∣∣∣.
Similarly ūn+1

j , ū
n+1/2
j , B̄n+1

j and B̄
n+1/2
j are second order approximations of un+1

j , u
n+1/2
j , Bn+1

j , and

B
n+1/2
j to be defined later.

The rest of the paper is outlined here. Section 2 gives mathematical preliminaries and defines notation.
In Section 3, we prove the long time stability of the proposed algorithm. Section 4 presents an efficient way
to implement our numerical algorithm. Section 5 numerically tests the proposed algorithm and illustrates
theoretical results. Final conclusions and future directions are discussed in Section 6.

2 Notation and preliminaries

Throughout this paper the L2(Ω) norm of scalars, vectors, and tensors will be denoted by ‖ · ‖ with the
usual L2 inner product denoted by (·, ·). Hk(Ω) is the Sobolev space W k

2 (Ω), with norm ‖ · ‖k. For functions
v(x, t) defined on (0, T ), we define the norms, for 1 ≤ m <∞,

‖v‖∞,k := EssSup[0,T ]‖v(·, t)‖k and ‖v‖m,k :=
(∫ T

0

‖v(·, t)‖mk dt
)1/m

.

The function spaces we consider are:

X : = H1
0 (Ω)d =

{
v ∈ L2(Ω)d : ∇v ∈ L2(Ω)d×d and v = 0 on ∂Ω

}
,

Q : = L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q dx = 0

}
,

V : = {v ∈ X : (∇ · v, q) = 0,∀q ∈ Q} .

A weak formulation of the full MHD equations is: Find uj : [0, T ]→ X, pj : [0, T ]→ Q, Bj : [0, T ]→ X
and λj : [0, T ]→ Q satisfying

(uj,t,v) + (uj · ∇uj ,v)− s (Bj · ∇Bj ,v) + νj (∇uj ,∇v)− (pj ,∇ · v) = (fj ,v) , ∀v ∈ X,
(∇ · uj , l) = 0, ∀l ∈ Q,
(Bj,t,χ) + (uj · ∇Bj ,χ)− (Bj · ∇uj ,χ) + γj (∇uj ,∇χ)− (λj ,∇ · χ) = (gj ,χ) , ∀χ ∈ X,
(∇ ·Bj , ψ) = 0, ∀ψ ∈ Q.

We denote conforming velocity, pressure, potential finite element spaces based on an edge to edge trian-
gulation (d = 2) or tetrahedralization (d = 3) of Ω with maximum element diameter h by

Xh ⊂ X , Qh ⊂ Q.

We also assume the finite element spaces (Xh, Qh) satisfy the usual discrete inf-sup /LBBh condition for
stability of the discrete pressure, see [35] for more on this condition. Taylor-Hood elements, e.g., [36], [35],
are one such choice used in the tests in Section 5. We define the standard explicitly skew-symmetric trilinear
form

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v)

The full discretization of the proposed partitioned ensemble algorithm with Crank-Nicolson scheme is
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Algorithm 3. Given unj,h, Bn
j,h, qnj,h, pnj,h and λnj,h, find un+1

j,h , Bn+1
j,h , qn+1

j,h , pn+1
j,h and λn+1

j,h satisfying for
any vh,χh ∈ Xh and lh, ψh ∈ Qh,(
un+1
j,h − unj,h

∆t
,vh

)
= −ξjb∗(ũn+1/2

j,h , ũ
n+1/2
j,h ,vh) + sξjb

∗(B̃
n+1/2
j,h , B̃

n+1/2
j,h ,vh) (28)

− ν̄n
(
∇un+1/2

j,h ,∇vh
)
− ν′nj

(
∇ũn+1/2

j,h ,∇vh
)

+
(
p
n+1/2
j,h ,∇ · vh

)
− αh

(
∇(un+1

j,h − u
n
j,h),∇vh

)
+
(
f
n+1/2
j,h ,vh

)
,(

∇ · un+1
j,h , lh

)
= 0, (29)(

Bn+1
j,h −Bn

j,h

∆t
,χh

)
= ξjb

∗(B̃
n+1/2
j,h , ũ

n+1/2
j,h ,χh)− ξjb∗(ũn+1/2

j,h , B̃
n+1/2
j,h ,χh) (30)

− γ̄n
(
∇Bn+1/2

j,h ,∇χh

)
− γ′nj

(
∇B̃n+1/2

j,h ,∇χh

)
+
(
λ
n+1/2
j,h ,∇ · χh

)
− αMh

(
∇(Bn+1

j,h −B
n
j,h),∇χh

)
+
(
∇× gn+1/2

j,h ,χh

)
,(

∇ ·Bn+1
j,h , ψh

)
= 0, (31)

ξj =
F (Rn+1

j,h )

E(ūn+1
j,h , B̄n+1

j,h )
, (32)

E(ūn+1
j,h , B̄n+1

j,h ) =
1

2
‖ūn+1

j,h ‖
2 +

s

2
‖B̄n+1

j,h ‖
2 + C0, (33)

F (Rn+1
j,h )−F (Rnj,h)

∆t
=

(
un+1
j,h − unj,h

∆t
,u

n+1/2
j,h

)
+ s

(
Bn+1
j,h −Bn

j,h

∆t
,B

n+1/2
j,h

)
(34)

