Skip to main content
Log in

Strong Stability Preserving Multistep Schemes for Forward Backward Stochastic Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this work, we are concerned with strong stability preserving multistep (SSPM) schemes for forward backward stochastic differential equations (FBSDEs). To this aim, we first perform a comprehensive analysis on a general type of multistep schemes for FBSDEs, based on which we present new sufficient conditions on the coefficients such that the associated schemes are stable and enjoy certain order of consistency. Upon these results, we propose a practical way to design high-order SSPM schemes for FBSDEs. Numerical experiments are carried out to demonstrate the strong stability of our SSPM schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

The data will be made available on reasonable request to the authors.

References

  1. Bally, V.: Approximation scheme for solutions of BSDE. In: Backward Stochastic Differential Equations, Paris, 1995–1996, Pitman Res. Notes Math. Ser., vol 364, Longman, Harlow, pp. 177–191 (1997)

  2. Bender, C., Zhang, J.: Time discretization and Markovian iteration for coupled FBSDEs. Ann. Appl. Probab. 18(1), 143–177 (2008). https://doi.org/10.1214/07-AAP448

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouchard, B., Touzi, N.: Discrete-time approximation and Monte–Carlo simulation of backward stochastic differential equations. Stoch. Process. Appl. 111(2), 175–206 (2004). https://doi.org/10.1016/j.spa.2004.01.001

    Article  MathSciNet  MATH  Google Scholar 

  4. Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 3rd edn. John Wiley & Sons, Ltd., Chichester, https://doi.org/10.1002/9781119121534, with a foreword by J. M. Sanz-Serna (2016)

  5. Chassagneux, J.F.: Linear multistep schemes for BSDEs. SIAM J. Numer. Anal. 52(6), 2815–2836 (2014). https://doi.org/10.1137/120902951

    Article  MathSciNet  MATH  Google Scholar 

  6. Chassagneux, J.F., Crisan, D.: Runge–Kutta schemes for backward stochastic differential equations. Ann. Appl. Probab. 24(2), 679–720 (2014). https://doi.org/10.1214/13-AAP933

    Article  MathSciNet  MATH  Google Scholar 

  7. Chassagneux, J.F., Richou, A.: Numerical stability analysis of the Euler scheme for BSDEs. SIAM J. Numer. Anal. 53(2), 1172–1193 (2015). https://doi.org/10.1137/140977047

    Article  MathSciNet  MATH  Google Scholar 

  8. Chevance, D.: Numerical Methods for Backward Stochastic Differential Equations. In: Numerical methods in finance, Publ. Newton Inst., vol 13, Cambridge University Press, Cambridge, pp. 232–244 (1997)

  9. Delarue, F., Menozzi, S.: A forward–backward stochastic algorithm for quasi-linear PDEs. Ann. Appl. Probab. 16(1), 140–184 (2006). https://doi.org/10.1214/105051605000000674

    Article  MathSciNet  MATH  Google Scholar 

  10. Douglas, J., Jr., Ma, J., Protter, P.: Numerical methods for forward–backward stochastic differential equations. Ann. Appl. Probab. 6(3), 940–968 (1996). https://doi.org/10.1214/aoap/1034968235

    Article  MathSciNet  MATH  Google Scholar 

  11. El Karoui, N., Peng, S., Quenez, M.C.: Backward stochastic differential equations in finance. Math Finance 7(1), 1–71 (1997). https://doi.org/10.1111/1467-9965.00022

    Article  MathSciNet  MATH  Google Scholar 

  12. Gobet, E., Labart, C.: Error expansion for the discretization of backward stochastic differential equations. Stoch. Process. Appl. 117(7), 803–829 (2007). https://doi.org/10.1016/j.spa.2006.10.007

    Article  MathSciNet  MATH  Google Scholar 

  13. Gobet, E., Lemor, J.P., Warin, X.: A regression-based Monte Carlo method to solve backward stochastic differential equations. Ann. Appl. Probab. 15(3), 2172–2202 (2005). https://doi.org/10.1214/105051605000000412

    Article  MathSciNet  MATH  Google Scholar 

  14. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001). https://doi.org/10.1137/S003614450036757X

    Article  MathSciNet  MATH  Google Scholar 

  15. Gottlieb, S., Ketcheson, D.I., Shu, C.W.: High order strong stability preserving time discretizations. J. Sci. Comput. 38(3), 251–289 (2009). https://doi.org/10.1007/s10915-008-9239-z

