Skip to main content

Advertisement

Log in

An Energy Stable Immersed Boundary Method for Deformable Membrane Problem with Non-uniform Density and Viscosity

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Membrane problems commonly encountered in engineering and biological applications involve large deformations and complex configurations. Immersed boundary (IB) method, formulated by the fluid equations in which the fluid-structure interaction is described in terms of the Dirac function, is one of the most powerful tools to simulate such problems. However, the IB method suffers from severe time step restrictions to maintain stability if the discretization lacks conservation of energy, especially for two-phase flows. In this paper, we develop an energy stable IB method for solving deformable membrane problems with non-uniform density and viscosity. Unlike the classic IB formulation, the evolution of membrane, including elastic tension and bending force, is controlled by its tangent angle and arc length. After minor modifications, it is shown that the model satisfies the continuous energy law. Thus, for the reformulated model, we proposed an implicit unconditionally energy stable scheme, where the energy of the scheme is proved to be dissipative. The resultant system is solved iteratively and the numerical results show that the proposed scheme is energy stable and capable of predicting the dynamics of extensible and inextensible interface problems with non-uniform density and viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availibility Statement

All data generated or analyzed during this study are included in this manuscript.

References

  1. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30(1), 139–165 (1998)

    Article  MATH  Google Scholar 

  2. Bao, Y., Kaye, J., Peskin, C.S.: A Gaussian-like immersed-boundary kernel with three continuous derivatives and improved translational invariance. J. Comput. Phys. 316, 139–144 (2016)

    Article  MATH  Google Scholar 

  3. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)

    Article  MATH  Google Scholar 

  4. Bungay, J.K.: Synthetic Membranes: Science, Engineering and Applications, vol. 181. Springer Science & Business Media (2012)

  5. Ceniceros, H.D., Fisher, J.E.: A fast, robust, and non-stiff immersed boundary method. J. Comput. Phys. 230(12), 5133–5153 (2011)

    Article  MATH  Google Scholar 

  6. Ceniceros, H.D., Fisher, J.E., Roma, A.M.: Efficient solutions to robust, semi-implicit discretizations of the immersed boundary method. J. Comput. Phys. 228(19), 7137–7158 (2009)

    Article  MATH  Google Scholar 

  7. Chen, R., Ji, G., Yang, X., Zhang, H.: Decoupled energy stable schemes for phase-field vesicle membrane model. J. Comput. Phys. 302, 509–523 (2015)

    Article  MATH  Google Scholar 

  8. Elman, H., Howle, V.E., Shadid, J., Shuttleworth, R., Tuminaro, R.: A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations. J. Comput. Phys. 227(3), 1790–1808 (2008)

    Article  MATH  Google Scholar 

  9. Emmerich, H.: Advances of and by phase-field modelling in condensed-matter physics. Adv. Phys. 57(1), 1–87 (2008)

    Article  Google Scholar 

  10. Fai, T.G., Griffith, B.E., Mori, Y., Peskin, C.S.: Immersed boundary method for variable viscosity and variable density problems using fast constant-coefficient linear solvers i: numerical method and results. SIAM J. Sci. Comput. 35(5), B1132–B1161 (2013)

    Article  MATH  Google Scholar 

  11. Fai, T.G., Griffith, B.E., Mori, Y., Peskin, C.S.: Immersed boundary method for variable viscosity and variable density problems using fast constant-coefficient linear solvers ii: theory. SIAM J. Sci. Comput. 36(3), B589–B621 (2014)

    Article  MATH  Google Scholar 

  12. Francois, M., Shyy, W.: Computations of drop dynamics with the immersed boundary method, part 1: numerical algorithm and buoyancy-induced effect. Numer. Heat Trans. Part B-Fund. 44(2), 101–118 (2003)

    Article  Google Scholar 

  13. Francois, M., Uzgoren, E., Jackson, J., Shyy, W.: Multigrid computations with the immersed boundary technique for multiphase flows. Int. J. Numer. Methods Heat Fluid Flow 14(1), 98–115 (2004)

  14. Glimm, J., Grove, J.W., Li, X.L., Shyue, K.M., Zeng, Y., Zhang, Q.: Three-dimensional front tracking. SIAM J. Sci. Comput. 19(3), 703–727 (1998)