+ ξjb
∗(ũ

n+1/2
j,h , ũ

n+1/2
j,h ,u

n+1/2
j,h )− sξjb∗(B̃n+1/2

j,h , B̃
n+1/2
j,h ,u

n+1/2
j,h ) + ν̄n‖∇un+1/2

j,h ‖2

+ ν′nj

(
∇ũn+1/2

j,h ,∇un+1/2
j,h

)
−
(
p
n+1/2
j,h ,∇ · un+1/2

j,h

)
+ αh

(
∇(un+1

j,h − u
n
j,h),∇vh

)
−
(
f
n+1/2
j,h ,u

n+1/2
j,h

)
− sξjb∗(B̃n+1/2

j,h , ũ
n+1/2
j,h ,B

n+1/2
j,h ) + sξjb

∗(ũ
n+1/2
j,h , B̃

n+1/2
j,h ,B

n+1/2
j,h ) + sγ̄n‖∇Bn+1/2

j,h ‖2

+ sγ′nj

(
∇B̃n+1

j,h ,∇Bn+1/2
j,h

)
− s

(
λ
n+1/2
j,h ,∇ ·Bn+1/2

j,h

)
+ sαMh

(
∇(Bn+1

j,h −B
n
j,h),∇Bn+1/2

j,h

)
− s

(
∇× gn+1/2

j,h ,B
n+1/2
j,h

)
+ ξj

[
−
∫
Ω

(
νj |∇ūn+1/2

j,h |2 + sγj |∇B̄n+1/2
j,h |2

)
dΩ +

∫
Ω

f
n+1/2
j,h · ūn+1/2

j,h dΩ

+

∫
Ω

s(∇× gn+1/2
j,h ) · B̄n+1/2

j,h dΩ +

∫
Γ

BS(f
n+1/2
j,h ,∇× gn+1/2

j,h , ū
n+1/2
j,h , B̄

n+1/2
j,h )dΓ

]
+ (1− ξj)

∣∣∣∣ ∫
Ω

f
n+1/2
j,h · ūn+1/2

j,h dΩ +

∫
Ω

s(∇× gn+1/2
j,h ) · B̄n+1/2

j,h dΩ

+

∫
Γ

BS(f
n+1/2
j,h ,∇× gn+1/2

j,h , ū
n+1/2
j,h , B̄

n+1/2
j,h )dΓ

∣∣∣∣.
The full discretization of the proposed partitioned ensemble algorithm with BDF2 scheme is

Algorithm 4. Given unj,h, Bn
j,h, qnj,h, pnj,h and λnj,h, find un+1

j,h , Bn+1
j,h , qn+1

j,h , pn+1
j,h and λn+1

j,h satisfying for
any vh,χh ∈ Xh and lh, ψh ∈ Qh,(

3un+1
j,h − 4unj,h + un−1

j,h

2∆t
,vh

)
= −ξjb∗(ũn+1

j,h , ũn+1
j,h ,vh) + sξjb

∗(B̃n+1
j,h , B̃n+1

j,h ,vh) (35)

− ν̄n
(
∇un+1

j,h ,∇vh
)
− ν′nj

(
∇ũn+1

j,h ,∇vh
)

+
(
pn+1
j,h ,∇ · vh

)
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− αh
(
∇(3un+1

j,h − 4unj,h + un−1
j,h ),∇vh

)
+
(
fn+1
j,h ,vh

)
,(

∇ · un+1
j,h , lh

)
= 0, (36)(

3Bn+1
j,h − 4Bn

j,h +Bn−1
j,h

2∆t
,χh

)
= ξjb

∗(B̃n+1
j,h , ũn+1

j,h ,χh)− ξjb∗(ũn+1
j,h , B̃n+1

j,h ,χh) (37)

− γ̄n
(
∇Bn+1

j,h ,∇χh

)
− γ′nj

(
∇B̃n+1

j,h ,∇χh

)
+
(
λn+1
j,h ,∇ · χh

)
− αMh

(
∇(3Bn+1

j,h − 4Bn
j,h +Bn−1

j,h ),∇χh

)
+
(
∇× gn+1

j,h ,χh

)
,(

∇ ·Bn+1
j,h , ψh

)
= 0, (38)

ξj =
F (R
∗n+1
j,h )

E(ūn+1
j,h , B̄n+1

j,h )
, (39)

E(ū
n+3/2
j,h , B̄

n+3/2
j,h ) =

1

2
‖ūn+3/2

j,h ‖2 +
s

2
‖B̄n+3/2

j,h ‖2 + C0, (40)

F (R
∗n+3/2
j,h )−F (R

∗n+1/2
j,h )

∆t
=

(
3un+1

j,h − 4unj,h + un−1
j,h

2∆t
,un+1

j,h

)

+ s

(
3Bn+1

j,h − 4Bn
j,h +Bn−1

j,h

2∆t
,Bn+1

j,h

)
+ ξjb

∗(ũn+1
j,h , ũn+1

j,h ,un+1
j,h ) (41)

− sξjb∗(B̃n+1
j,h , B̃n+1

j,h ,un+1
j,h ) + ν̄n‖∇un+1

j,h ‖
2 + ν′nj

(
∇ũn+1

j,h ,∇un+1
j,h

)
−
(
pn+1
j,h ,∇ · un+1

j,h

)
+ αh

(
∇(3un+1

j,h − 4unj,h + un−1
j,h ),∇vh

)
−
(
fn+1
j,h ,un+1

j,h

)
− sξjb∗(B̃n+1

j,h , ũn+1
j,h ,Bn+1

j,h ) + sξjb
∗(ũn+1

j,h , B̃n+1
j,h ,Bn+1

j,h ) + sγ̄n‖∇Bn+1
j,h ‖

2 + sγ′nj

(
∇B̃n+1

j,h ,∇Bn+1
j,h

)
− s

(
λn+1
j,h ,∇ ·Bn+1

j,h

)
+ sαMh

(
∇(3Bn+1

j,h − 4Bn
j,h +Bn−1

j,h ),∇χh

)
− s

(
∇× gn+1

j,h ,Bn+1
j,h

)
+ ξj

[
−
∫
Ω

(
νj |∇ūn+1

j,h |
2 + sγj |∇B̄n+1

j,h |
2
)
dΩ +

∫
Ω

fn+1
j,h · ū

n+1
j,h dΩ

+

∫
Ω

s(∇× gn+1
j,h ) · B̄n+1

j,h dΩ +

∫
Γ

BS(fn+1
j,h ,∇× gn+1

j,h , ūn+1
j,h , B̄n+1

j,h )dΓ

]
+ (1− ξj)