    Article  MathSciNet  MATH  Google Scholar 

  16. Gottlieb, S., Ketcheson, D., Shu, CW.: Strong Stability Preserving Runge–Kutta and Multistep Time Discretizations. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ. https://doi.org/10.1142/7498 (2011)

  17. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II, Springer Series in Computational Mathematics, vol 14, 2nd edn. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-05221-7, stiff and differential-algebraic problems (1996)

  18. Hairer, E., Nø rsett, S.P., Wanner, G.: Solving Ordinary Differential Equations. I, Springer Series in Computational Mathematics, vol 8, 2nd edn. Springer-Verlag, Berlin, nonstiff problems (1993)

  19. Henry-Labordère, P., Tan, X., Touzi, N.: A numerical algorithm for a class of BSDEs via the branching process. Stoch. Process. Appl. 124(2), 1112–1140 (2014). https://doi.org/10.1016/j.spa.2013.10.005

    Article  MathSciNet  MATH  Google Scholar 

  20. Ketcheson, D.I.: High order strong stability preserving time integrators and numerical wave propagation methods for hyperbolic PDEs. ProQuest LLC, Ann Arbor, MI, thesis (Ph.D.)–University of Washington (2009)

  21. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations, Applications of Mathematics (New York), vol 23. Springer-Verlag, Berlin (1992). https://doi.org/10.1007/978-3-662-12616-5

  22. Lenferink, H.W.J.: Contractivity preserving explicit linear multistep methods. Numer. Math. 55(2), 213–223 (1989). https://doi.org/10.1007/BF01406515

    Article  MathSciNet  MATH  Google Scholar 

  23. Lenferink, H.W.J.: Contractivity-preserving implicit linear multistep methods. Math. Comp. 56(193), 177–199 (1991). https://doi.org/10.2307/2008536

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, Y., Sun, Y., Zhao, W.: A fully discrete explicit multistep scheme for solving coupled forward backward stochastic differential equations. Adv. Appl. Math. Mech. 12(3), 643–663 (2020). https://doi.org/10.4208/aamm.oa-2019-0079

    Article  MathSciNet  MATH  Google Scholar 

  25. Ma, J., Yong, J.: Forward–Backward Stochastic Differential Equations and Their Applications. Lecture Notes in Mathematics, vol. 1702. Springer-Verlag, Berlin (1999)

  26. Ma, J., Zhang, J.: Representation theorems for backward stochastic differential equations. Ann. Appl. Probab. 12(4), 1390–1418 (2002). https://doi.org/10.1214/aoap/1037125868

    Article  MathSciNet  MATH  Google Scholar 

  27. Ma, J., Protter, P., Yong, J.M.: Solving forward-backward stochastic differential equations explicitly—a four step scheme. Probab. Theory Relat. Fields 98(3), 339–359 (1994). https://doi.org/10.1007/BF01192258

    Article  MathSciNet  MATH  Google Scholar 

  28. Ma, J., Protter, P., San Martín, J., Torres, S.: Numerical method for backward stochastic differential equations. Ann. Appl. Probab. 12(1), 302–316 (2002). https://doi.org/10.1214/aoap/1015961165

    Article  MathSciNet  MATH  Google Scholar 

  29. Milstein, G.N., Tretyakov, M.V.: Numerical algorithms for forward–backward stochastic differential equations. SIAM J. Sci. Comput. 28(2), 561–582 (2006). https://doi.org/10.1137/040614426

    Article  MathSciNet  MATH  Google Scholar 

  30. Pardoux, E., Peng, S.G.: Adapted solution of a backward stochastic differential equation. Syst. Control Lett. 14(1), 55–61 (1990). https://doi.org/10.1016/0167-6911(90)90082-6

    Article  MathSciNet  MATH  Google Scholar 

  31. Peng, S.G.: A general stochastic maximum principle for optimal control problems. SIAM J. Control. Optim. 28(4), 966–979 (1990). https://doi.org/10.1137/0328054

    Article  MathSciNet  MATH  Google Scholar 

  32. Peng, S.G.: Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep. 37(1–2), 61–74 (1991)

    MathSciNet  MATH  Google Scholar 

  33. Rosazza Gianin, E.: Risk measures via \(g\)-expectations. Insur. Math. Econom. 39(1), 19–34 (2006). https://doi.org/10.1016/j.insmatheco.2006.01.002

