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TAYLOR-HOOD LIKE FINITE ELEMENTS FOR NEARLY INCOMPRESSIBLE
STRAIN GRADIENT ELASTICITY PROBLEMS

YULEI LIAO, PINGBING MING, AND YUN XU

ABSTRACT. We propose a family of mixed finite elements that are robust for the nearly incompressible
strain gradient model, which is a fourth-order singular perturbed elliptic system. The element is similar
to [C. Taylor and P. Hood, Comput. & Fluids, 1(1973), 73-100] in the Stokes flow. Using a uniform
discrete B-B inequality for the mixed finite element pairs, we show the optimal rate of convergence that
is robust in the incompressible limit. By a new regularity result that is uniform in both the materials
parameter and the incompressibility, we prove the method converges with 1/2 order to the solution with
strong boundary layer effects. Moreover, we estimate the convergence rate of the numerical solution
to the unperturbed second-order elliptic system. Numerical results for both smooth solutions and the

solutions with sharp layers confirm the theoretical prediction.

1. INTRODUCTION

The strain gradient models have drawn great attention recently because they capture the size effect
of nano-materials for plasticity [FH9T] as well as for mechanical meta-materials [KN20] by incorporating
the higher-order strain gradient and the intrinsic material length scale into the constitutive relations.
Studies from the perspective of modeling, mechanics and mathematics may date back to 1960s [Koi64,
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Min64,[HH69], while large-scale simulations are relatively recent ZMKZ12|[RVdVG14l[PB15].
Different methods such as H? conforming finite element methods [ZPV09,FMS10], H! conforming mixed

finite element methods [AA02al[PBT5], nonconforming finite element methods [LMST7[LMI19[LMW21],
discontinuous Galerkin methods [EGHT02], isogeometric analysis [FKMT11,[NKBNT6], and meshless

methods [AA02b] have been used to simulate the strain gradient elastic models with different complexity,
just to mention a few. One of the numerical difficulties is that the number of the materials parameters
is too large [Min64], another is that the materials parameters may cause boundary layer or numerical
instability when they tend to certain critical values [EGHT02].

The strain gradient elasticity model proposed by Altan and Aifantis [AA92] seems the simplest one
among them because it contains only one material parameter besides the Lamé constants, while it still
models the size effect adequately [Aif99]. This model is described by the following boundary value
problem:

(A = 1) (pAu+ N+ p)Vdivu) = f in Q,
u=0,u=0 on 012,

(1.1)

where Q C R? is a smooth domain, u : ) — R? is the displacement, d,u is the normal derivative of u,
A and p are the Lamé constants, and ¢ is the microscopic parameter such that 0 < ¢ < 1, which stands
for the intrinsic length scale. Besides modeling the strain gradient elasticity, the system (LI) may also

be regarded as a vector analog of the fourth-order singular perturbed problem, which usually models
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a clamped plate problem [Joh72l[Sch76l[Sem92][Sem94, NTWOI|BN11], or arises from a fourth-order
perturbation of the fully nonlinear Monge-Ampere equation [BGNSIIL[EN14]. System of the form (LTI
may also come from the linearized model in MEMS [LW17].

In the present work, we are interested in (IL1]) for the nearly incompressible materials. Such materials
are commonly used in industry and a typical example is natural rubber. To the best of our knowledge,
the studies on the approximation of incompressible and nearly incompressible strain gradient elastic-
ity have not been sufficiently addressed in the literature, although vast efforts have been devoted to
finite element approximation of the incompressible and nearly incompressible elasticity problems; See
e.g., [Her65[Vog83l[STP85,[BS92al[BS92b[BMO5,ABAVL™13]. In [FH97, §III. C], the authors studied the
incompressible limit of the strain gradient model. Mixed finite elements for the incompressible Fleck-
Hutchinson strain gradient model have been designed and tested in [SKF99]. A finite element method
has been tested for the nearly incompressible strain gradient model in [Wei06]. A mixed finite element,
which approximated the displacement with Bogner-Fox-Schmidt element [BES65] and approximated the
pressure with the 9—node quadrilateral element, was constructed for the coupled stress model in [Fis11],
and bore certain similarities with problem ([I). Recently, Hu and Tian [Tia21] have proposed several
robust elements for the two-dimensional strain gradient model in the framework of reduced integration.
Unfortunately, none of the above work proved the robustness of the proposed elements rigorously in the
incompressible limit.