∣∣∣∣ ∫
Ω

fn+1
j,h · ū

n+1
j,h dΩ +

∫
Ω

s(∇× gn+1
j,h ) · B̄n+1

j,h dΩ

+

∫
Γ

BS(fn+1
j,h ,∇× gn+1

j,h , ūn+1
j,h , B̄n+1

j,h )dΓ

∣∣∣∣.
There’s also the addition of two regularization terms in Algorithms (3) and (4),

{
αh∆(un+1

j,h − unj,h),

αMh∆(Bn+1
j,h −Bn

j,h),
for CN,

{
αh∆(3un+1

j,h − 4unj,h + un−1
j,h ),

αMh∆(3Bn+1
j,h − 4Bn

j,h +Bn−1
j,h ),

for BDF2.

These terms are highly effective at reducing the considerable error that eventually appears when the timestep
is not sufficiently refined. Significant improvement in accuracy will be seen later in the numerical tests. It’s
noted in [29] that this improvement cannot be explained by the stability or error analysis alone. Instead,
an explanation is offered through analysis of a modified form of the equations under consideration. In the
modified equations, the addition of the term −αhk∆ut (in the case of velocity) and −αhk∆Bt (in the case
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of magnetic field) are added to the left-hand sides,

[uj,t − αhk∆uj,t] + uj · ∇uj − sBj · ∇Bj − νj∆uj +∇pj = fj in Ω × (0, T ),

∇ · uj = 0, in Ω × (0, T ),

[Bj,t − sαMhk∆Bj,t] + uj · ∇Bj −Bj · ∇uj − γj∆Bj +∇λj = ∇× gj in Ω × (0, T ),

∇ ·Bj = 0, in Ω × (0, T ),

uj(x, 0) = u0
j (x), in Ω, Bj(x, 0) = B0

j (x), in Ω.

(42)

This results in a modified kinetic energy corresponding to the equation. In our case, the resulting modified
kinetic energy would be

‖u(t)‖2 + αhk‖∇u(t)‖2 + s‖B(t)‖2 + sαMhk‖∇B(t)‖2.

Following Kraichnan’s theory [37], it is argued in [29] that the penalty term in the kinetic energy induces
an enhanced energy decay rate for numerically under-resolved modes while preserving the correct energy
cascade above the cut-off length scale. The quick roll-off in the energy spectrum is also exploited in the
Navier-Stokes-α model (NS-α)–a nonlinearly dispersive modification of the Navier-Stokes equations for large
eddy simulation of turbulence [33, 34]. This roll-off mechanism shortens the inertial range and makes the
system more computable.

3 Stability of the method

3.1 Crank-Nicolson

Theorem 5 With homogeneous boundary conditions and forcing terms equal to zero, Algorithm (3) is un-
conditionally stable with respect to the modified energy F (Rj).

Proof. Stability follows directly from [25]. Set vh to u
n+1/2
j,h in (28), χh to sB

n+1/2
j,h in (30), add each of

these to (34) and note (29) and (31). Then one gets

F (Rn+1
j,h )−F (Rnj,h) = −∆t

F (Rn+1
j,h )

E(ūn+1
j,h , B̄n+1

j,h )

∫
Ω

(
νj |∇ūn+1/2

j,h |2 + sγj |∇B̄n+1/2
j,h |2

)
dΩ (43)

+

[
1−

F (Rn+1
j,h )

E(ūn+1
j,h , B̄n+1

j,h )

]
|S0|∆t+

F (Rn+1
j,h )

E(ūn+1
j,h , B̄n+1

j,h )
S0∆t.

Where S0 =
∫
Ω
f
n+1/2
j,h · ūn+1/2

j,h dΩ +
∫
Ω
s(∇× gn+1/2

j,h ) · B̄n+1/2
j,h dΩ. Solving for F (Rn+1

j,h ) gives

F (Rn+1
j,h ) =

F (Rnj,h) + |S0|∆t

1 + ∆t
E(ūn+1

j,h ,B̄n+1
j,h )

[∫
Ω

(
νj |∇ūn+1/2

j,h |2 + sγj |∇B̄n+1/2
j,h |2

)
dΩ + (|S0| − S0)

] . (44)

If fj = 0 and ∇× gj = 0, then S0 = 0 and

F (Rn+1
j,h ) =

F (Rnj,h)

1 + ∆t
E(ūn+1

j,h ,B̄n+1
j,h )

∫
Ω

(
νj |∇ūn+1/2

j,h |2 + sγj |∇B̄n+1/2
j,h |2

)
dΩ

. (45)

Note the denominator in (45) is greater than or equal to 1. By definition (5), if R0
j,h > 0, then F (R0

j,h) > 0.

In fact R0
j,h would be initialized as G (E[u0

j (x),B0
j (x)]), which by definition (6) is guaranteed positive. Then

by induction for any timestep n, F (Rn+1
j,h ) > 0, giving us

0 < F (Rn+1
j,h ) ≤ F (Rnj,h), n ≥ 0. (46)

This completes the proof.
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3.2 BDF2

Theorem 6 With homogeneous boundary conditions and forcing terms equal to zero, Algorithm (4) is un-
conditionally stable with respect to the modified energy F (Rj) as long as the approximations of Rj(t) at
timestep 1

2 are positive.