    Article  MathSciNet  MATH  Google Scholar 

  34. Ruijter, M.J., Oosterlee, C.W.: A Fourier cosine method for an efficient computation of solutions to BSDEs. SIAM J. Sci. Comput. 37(2), A859–A889 (2015). https://doi.org/10.1137/130913183

    Article  MathSciNet  MATH  Google Scholar 

  35. Spiteri, R.J., Ruuth, S.J.: A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40(2), 469–491 (2002). https://doi.org/10.1137/S0036142901389025

    Article  MathSciNet  MATH  Google Scholar 

  36. Spiteri, R.J., Ruuth, S.J.: Non-linear evolution using optimal fourth-order strong-stability-preserving Runge–Kutta methods. Math. Comput. Simul. 62(12):125–135. https://doi.org/10.1016/S0378-4754(02)00179-9 (2003)

  37. Tang, X., Xiong, J.: Stability analysis of general multistep methods for Markovian backward stochastic differential equations. IMA J. Numer. Anal. 42(2), 1789–1805 (2022). https://doi.org/10.1093/imanum/drab023

    Article  MathSciNet  MATH  Google Scholar 

  38. Vanselow, R.: Nonlinear stability behaviour of linear multistep methods. BIT 23(3), 388–396 (1983). https://doi.org/10.1007/BF01934467

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, X., Zhao, W., Zhou, T.: Sinc-\(\theta \) schemes for backward stochastic differential equations. SIAM J. Numer. Anal. 60(4), 1799–1823 (2022). https://doi.org/10.1137/21M1444679

    Article  MathSciNet  MATH  Google Scholar 

  40. Yang, J., Zhao, W., Zhou, T.: A unified probabilistic discretization scheme for FBSDEs: stability, consistency, and convergence analysis. SIAM J. Numer. Anal. 58(4), 2351–2375 (2020). https://doi.org/10.1137/19M1260177

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, J.: A numerical scheme for BSDEs. Ann. Appl. Probab. 14(1), 459–488 (2004). https://doi.org/10.1214/aoap/1075828058

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhao, W., Chen, L., Peng, S.: A new kind of accurate numerical method for backward stochastic differential equations. SIAM J. Sci. Comput. 28(4), 1563–1581 (2006). https://doi.org/10.1137/05063341X

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhao, W., Wang, J., Peng, S.: Error estimates of the \(\theta \)-scheme for backward stochastic differential equations. Discrete Contin. Dyn. Syst. Ser. B 12(4), 905–924 (2009). https://doi.org/10.3934/dcdsb.2009.12.905

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhao, W., Zhang, G., Ju, L.: A stable multistep scheme for solving backward stochastic differential equations. SIAM J. Numer. Anal. 48(4), 1369–1394 (2010). https://doi.org/10.1137/09076979X

    Article  MathSciNet  MATH  Google Scholar 

  45. Zhao, W., Li, Y., Zhang, G.: A generalized \(\theta \)-scheme for solving backward stochastic differential equations. Discrete Contin. Dyn. Syst. Ser. B 17(5), 1585–1603 (2012). https://doi.org/10.3934/dcdsb.2012.17.1585

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhao, W., Fu, Y., Zhou, T.: New kinds of high-order multistep schemes for coupled forward backward stochastic differential equations. SIAM J. Sci. Comput. 36(4), A1731–A1751 (2014). https://doi.org/10.1137/130941274

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of the authors was partially supported by the National Natural Science Foundation of China Grants (Grant Nos. 12071261, 11822111, 11831010, 11688101, 11871068), and the National Key R &D Programs Grants (Grant Nos. 2020YFA0712000, 2018YFA0703900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weidong Zhao.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of the authors was partially supported by the National Natural Science Foundation of China Grants (Grant Nos. 12071261, 11822111, 11831010, 11688101, 11871068), and the National Key R &D Programs Grants (Grant Nos. 2020YFA0712000, 2018YFA0703900).

A Additional Optimal SSPM Schemes

A Additional Optimal SSPM Schemes

In Table 7, we present coefficients for optimal SSPM schemes with order upto 5.

Table 7 SSPM schemes under uniform time partitions (Part 2)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Zhao, W. & Zhou, T. Strong Stability Preserving Multistep Schemes for Forward Backward Stochastic Differential Equations. J Sci Comput 94, 53 (2023). https://doi.org/10.1007/s10915-023-02111-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02111-x

Keywords

Mathematics Subject Classification

Navigation