Following the classical approach dealing with the nearly incompressible elasticity problem [Her65], we
introduce an auxiliary variable “pressure” p and recast (1)) into a displacement-pressure mixed varia-
tional problem, i.e., the so-called (u, p)—formulation. We approximate the displacement by augmenting
the finite element space in [GLN12] with certain new bubble functions. The original motivation for
the bubble functions is to design the stable finite element pair for the Stokes problem [ABF84l[BG8&5|.
The augmented bubble functions help out in dealing with the extra constraints such as the divergence
stability in Stokes problem and the high order consistency error [NTWOILIGLN12,[WZZ12|]. Such idea
has been exploited by one of the authors to design robust finite elements for the strain gradient elasticity
model [LMS17]. Besides, we employ the standard continuous Lagrangian finite element of one order
lower than that for the displacement to approximate the pressure. Such a finite element pair is similar to
the Taylor-Hood element in the Stokes flows [TH73] which is P, — P,._; scheme and continuous pressure
approximation. For both smooth solutions and solutions with strong boundary layer effects, these mixed
finite element pairs are robust in the incompressible limit, here the robustness is understood in the sense
that the rate of convergence is uniform in both ¢ and A. The bubble function spaces in approximating
the displacement are defined by certain orthogonal constraints, and the explicit representations of these
spaces are desired for the sake of implementation. We achieve this with the aid of the Jacobi polynomial.
In addition to perspicuous results in view of analytics, such representation lends itself to the construction
of the analytical shape functions for the approximating space of the displacement. Though we focus on
the two-dimensional problem, the element may be readily extended to the three-dimensional problem.
cf., Remark

By standard mixed finite element theory [BBF13|, a discrete B-B inequality that is uniform in ¢ is
needed for the well-posedness of the mixed (u, p)—discretization problem. This B-B inequality reduces to
the remarkable B-B inequality for the Stokes problem when ¢ tends to zero. A natural way to prove the
discrete B-B inequality is to construct a uniformly stable Fortin operator [For77[MSWI13|[MTWO02|, which
does not seem easy due to the complication of the constraints. To this end, we construct a quasi-Fortin
operator that takes different forms for small + as well as large ¢. This quasi-Fortin operator is bounded in
a weighted energy norm in the corresponding regimes of ¢. Besides the discrete B-B inequality, another
ingredient in proving the robustness is a new regularity result for the solution of (ILI]) that is uniform in
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both A and ¢, which is crucial to prove the convergence rate for the layered solution. The proof combines
the method dealing with the nearly incompressible linear elasticity [Vog83] and the regularity estimate
for the fourth-order singular perturbed problem [NTWOI,[LMW21].

The outline of the paper is as follows. In §2, we introduce Altan and Aifantis’ strain gradient model and
its mixed variational formulation. We demonstrate the numerical difficulty caused by large A, and prove
the uniform regularity estimate for problem (LI)). In §3, we construct a family of nonconforming finite
elements, and derive the explicit formulations for the bubble spaces. In §4, we use the nonconforming
elements proposed in §3 together with the continuous Lagrangian finite elements to discretize the mixed
variational problem and prove the optimal rate of convergence. In the last section, we report the numerical
results, which are consistent with the theoretical prediction.

Throughout this paper, the constant C' may differ from line to line, while it is independent of the

mesh size h, the materials parameter ¢ and the Lamé constant \.