Proof. If one sets vh to un+1
j,h in (35) and χh to sBn+1

j,h in (37), subtracts each of these from (41) and notes
(36) and (38), the proof follows identically to [25]. We have

F (R
∗n+3/2
j,h )−F (R

∗n+1/2
j,h ) = −∆t

F (R
∗n+3/2
j,h )

E(ū
n+3/2
j,h , B̄

n+3/2
j,h )

∫
Ω

(
νj |∇ūn+1

j,h |
2 + sγj |∇B̄n+1

j,h |
2
)
dΩ (47)

+

[
1−

F (R
∗n+3/2
j,h )

E(ū
n+3/2
j,h , B̄

n+3/2
j,h )

]
|S0|∆t+

F (R
∗n+3/2
j,h )

E(ū
n+3/2
j,h , B̄

n+3/2
j,h )

S0∆t.

Where S0 =
∫
Ω
fn+1
j,h · ū

n+1
j,h dΩ +

∫
Ω
s(∇× gn+1

j,h ) · B̄n+1
j,h dΩ. Solving for F (R

n+3/2
j,h ) gives

F (R
∗n+3/2
j,h ) =

F (R
∗n+1/2
j,h ) + |S0|

1 + ∆t

E(ū
n+3/2
j,h ,B̄

n+3/2
j,h )

[
∫
Ω

(
νj |∇ūn+1

j,h |2 + sγj |∇B̄n+1
j,h |2

)
dΩ + (|S0| − S0)]

. (48)

If fj = 0 and ∇× gj = 0, then S0 = 0 and

F (R
∗n+3/2
j,h ) =

F (R
∗n+1/2
j,h )

1 + ∆t

E(ū
n+3/2
j,h ,B̄

n+3/2
j,h )

∫
Ω

(
νj |∇ūn+1

j,h |2 + sγj |∇B̄n+1
j,h |2

)
dΩ

. (49)

The denominator above is greater than or equal to 1. Now by definition (5), if it’s ensured the approximation

of Rj(t) at timestep 1/2 is positive, i.e. R
∗1/2
j,h > 0, then F (R

∗1/2
j,h ) > 0. Then by induction for any timestep n,

F (R
n+3/2
j,h ) > 0 and

0 < F (R
n+3/2
j,h ) ≤ F (R

n+1/2
j,h ), n ≥ 0. (50)

This completes the proof.

Note that for the choice of F (χ) = χ2 ≥ 0 for all χ ∈ (−∞,∞), (50) and unconditional stability will

hold regardless of whether R
∗1/2
j,h > 0.

4 Implementation

Since the schemes are linear and the auxiliary variables are scalar functions of time variable, the resulting
systems can be solved conveniently by superposition of a series of Stokes-type equations. We illustrate the
idea by presenting the algorithms in strong form.

4.1 Crank-Nicolson

To efficiently implement Algorithm (1), we proceed in the following manner. Assume

un+1
j = ûn+1

j + ξjŭ
n+1
j , pn+1

j = p̂n+1
j + ξj p̆

n+1
j ,

Bn+1
j = B̂n+1

j + ξjB̆
n+1
j , λn+1

j = λ̂n+1
j + ξj λ̆

n+1
j .

Then solving Algorithm (1) is equivalent to solving the following subproblems,
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Algorithm 7. Given unj , Bn
j and pnj ,

Sub-problem 1: find ûn+1
j , B̂n+1

j , p̂n+1
j and λ̂n+1

j satisfying

1

∆t
ûn+1
j − ν̄n

2
∆ûn+1

j +
1

2
∇p̂n+1

j = f
n+1/2
j +

1

∆t
unj + ν′nj ∆ũ

n+1/2
j (51a)

+
ν̄n

2
∆unj −

1

2
∇pnj , ∇ · ûn+1

j = 0,

1

∆t
B̂n+1
j − γ̄n

2
∆B̂n+1

j +
1

2
∇λ̂n+1

j = ∇× gn+1/2
j +

1

∆t
Bn
j +

γ̄n

2
∆Bn

j (51b)

+ γ′nj ∆B̃
n+1/2
j − 1

2
∇λnj , ∇ · B̂n+1

j = 0,

Sub-problem 2: find ŭn+1
j , B̆n+1

j , p̆n+1
j and λ̆n+1

j satisfying

1

∆t
ŭn+1
j − ν̄n

2
∆ŭn+1

j +
1

2
∇p̆n+1

j = s
(
B̃
n+1/2
j · ∇

)
B̃
n+1/2
j −

(
ũ
n+1/2
j · ∇

)
ũ
n+1/2
j , (52a)

∇ · ŭn+1
j = 0, (52b)

1

∆t
B̆n+1
j +

1

2
∇λ̆n+1

j − γ̄n

2
∆B̆n+1

j =
(
B̃
n+1/2
j · ∇

)
ũ
n+1/2
j −

(
ũ
n+1/2
j · ∇

)
B̃
n+1/2
j , (52c)

∇ · B̆n+1
j = 0. (52d)

Remark 1 For inhomogeneous Dirichlet boundary conditions, let

ûn+1
j = g(x, tn+1), ŭn+1

j = 0, B̂n+1
j = h(x, tn+1), B̆n+1

j = 0 on ∂Ω.