    Article  MATH  Google Scholar 

  15. Guo, Z., Lin, P., Lowengrub, J.S.: A numerical method for the quasi-incompressible cahn-hilliard-navier-stokes equations for variable density flows with a discrete energy law. J. Comput. Phys. 276, 486–507 (2014)

    Article  MATH  Google Scholar 

  16. Guy, R.D., Philip, B.: A multigrid method for a model of the implicit immersed boundary equations. Commun. Comput. Phys. 12(2), 378–400 (2012)

    Article  MATH  Google Scholar 

  17. Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. The Phys. Fluids 8(12), 2182–2189 (1965)

    Article  MATH  Google Scholar 

  18. Hirt, C., Nichols, B.: Volume of fluid method (VOF) for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  19. Hou, T.Y., Lowengrub, J.S., Shelley, M.J.: Removing the stiffness from interfacial flows with surface tension. J. Comput. Phys. 114(2), 312–338 (1994)

    Article  MATH  Google Scholar 

  20. Hou, T.Y., Lowengrub, J.S., Shelley, M.J.: Boundary integral methods for multicomponent fluids and multiphase materials. J. Comput. Phys. 169(2), 302–362 (2001)

    Article  MATH  Google Scholar 

  21. Hou, T.Y., Shi, Z.: An efficient semi-implicit immersed boundary method for the navier-stokes equations. J. Comput. Phys. 227(20), 8968–8991 (2008)

    Article  MATH  Google Scholar 

  22. Hou, T.Y., Shi, Z.: Removing the stiffness of elastic force from the immersed boundary method for the 2D stokes equations. J. Comput. Phys. 227(21), 9138–9169 (2008)

    Article  MATH  Google Scholar 

  23. Hu, W.F., Kim, Y., Lai, M.C.: An immersed boundary method for simulating the dynamics of three-dimensional axisymmetric vesicles in navier-stokes flows. J. Comput. Phys. 257, 670–686 (2014)

    Article  MATH  Google Scholar 

  24. Hu, W.F., Lai, M.C.: An unconditionally energy stable immersed boundary method with application to vesicle dynamics. East Asian J. Appl. Math. 3(3), 247–262 (2013)

    Article  MATH  Google Scholar 

  25. Hua, J., Stene, J.F., Lin, P.: Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method. J. Comput. Phys. 227(6), 3358–3382 (2008)

    Article  MATH  Google Scholar 

  26. Keller, S.R., Skalak, R.: Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 27–47 (1982)

    Article  MATH  Google Scholar 

  27. Kim, J.: Phase-field models for multi-component fluid flows. Commun. Comput. Phys. 12(3), 613–661 (2012)

    Article  MATH  Google Scholar 

  28. Kim, Y., Lai, M.C.: Simulating the dynamics of inextensible vesicles by the penalty immersed boundary method. J. Comput. Phys. 229(12), 4840–4853 (2010)

    Article  MATH  Google Scholar 

  29. Kim, Y., Lai, M.C.: Numerical study of viscosity and inertial effects on tank-treading and tumbling motions of vesicles under shear flow. Phys. Rev. E. 86(6), 066321 (2012)

    Article  Google Scholar 

  30. Kim, Y., Peskin, C.S.: Numerical study of incompressible fluid dynamics with nonuniform density by the immersed boundary method. Phys. Fluids 20(6), 062101 (2008)

    Article  MATH  Google Scholar 

  31. Lai, M.C., Hu, W.F., Lin, W.W.: A fractional step immersed boundary method for Stokes flow with an inextensible interface enclosing a solid particle. SIAM J. Sci. Comput. 34(5), B692–B710 (2012)

    Article  MATH  Google Scholar 

  32. Lai, M.C., Ong, K.C.: Unconditionally energy stable schemes for the inextensible interface problem with bending. SIAM J. Sci. Comput. 41(4), B649–B668 (2019)

    Article  MATH  Google Scholar 

  33. Lai, M.C., Tseng, Y.H., Huang, H.: An immersed boundary method for interfacial flows with insoluble surfactant. J. Comput. Phys. 227(15), 7279–7293 (2008)