2. THE MIXED VARIATIONAL FORMULATION AND REGULARITY ESTIMATES

First we fix some notations. The space L?() of the square-integrable functions defined on a smooth
domain  is equipped with the inner product (-,-) and the norm || - ||12(q), while L§(Q2) is the subspace
of L?(Q) with mean value zero. Let H™()) be the standard Sobolev space [AF03] with the norm
Il - llam (), while Hg*(Q2) is the closure in H™(2) of C5°(©2). We may drop Q in || - ||gm o) when
no confusion may occur. For any vector-valued function v, its gradient is a matrix-valued function
with components (Vv);; = 9;v;, and the symmetric part of Vv is defined by €(v) = (Vv + [Vv]T)/2.
The divergence operator is defined as divv = d;v; + G2v2. The Sobolev spaces [H™(Q)]?, [HT'(Q)]?
and [L?(Q)]? of a vector-valued function may be defined similarly as their scalar counterpart. This
rule equally applies to the inner products and the norms. The double inner product between tensors
A= (Ay)?,_),B=(By)?,_  equals A: B=Y7 | A;Bij.

i,j=1 i,5=1
We recast ([ into a variational problem: Find w € V: = [HZ(£2)]? such that

(2.1) a(u,v) = (f,v) forall veV,

where a(u,v): = (Ce(u), €(v)) + 1>(DVe(u), Ve(v)), and the fourth-order tensor C and the sixth-order
tensor D are defined as

Cijri = XNijors + 21005 and  Dijgimn = A0idx0mn + 200410 jmOkn,
respectively. Here ¢;; is the Kronecker delta function. The strain gradient Ve(v) is a third-order tensor
that is defined by (Ve(v))ijx = 0;(€(v)) jk.

We are interested in the regime when A — oo, which means that the material is nearly incompressible.
Proceeding along the same line that leads to [LMW2I] Theorem 5], the tensor product of the element
(NTW) proposed in [NTWOI] may be used to approximate (I.1]), and the error estimate reads as

[ — wn|| < CA(R® + th)|| | g2,

where ||v]|?: = a(v,v), and C is independent of the mesh size h, and ¢ and A\. Therefore, the error
bound degenerates when A is large, and the NTW element does not seem a good candidate for the nearly

incompressible material. The following numerical example confirms this observation.
Example 2.1. Let Q = (0,1)?, and u = (u1, ug) with
uy = — sin®(mx) sin(2my) sin(my),  ug = sin(27x) sin(7x) sin®(7y).

It is clear that divu = 0, hence the material is completely incompressible. The details of the numerical
experiment such as the mesh generation, are the same as those in § Bl The relative error ||u — w|| /| ul|

in Table [Tl shows that the rate of convergence deteriorates when A is large.
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TABLE 1. Relative errors and rate of convergence for NTW
\h 1/8 1/16 1/32 1/64
v = 0.3000, A = 0.5769, u = 0.3846
le+00 2.681e-01 1.373e-01 6.698e-02 3.334e-02

rate 0.97 1.04 1.01
1le-06  4.550e-02 1.244e-02 3.001e-03 7.467e-04
rate 1.87 2.05 2.01

v = 0.499999, A = 1.6667e5, 1 = 0.3333
1le+00 9.995e-01 9.979e-01 9.916e-01 9.682e-01

rate 0.00 0.01 0.03
1le-06  9.752e-01 7.233e-01 2.502e-01 6.561e-02
rate 0.43 1.53 1.93

2.1. The mixed variational formulation. We introduce an auxiliary variable p = Adivu, and p €
P: = L3(Q) N HY(Q). We write Problem (2] into a mixed variational problem as

a,(u,v) +b,(v,p) = (f,v) forall veV,
22) {bb(u, q) =X "te(p,q) =0 for all ¢ e P,
where
a,(v,w): = 2,u((e(v),e('w)) + LQ(VE(’U),VG(’UJ))), v,weV,
b, (v,q): = (divw, q) + (2 (Vdivw, Vq), veV,qgeP,
c.(8,9): = (s,q) + *(Vs, Vq), s,q € P.

It is convenient to define the weighted norm for all ¢ € P as

lalle: = Tallz2 + el Vg 2.

llgll. is a norm over P for any ¢ € P and any finite ¢. By Poincaré’s inequality, ||Vv||, is a norm over V/
for any v € V. To study the well-posedness of Problem (2.2]), we start with the following B-B inequality

that is uniform for any .

Lemma 2.2. For any q € P, there exists v € V such that

(2.3) dive =¢ and (IVoll, < C|qll.,
where C' only depends on Q but is independent of v.