We use the following approximations,
v̄n+1
j = v̂n+1

j + v̆n+1
j , (53)

v̄
n+1/2
j =

1

2
(v̄n+1
j + vn). (54)

We then update ξj as

ξj =
F (Rnj ) + |S0|∆t

E(ūn+1
j , B̄n+1

j ) +∆t
∫
Ω

(
ν|∇ūn+1/2

j |2 + sγ|∇B̄n+1/2
j |2

)
dΩ +∆t(|S0| − S0)

, (55)

where

S0 =

∫
Ω

f
n+1/2
j · ūn+1/2

j dΩ +

∫
Ω

s(∇× gn+1/2
j ) · B̄n+1/2

j dΩ +

∫
Γ

BS(ū
n+1/2
j , B̄

n+1/2
j )dΓ. (56)

Notice ξj is updated via a linear equation and is very direct. Once we have ξj we update

Rn+1
j = G

(
ξjE(ūn+1

j , B̄n+1
j )

)
(57)

and proceed to the next timestep iteration. Since ξj is a ratio of the SAV to itself, we should expect the
result to be close to one. With our ensemble approach in (51)-(52), all J realizations have the same coefficient
matrix in each timestep so should be computationally efficient.

Theorem 8 The scalar ξj in (55) and Rn+1
j in (57) are guaranteed to be positive at all timesteps.

Proof. By definition (5), F (R0
j ) > 0 so long as R0

j > 0. It’s explained in (3.1) that R0
j will be positive.

The energy function E(u,B) is always positive and
∫
Ω

(
ν|∇u|2 + sγ|∇B|2

)
dΩ ≥ 0. Since |S0| − S0 ≥ 0, the

initially computed ξj is ensured positive. Then by induction, ξj at any timestep is guaranteed positive.
Once it’s ensured ξj > 0, from the definition (6) we can guarantee Rn+1

j in (57) is positive. This completes
the proof.
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4.2 BDF2

For Algorithm (2), we develop an efficient implementation with the same approach. Note solving Algorithm
(2) is equivalent to the following,

Algorithm 9. Given unj , Bn
j and pnj ,

Sub-problem 1: find ûn+1
j , B̂n+1

j , p̂n+1
j and λ̂n+1

j satisfying

3

2∆t
ûn+1
j − ν̄n∆ûn+1

j +∇p̂n+1
j = fn+1

j +
2

∆t
unj −

1

2∆t
un−1
j + ν′nj ∆, (58a)

∇ · ûn+1
j = 0, (58b)

3

2∆t
B̂n+1
j − γ̄n∆B̂n+1

j +∇λ̂n+1
j = ∇× gn+1

j +
2

∆t
Bn
j −

1

2∆t
Bn−1
j + γ′nj ∆, (58c)

∇ · B̂n+1
j = 0, (58d)

Sub-problem 2: find ŭn+1
j , B̆n+1

j , p̆n+1
j and λ̆n+1

j satisfying

3

2∆t
ŭn+1
j − ν̄n∆ŭn+1

j +∇p̆n+1
j = s

(
B̃n+1
j · ∇

)
B̃n+1
j −

(
ũn+1
j · ∇

)
ũn+1
j , (59a)

∇ · ûn+1
j = 0, (59b)

3

2∆t
B̆n+1
j − γ̄n∆B̆n+1

j +∇λ̆n+1
j =

(
B̃n+1
j · ∇

)
ũn+1
j −

(
ũn+1
j · ∇

)
B̃n+1
j , (59c)

∇ · B̂n+1
j = 0. (59d)

We use the following approximations,
v̄n+1
j = v̂n+1

j + v̆n+1
j , (60)

v̄
n+3/2
j =

3

2
v̄n+1
j − 1

2
vn. (61)

We update ξj as

ξj =
F (R
∗n+1/2
j ) + |S0|∆t

E(ū
n+3/2
j , B̄

n+3/2
j ) +∆t

∫
Ω

(
ν|∇ūn+1

j |2 + sγ|∇B̄n+1
j |2

)
dΩ +∆t(|S0| − S0)

, (62)

where

S0 =

∫
Ω

fn+1
j · ūn+1

j dΩ +

∫
Ω

s(∇× gn+1
j ) · B̄n+1

j dΩ +

∫
Γ

BS(ūn+1
j , B̄n+1

j )dΓ.

Once we have ξj we update Rn+1
j as follows:

R
∗n+3/2
j = G

(
ξjE(ū

n+3/2
j , B̄

n+3/2
j )

)
, (63)

Rn+1
j =

2

3
R
∗n+3/2
j +

1

3
Rnj . (64)

and proceed to the next timestep iteration.

Theorem 10 The scalar ξj in (9) and Rn+1
j in (64) are guaranteed to be positive at all timesteps if the

approximation R
∗1/2
j > 0.

Proof. Again by definition (5), F (R
∗1/2
j ) > 0 so long as approximation R

∗1/2
j > 0. The argument for positivity

of ξj proceeds identically to that made in the proof of Theorem (8).

Once it’s ensured ξj > 0, again from definition (6) we can guarantee R
∗n+3/2
j in (63) is positive. It’s also

guaranteed R0
j is positive from the previously stated point that it would be initialized as G (E(u0

j (x),B0
j (x))).

Thus we conclude Rn+1
j in (64) remains positive. This completes the proof.
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5 Numerical tests

This section will present numerical results for Algorithms (3) and (4) to demonstrate the expected conver-
gence rates and the stability proven previously. We set F (χ) = χ2 and the corresponding G (χ) =

√
χ in

every experiment. Throughout these tests we’ll use the finite element triplet (P 2–P 1–P 2), and the finite
element software package FEniCS [38].