    Article  MATH  Google Scholar 

  34. Li, Z.: An overview of the immersed interface method and its applications. Taiwan. J. Math. 7(1), 1–49 (2003)

    Article  MATH  Google Scholar 

  35. Misbah, C.: Vesicles, capsules and red blood cells under flow. J. Phys.: Conf. Ser. 392, 012005 (2012)

  36. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005)

    Article  MATH  Google Scholar 

  37. Mori, Y., Peskin, C.S.: Implicit second-order immersed boundary methods with boundary mass. Comput. Methods Appl. Mech. Eng. 197(25–28), 2049–2067 (2008)

    Article  MATH  Google Scholar 

  38. Murphy, M.F., Golub, G.H., Wathen, A.J.: A note on preconditioning for indefinite linear systems. SIAM J. Sci. Comput. 21(6), 1969–1972 (2000)

    Article  MATH  Google Scholar 

  39. Newren, E.P., Fogelson, A.L., Guy, R.D., Kirby, R.M.: Unconditionally stable discretizations of the immersed boundary equations. J. Comput. Phys. 222(2), 702–719 (2007)

    Article  MATH  Google Scholar 

  40. Newren, E.P., Fogelson, A.L., Guy, R.D., Kirby, R.M.: A comparison of implicit solvers for the immersed boundary equations. Comput. Methods Appl. Mech. Eng. 197(25–28), 2290–2304 (2008)

    Article  MATH  Google Scholar 

  41. Osher, S., Fedkiw, R.P.: Level set methods: an overview and some recent results. J. Comput. Phys. 169(2), 463–502 (2001)

    Article  MATH  Google Scholar 

  42. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MATH  Google Scholar 

  43. Peskin, C.S.: Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2), 252–271 (1972)

    Article  MATH  Google Scholar 

  44. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MATH  Google Scholar 

  45. Pozrikidis, C.: Modeling and simulation of capsules and biological cells. CRC Press (2003)

    Book  MATH  Google Scholar 

  46. Saad, Y., Schultz, M.H.: Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)

    Article  MATH  Google Scholar 

  47. Salac, D., Miksis, M.: A level set projection model of lipid vesicles in general flows. J. Comput. Phys. 230(22), 8192–8215 (2011)

    Article  MATH  Google Scholar 

  48. Scardovelli, R., Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31(1), 567–603 (1999)

    Article  Google Scholar 

  49. Seol, Y., Hu, W.F., Kim, Y., Lai, M.C.: An immersed boundary method for simulating vesicle dynamics in three dimensions. J. Comput. Phys. 322, 125–141 (2016)

    Article  MATH  Google Scholar 

  50. Seol, Y., Tseng, Y.H., Kim, Y., Lai, M.C.: An immersed boundary method for simulating newtonian vesicles in viscoelastic fluid. J. Comput. Phys. 376, 1009–1027 (2019)

    Article  MATH  Google Scholar 

  51. Shen, J., Yang, X.: Decoupled, energy stable schemes for phase-field models of two-phase incompressible flows. SIAM J. Numer. Anal. 53(1), 279–296 (2015)

    Article  MATH  Google Scholar 

  52. Stockie, J.M., Wetton, B.R.: Analysis of stiffness in the immersed boundary method and implications for time-stepping schemes. J. Comput. Phys. 154(1), 41–64 (1999)

    Article  MATH  Google Scholar 

  53. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    Article  MATH  Google Scholar 

  54. Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S., Jan, Y.J.: A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169(2), 708–759 (2001)

    Article  MATH  Google Scholar 

  55. Tryggvason, G., Scardovelli, R., Zaleski, S.: Direct numerical simulations of gas-liquid multiphase flows. Cambridge University Press (2011)

    MATH  Google Scholar 

  56. Unverdi, S.O., Tryggvason, G.: A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100(1), 25–37 (1992)

    Article  MATH  Google Scholar 

  57. Veerapaneni, S.K., Gueyffier, D., Zorin, D., Biros, G.: A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2d. J. Comput. Phys. 228(7), 2334–2353 (2009)

    Article  MATH  Google Scholar 

  58. Wu, C.H., Fai, T.G., Atzberger, P.J., Peskin, C.S.: Simulation of osmotic swelling by the stochastic immersed boundary method. SIAM J. Sci. Comput. 37(4), B660–B688 (2015)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

D. He is supported by the Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515011784), National Natural Science Foundation of China (No. 12172317) and Shenzhen Science and Technology Program (No. JCYJ20210324125601005). M. Pan is supported by the National Natural Science Foundation of China (No. 12101177), the Natural Science Foundation of Hebei Province of China (No. A2021202001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongdong He.