5.1 Convergence Test

To verify the expected convergence rates, we will use a variation of the test problem in [39]. Take the time
interval 0 ≤ t ≤ 1 and domain Ω = [0, 1]2. Define the true solution (u, p,B) as

uε =
(
y5 + t2, x5 + t2

)
(1 + ε),

pε = 10(2x− 1)(2y − 1)(1 + t2)(1 + ε),

Bε =
(
sin (πy) + t2, sin (πx) + t2

)
(1 + ε),

where ε is a given perturbation. For this problem we will consider two perturbations ε1 = 10−1 and ε2 =
−10−1. The kinematic viscosity and magnetic resistivity are defined as νε = 0.5 · (1 + ε) and γε = 0.5 · (1 + ε).
The source terms and initial conditions correspond with the exact solution for the given perturbation. The
results are displayed in tables (1)-(4) both with regularization and without (α = αM = 0).

h ∆t ‖u1 − u1,h‖∞,0 Rate ‖∇u1 −∇u1,h‖2,0 Rate
1/10 1/8 9.191 e-4 — 4.985 e-3 —
1/20 1/16 2.088 e-4 2.138 1.399 e-3 1.834
1/40 1/32 4.810 e-5 2.118 3.679 e-4 1.927
1/80 1/64 1.154 e-5 2.060 9.422 e-5 1.965
1/160 1/128 2.889 e-6 1.998 2.384 e-5 1.983

Reg with α = αM = 0.5
1/10 1/8 3.912 e-4 — 4.741 e-3 —
1/20 1/16 6.032 e-5 2.697 1.355 e-3 1.807
1/40 1/32 9.532 e-6 2.662 3.579 e-4 1.920
1/80 1/64 2.208 e-6 2.110 9.179 e-5 1.963

Table 1: Crank-Nicolson error and convergence rates for the first ensemble member in uh and ∇uh.

h ∆t ‖B1 −B1,h‖∞,0 Rate ‖∇B1 −∇B1,h‖2,0 Rate
1/10 1/8 2.566 e-4 — 3.013 e-3 —
1/20 1/16 5.0568 e-5 2.343 8.451 e-4 1.834
1/40 1/32 1.150 e-5 2.136 2.223 e-4 1.927
1/80 1/64 2.746 e-6 2.067 5.694 e-5 1.965
1/160 1/128 6.869 e-7 1.999 1.440 e-5 1.983

Reg with α = αM = 0.5
1/10 1/8 1.512 e-4 — 2.909 e-3 —
1/20 1/16 2.138 e-5 2.822 8.298 e-4 1.810
1/40 1/32 3.082 e-6 2.795 2.191 e-4 1.921
1/80 1/64 6.830 e-7 2.174 5.619 e-5 1.964

Table 2: Crank-Nicolson error and convergence rates for the first ensemble member in Bh and ∇Bh.

h ∆t ‖u2 − u2,h‖∞,0 Rate ‖∇u2 −∇u2,h‖2,0 Rate
1/10 1/8 2.020 e-3 — 5.498 e-3 —
1/20 1/16 4.897 e-4 2.045 1.433 e-3 1.940
1/40 1/32 9.342 e-5 2.390 3.701 e-4 1.953
1/80 1/64 1.560 e-5 2.582 9.440 e-5 1.971
1/160 1/128 2.923 e-6 2.416 2.385 e-5 1.985

Reg with α = αM = 0.5
1/10 1/8 4.070 e-4 — 4.753 e-3 —
1/20 1/16 6.277 e-5 2.697 1.357 e-3 1.809
1/40 1/32 1.134 e-5 2.469 3.584 e-4 1.921
1/80 1/64 2.649 e-6 2.097 9.190 e-5 1.964

Table 3: Crank-Nicolson error and convergence rates for the second ensemble member in uh and ∇uh.
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h ∆t ‖B2 −B2,h‖∞,0 Rate ‖∇B2 −∇B2,h‖2,0 Rate
1/10 1/8 7.455 e-4 — 3.376 e-3 —
1/20 1/16 1.666 e-4 2.162 8.700 e-4 1.956
1/40 1/32 3.097 e-5 2.427 2.239 e-4 1.958
1/80 1/64 5.113 e-6 2.598 5.706 e-5 1.973
1/160 1/128 7.772 e-7 2.718 1.442 e-5 1.985

Reg with α = αM = 0.5
1/10 1/8 1.567 e-4 — 2.915 e-3 —
1/20 1/16 2.222 e-5 2.818 8.308 e-4 1.811
1/40 1/32 3.664 e-6 2.600 2.193 e-4 1.922
1/80 1/64 8.188 e-7 2.162 5.622 e-5 1.964

Table 4: Crank-Nicolson error and convergence rates for the second ensemble member in Bh and ∇Bh.

h ∆t ‖u1 − u1,h‖∞,0 Rate ‖∇u1 −∇u1,h‖2,0 Rate
1/10 1/8 7.413 e-4 — 5.804 e-3 —
1/20 1/16 1.891 e-4 1.971 1.495 e-3 1.957
1/40 1/32 4.790 e-5 1.981 3.793 e-4 1.978
1/80 1/64 1.183 e-5 2.018 9.557 e-5 1.989
1/160 1/128 2.944 e-6 2.006 2.399 e-5 1.994

Reg with α = αM = 0.5
1/10 1/8 4.528 e-4 — 5.601 e-3 —
1/20 1/16 6.215 e-5 2.865 1.453 e-3 1.947
1/40 1/32 7.946 e-6 2.968 3.694 e-4 1.976
1/80 1/64 1.339 e-6 2.570 9.310 e-5 1.988

Table 5: BDF2 error and convergence rates for the first ensemble member in uh and ∇uh.

h ∆t ‖B1 −B1,h‖∞,0 Rate ‖∇B1 −∇B1,h‖2,0 Rate
1/10 1/8 1.868 e-4 — 3.502 e-3 —
1/20 1/16 3.792 e-5 2.301 9.005 e-4 1.960
1/40 1/32 9.133 e-6 2.054 2.285 e-4 1.979
1/80 1/64 2.300 e-6 1.990 5.756 e-5 1.989
1/160 1/128 5.816 e-7 1.983 1.445 e-5 1.994

Reg with α = αM = 0.5
1/10 1/8 1.649 e-4 — 3.438 e-3 —
1/20 1/16 2.185 e-5 2.916 8.904 e-4 1.949
1/40 1/32 2.772 e-6 2.978 2.263 e-4 1.976
1/80 1/64 4.182 e-7 2.729 5.705 e-5 1.988

Table 6: BDF2 error and convergence rates for the first ensemble member in Bh and ∇Bh.

h ∆t ‖u2 − u2,h‖∞,0 Rate ‖∇u2 −∇u2,h‖2,0 Rate
1/10 1/8 7.762 e-4 — 5.806 e-3 —
1/20 1/16 1.880 e-4 2.045 1.495 e-3 1.957
1/40 1/32 4.699 e-5 2.001 3.795 e-4 1.978
1/80 1/64 1.186 e-5 1.987 9.561 e-5 1.989
1/160 1/128 2.964 e-6 2.001 2.400 e-5 1.994

Reg with α = αM = 0.5
1/10 1/8 4.531 e-4 — 5.603 e-3 —
1/20 1/16 6.218 e-5 2.865 1.453 e-3 1.947
1/40 1/32 7.964 e-6 2.965 3.695 e-4 1.976
1/80 1/64 1.547 e-6 2.364 9.314 e-5 1.988

Table 7: BDF2 error and convergence rates for the second ensemble member in uh and ∇uh.
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h ∆t ‖B2 −B2,h‖∞,0 Rate ‖∇B2 −∇B2,h‖2,0 Rate
1/10 1/8 1.918 e-4 — 3.505 e-3 —
1/20 1/16 3.930 e-5 2.287 9.013 e-4 1.960
1/40 1/32 9.605 e-6 2.033 2.287 e-4 1.979
1/80 1/64 2.425 e-6 1.986 5.761 e-5 1.989
1/160 1/128 6.129 e-7 1.984 1.446 e-5 1.994

Reg with α = αM = 0.5
1/10 1/8 1.649 e-3 — 3.439 e-3 —
1/20 1/16 2.185 e-4 2.916 8.906 e-4 1.949
1/40 1/32 2.772 e-4 2.978 2.264 e-4 1.976
1/80 1/64 4.880 e-5 2.506 5.706 e-5 1.988

Table 8: BDF2 error and convergence rates for the second ensemble member in Bh and ∇Bh.

5.2 Stability

Here we analyze the stability of the second order ensemble methods. For the test problem, we will exclude
external energy and body forces so that in observation if the method is stable, the system energy should
decay to zero as time passes. We also use the initial conditions,


u0
ε = (x2(x− 1)2y(y − 1)(2y − 1)(1 + ε),−y2(y − 1)2x(x− 1)(2x− 1)(1 + ε)),

p0
ε = 0,

B0
ε = (sin (πx) cos (πy)(1 + ε),− sin (πy) cos (πx)).

We fix the coupling term s = 1 and choose two different sets of viscosity and magnetic viscosity to test,
ν = γ = 0.1 and ν = γ = 0.02. The mesh discretization is fixed at h = 1/50 and several time steps are
employed, with final time T = 5.

(a) Decay of total system energy to T = 5 for Algorithm
(3) with ν = γ = 0.1.

(b) Decay of total system energy to T = 5 for Algorithm
(3) with ν = γ = 0.02.
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(c) Decay of total system energy to T = 5 for Algorithm
(4) with ν = γ = 0.1.

(d) Decay of total system energy to T = 5 for Algorithm
(4) with ν = γ = 0.02.

5.3 Chamber Flow

In this numerical test, we consider a channel flow in a rectangular domain of length 2.2 units and height
0.41, with a cylinder of radius 0.05 centered at (0.2, 0.2), in the presence of a magnetic field. On the walls
and around the cylinder, a no-slip boundary condition is applied for velocity while magnetic field is kept
constant as B =< 0, 0.1 >T . We set the inflow and outflow conditions equal, choosing u =< 6y(0.41 −
y)/0.412 sin (πt/16.0), 0 >T and B =< 0, 0.1 >T . The coupling term is set to s = 0.01 and for all realizations
we fix γ = 0.1 then consider two cases, ν = 1/50 and ν = 1/1000.

We’ll use an ensemble of two different solutions with the initial and boundary conditions perturbed by
multiplicative factors of (1 ± ε). We simulate the flow with Algorithms (3) and (4) till final time T = 8.8
with a mesh discretization fixed at h = 1/100. We set α = αM = 0 such that these tests are performed
without the regularization terms involved. In order to maintain accurate results up unto T = 8.8, we find it
necessary to choose a time step of roughly ∆t = 1/1000 when ν = 1/50 and ∆t = 1/2000 when ν = 1/1000.
The solutions under each perturbation for velocity are shown in (1)-(4) and for magnetic field in Figures
(6)-(9). We also provide results of a traditional scheme with no perturbation, i.e. ε = 0,

1

∆t

(
un+1
j,h ,vh

)
+ ν

(
∇un+1

j,h ,vh

)
+ αh

(
∇un+1

j,h ,∇vh
)

(65a)

+b∗(unj,h,u
n+1
j,h ,vh)− sb∗(Bn

j,h,B
n+1
j,h ,vh)−

(
pn+1
j,h ,∇ · vh

)
=

1

∆t

(
unj,h,vh

)
+αh

(
∇unj,h,∇vh

)
+
(
fn+1
j,h ,vh

)
,(

∇ · un+1
j,h , lh

)
= 0, (65b)

1

∆t

(
Bn+1
j,h ,χh

)
+ γ

(
∇Bn+1

j,h ,∇χh

)
+ αMh

(
∇Bn+1

j,h ,∇χh

)
(65c)

+b∗(unj,h,B
n+1
j,h ,χh)− b∗(Bn

j,h,u
n+1
j,h ,χh)−

(
λn+1
j,h ,∇ · χh

)
=

1

∆t

(
Bn
j,h,χh

)
+αMh

(
∇Bn

j,h,∇χh

)
+
(
∇× gn+1

j,h ,χh

)
,(

∇ ·Bn+1
j,h , ψh

)
= 0. (65d)

for comparison.
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Fig. 1: Ensemble solutions for velocity at time T = 8.8 for Algorithm (3) with ν = 0.02, γ = 0.1 and
∆t = 0.001.