Ethics declarations

conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

For the term of bending force, we have

$$\begin{aligned}&\Delta t \langle {\varvec{u}}^{n+1},S_h^{n+1}(\textbf{F}_b^{n+1}) \rangle _{\Omega _h} \\&\quad = \sum _\textbf{x} \left( \sum _{k=1}^{M} (\textbf{F}_b)_{k}^{n+1} \delta _h(\textbf{x}-\textbf{X}_k^{n+1})\Delta \alpha \right) \cdot {\varvec{u}}^{n+1}(\textbf{x}) h^2 \Delta t \\&\quad = \sum _{k=1}^M (\textbf{F}_b)_{k}^{n+1} \cdot \left( \sum _\textbf{x} {\varvec{u}}^{n+1}\delta _h(\textbf{x}-\textbf{X}_k^{n+1}) h^2 \right) \Delta \alpha \Delta t \\&\quad = \sum _{k=1}^M c_b\left( D_\alpha \left( \frac{D_\alpha }{s_{\alpha ,k}^{n+1}} \left( \frac{D_\alpha \theta _k^{n+1}}{s_{\alpha ,k}^{n+1}}\right) \right) + \frac{1}{2}\frac{(D_\alpha \theta _k^{n+1})^3}{(s_{\alpha ,k}^{n+1})^2} \right) \varvec{n}_k^{n+1} \cdot (U_k^{n+1}\varvec{n}_k^{n+1} + V_k^{n+1}\varvec{\tau }_k^{n+1}) \Delta \alpha \Delta t \\&\quad = \sum _{k=1}^M c_b\left( D_\alpha \left( \frac{D_\alpha }{s_{\alpha ,k}^{n+1}} \left( \frac{D_\alpha \theta _k^{n+1}}{s_{\alpha ,k}^{n+1}}\right) \right) + \frac{1}{2}\frac{(D_\alpha \theta _k^{n+1})^3}{(s_{\alpha ,k}^{n+1})^2} \right) U_k^{n+1} \Delta \alpha \Delta t \\&\quad = \sum _{k=1}^M c_b\left( -\left( \frac{D_\alpha }{s_{\alpha ,k}^{n+1}} \left( \frac{D_\alpha \theta _k^{n+1}}{s_{\alpha ,k}^{n+1}}\right) \right) D_\alpha U_k^{n+1} + \frac{1}{2}\frac{(D_\alpha \theta _k^{n+1})^3}{(s_{\alpha ,k}^{n+1})^2}U_k^{n+1} \right) \Delta \alpha \Delta t \\&\quad = \sum _{k=1}^M -c_b \left( D_\alpha \left( \frac{D_\alpha \theta _k^{n+1}}{s_{\alpha ,k}^{n+1}}\right) \right) \left( -(\theta _k^{n+1}-\theta _k^n) + \Delta t \frac{V_k^{n+1}}{2} \left( \frac{D_\alpha \theta _{k+1}^{n+1}}{s_{\alpha ,k+1}^{n+1}} + \frac{D_\alpha \theta _{k-1}^{n+1}}{s_{\alpha ,k-1}^{n+1}}\right) \right) \Delta \alpha \\&\qquad + \sum _{k=1}^M \frac{c_b}{2}\frac{(D_\alpha \theta _k^{n+1})^2}{(s_{\alpha ,k}^{n+1})^2}((s_{\alpha ,k}^{n+1} - s_{\alpha ,k}^n) - \Delta t D_\alpha V_k^{n+1}) \Delta \alpha \\&\quad = \sum _{k=1}^M -c_b \left( \frac{D_\alpha \theta _k^{n+1}}{s_{\alpha ,k}^{n+1}}\right) (D_\alpha \theta _k^{n+1}-D_\alpha \theta _k^n)\Delta \alpha - \sum _{k=1}^M \frac{c_b}{2} D_\alpha \left( \frac{D_\alpha \theta _k^{n+1}}{s_{\alpha ,k}^{n+1}}\right) ^2 V_k^{n+1} \Delta t \Delta \alpha \\&\qquad + \sum _{k=1}^M \frac{c_b}{2}\frac{(D_\alpha \theta _k^{n+1})^2}{(s_{\alpha ,k}^{n+1})^2}(s_{\alpha ,k}^{n+1} - s_{\alpha ,k}^n)\Delta \alpha + \sum _{k=1}^M \frac{c_b}{2}D_\alpha \left( \frac{D_\alpha \theta _k^{n+1}}{s_{\alpha ,k}^{n+1}}\right) ^2 V_k^{n+1}\Delta t \Delta \alpha \\&\quad = \sum _{k=1}^M -c_b \left( \frac{(D_\alpha \theta _k^{n+1})^2}{s_{\alpha ,k}^{n+1}} - \frac{D_\alpha \theta _k^{n+1} D_\alpha \theta _k^n}{s_{\alpha ,k}^{n+1}}\right) \Delta \alpha + \sum _{k=1}^M \frac{c_b}{2}\left( \frac{(D_\alpha \theta _k^{n+1})^2}{s_{\alpha ,k}^{n+1}} - \frac{(D_\alpha \theta _k^{n+1})^2 s_{\alpha ,k}^n}{(s_{\alpha ,k}^{n+1})^2}\right) \Delta \alpha \\&\quad = \sum _{k=1}^M -\frac{c_b}{2} \frac{(D_\alpha \theta _k^{n+1})^2}{s_{\alpha ,k}^{n+1}} \Delta \alpha + \sum _{k=1}^M c_b \frac{(D_\alpha \theta _k^n)^2}{s_{\alpha ,k}^n}\frac{D_\alpha \theta _k^{n+1} s_{\alpha ,k}^n}{D_\alpha \theta _k^n s_{\alpha ,k}^{n+1}} \Delta \alpha - \sum _{k=1}^M \frac{c_b}{2} \frac{(D_\alpha \theta _k^n)^2}{s_{\alpha ,k}^n} \frac{(D_\alpha \theta _k^{n+1})^2 (s_{\alpha ,k}^n)^2}{(D_\alpha \theta _k^n)^ 2(s_{\alpha ,k}^{n+1})^2}\Delta \alpha \\&\quad = -B^{n+1} - \sum _{k=1}^M \frac{c_b}{2} \frac{(D_\alpha \theta _k^n)^2}{s_{\alpha ,k}^n} \left( \left( \frac{D_\alpha \theta _k^{n+1} s_{\alpha ,k}^n}{D_\alpha \theta _k^n s_{\alpha ,k}^{n+1}}\right) ^2 - 2\frac{D_\alpha \theta _k^{n+1} s_{\alpha ,k}^n}{D_\alpha \theta _k^n s_{\alpha ,k}^{n+1}} + 1 - 1 \right) \Delta \alpha \\&\quad = -B^{n+1} - \sum _{k=1}^M \frac{c_b}{2} \frac{(D_\alpha \theta _k^n)^2}{s_{\alpha ,k}^n} \left( \frac{D_\alpha \theta _k^{n+1} s_{\alpha ,k}^n}{D_\alpha \theta _k^n s_{\alpha ,k}^{n+1}} - 1 \right) ^2\Delta \alpha + \sum _{k=1}^M \frac{c_b}{2} \frac{(D_\alpha \theta _k^n)^2}{s_{\alpha ,k}^n} \Delta \alpha \\&\quad = -B^{n+1} + B^n - \frac{c_b}{2} \bigg \Vert \sqrt{\frac{(D_\alpha \theta ^n)^2}{s_{\alpha }^n}} \left( \frac{D_\alpha \theta ^{n+1} s_{\alpha }^n}{D_\alpha \theta ^n s_{\alpha }^{n+1}} - 1 \right) \bigg \Vert _{\Gamma _h}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Pan, M., Tseng, YH. et al. An Energy Stable Immersed Boundary Method for Deformable Membrane Problem with Non-uniform Density and Viscosity. J Sci Comput 94, 30 (2023). https://doi.org/10.1007/s10915-022-02092-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02092-3

Keywords

Mathematics Subject Classification

Navigation