Fig. 2: Ensemble solutions for velocity at time T = 8.8 for Algorithm (3) with ν = 0.001, γ = 0.1 and
∆t = 0.0005.
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Fig. 3: Ensemble solutions for velocity at time T = 8.8 for Algorithm (4) with ν = 0.02, γ = 0.1 and
∆t = 0.001.

Fig. 4: Ensemble solutions for velocity at time T = 8.8 for Algorithm (4) with ν = 0.001, γ = 0.1 and
∆t = 0.0005.
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(a)

Fig. 5: Ensemble solutions for velocity at time T = 8.8 for primitive scheme (65) with ν = 0.001, γ = 0.1
and ∆t = 0.001.

Fig. 6: Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (3) with ν = 0.02, γ = 0.1 and
∆t = 0.001.
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Fig. 7: Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (3) with ν = 0.001, γ = 0.1 and
∆t = 0.0005.

Fig. 8: Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (4) with ν = 0.02, γ = 0.1 and
∆t = 0.001.
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Fig. 9: Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (4) with ν = 0.001, γ = 0.1 and
∆t = 0.0005.

Fig. 10: Ensemble solutions for magnetic field at time T = 8.8 for primitive scheme (65) with ν = 0.001,
γ = 0.1 and ∆t = 0.001.

5.4 Chamber Flow with Regularization

Here we present the same chamber flow problem implementing Algorithms (3) and (4) with nonzero regu-
larization coefficients. We choose α = ν and αM = γ in each test. We’re able to achieve similar accuracy to
the previous section with coarser time step. The following numerical results are achieved:
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Fig. 11: Ensemble solutions for velocity at time T = 8.8 for Algorithm (3) with regularization and ν = 0.001,
γ = 0.1 and ∆t = 0.001.

Fig. 12: Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (3) with regularization and
ν = 0.001, γ = 0.1 and ∆t = 0.001.
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Fig. 13: Ensemble solutions for velocity at time T = 8.8 for Algorithm (4) with regularization and ν = 0.001,
γ = 0.1 and ∆t = 0.001.

Fig. 14: Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (4) with regularization and
ν = 0.001, γ = 0.1 and ∆t = 0.001.
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5.5 Accuracy Comparison

In this section we present a comparison test between the errors of the scheme with and without the regular-
ization terms introduced in Section 5.4. We use the same test as in 5.1, except this time we set ν = 1.0 and
γ = 0.2. We choose two perturbations of ε = 0.1 and ε = 0.2, with final time T = 2.5. For the stabilization
coefficients α and αM , we set them equal to the viscosity and magnetic resistivity correspondingly.

h ∆t SAV-CN SAV-BDF2 Stab-SAV-CN Stab-SAV-BDF2
1/25 1/8 6.201 e-2 3.729 e-2 2.865 e-5 3.508 e-5
1/25 1/16 1.036 e-1 6.114 e-2 3.087 e-5 3.204 e-5
1/25 1/32 1.494 e-1 9.843 e-2 3.223 e-5 3.252 e-5
1/25 1/64 1.451 e-1 1.013 e-1 3.261 e-5 3.268 e-5
1/25 1/128 1.273 e-1 9.343 e-2 3.271 e-5 3.272 e-5
1/100 1/8 6.306 e-2 3.789 e-2 6.567 e-6 8.040 e-6
1/100 1/16 1.064 e-1 6.229 e-2 8.492 e-6 4.458 e-6
1/100 1/32 1.436 e-1 8.644 e-2 2.178 e-6 2.279 e-6
1/100 1/64 1.530 e-1 9.920 e-2 1.098 e-6 1.120 e-6
1/100 1/128 1.277 e-1 8.957 e-2 5.982 e-7 1.129 e-6

Table 9: Error for the first ensemble member in uh.

h ∆t SAV-CN SAV-BDF2 Stab-SAV-CN Stab-SAV-BDF2
1/25 1/8 2.144 e-1 1.291 e-1 8.263 e-5 8.146 e-5
1/25 1/16 3.016 e-1 1.926 e-1 3.856 e-5 3.598 e-5
1/25 1/32 3.715 e-1 2.419 e-1 1.247 e-5 1.153 e-5
1/25 1/64 3.573 e-1 2.433 e-1 1.189 e-5 1.240 e-5
1/25 1/128 3.119 e-1 2.174 e-1 1.867 e-5 1.887 e-5
1/100 1/8 2.180 e-1 1.312 e-1 2.372 e-5 2.361 e-5
1/100 1/16 3.101 e-1 1.962 e-1 4.695 e-5 1.249 e-5
1/100 1/32 3.594 e-1 2.331 e-1 6.428 e-6 5.910 e-6
1/100 1/64 3.583 e-1 2.385 e-1 2.726 e-6 2.400 e-6
1/100 1/128 3.057 e-1 2.115 e-1 8.643 e-7 5.897 e-6

Table 10: Error for the first ensemble member in Bh.
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