Proof. By [Gallll, Theorem IIT 3.3] and [CM10, Proposition 4.1], for any ¢ € P, there exists v € V such
that divv = ¢ and

(2.4) [vlla <Cllgllz and  [Jvlgz < Cllqlla,

where the constant C' only depends on €.

Because the mean of ¢ is zero for any ¢ € P, by Poincaré’s inequality, there exists C' such that
lqllm < Cll Vallre.
Combining the above two inequalities, we obtain
IVl = [| Vo [r2 + | VP |22 < Cllgll..

This gives (Z3)). O
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Lemma 2.3. There exists a unique u € V and p € P satisfying (Z2), and there exists C' independent
of v and X such that

(2.5) IVull. + [Ipll. < CIl f [z
Proof. By the first Korn’s inequality [Kor08,Kor(09],
1
(2.6) le(@) 7= > 5[ Voll:  forall v e [Hy(@),

and the H? Korn’s inequality [LMW21, Theorem 1],
1

27) |Wmm;zQﬂ

> [V2v 3.  forall w»e [H*Q)?

we obtain

1 1
u(w.0) 2 20 (31 Vol + (1= =) 21 P20l ) = G190l
Using (2Z3)), for any p € P, there exists vo € V such that divvyg = p and ||[Vvgl|l, < C||p||.- This
implies
bL v,p bL anp) p %

sup 20o2) 5 blvoon) _ _Wpll_ s gy,

vev Vol = [[Voolle  [[Vool.
By [Bra96, Theorem 2], we immediately obtain the well-posedness of ([2.2)) and the estimate (23] by

noting

(£l <N Flla—lvlla <CIf a2l Vol <CIFlla- Vol
O

By the standard regularity theory for the elliptic system, we find u € [H*(2)]? and p € H?(Q) provided
that f € [L2(2)]?, while we are interested in whether the shift estimate || V2w ||, + || Vp|l. < CO)| £l z>

is true with a A—independent constant C(¢), this is the objective of the next part.

2.2. Regularity estimates. We aim to study the regularity of the solution of (II]). Letting ¢ — 0, we
find ug € [Hg(2)])? satisfying

(2.8) —Lug=f inQ, up =0 on 09,

in the sense of distribution, where Lug: = pAug + (X + p)V divug. The H!—error for u — ug will be
given in Theorem [Z0] which is crucial for the regularity estimate of problem (LI]). We reshape (28]
into a variational problem: Find ug € [H}(€)]? such that

(2.9) (Ce(up), €(v)) = (f,v) for all v € [HJ(Q)]%.
By [BBO03|, we have the following shift estimate for ug: There exists C' independent of A such that
(2.10) | wo ||z + Al divug || < C| f |2

Next we study an auxiliary boundary value problem:

ALw =F, in Q,
(2.11)
w = 0w = 0, on 0.

The a-priori estimate for the solution of the above boundary value problem reads as

Lemma 2.4. There exists a unique w € V satisfying (2ZI1)), and there exists C' independent of A such
that

(2.12) lw|l gz + Al divw ||g1 < C|| F || g-2-



6 Y. L. LIAO, P. B. MING, AND Y. XU

Proof. We recast (Z11)) into a variational problem: Find w € V such that
A(w,v) = (F,v) forall veV,

where A(v, z): = 2u(Ve(v), Ve(z)) + A(Vdive, Vdiv z) for any v,z € V.
For any v € V, by the H2—Korn’s inequality (Z7)) and Poincaré’s inequality, there exists C such that

A(v,v) > 2u]| Ve(v) |72 > %H Vo L. > Cllv |3
The existence and uniqueness of w € V follow from the Lax-Milgram theorem, and
(2.13) IV 2 < [Jw g < C| F |2
Noting that divw € P, using (2.4)), we obtain that, there exists vy € V such that div vy = div w, and
| Vi |2 < O divaw ||gn < C|| Vdivaw || 2.
A combination of the above two inequalities gives
M| Vdivaw ||2, = A(V divw, Vdiveg) = A(w,vg) — 2u(Ve(w), Ve(vy))
= (F,v0) — 2u(Ve(w), Ve(vo))
<N F |la-—2[lvo |2 + 2] VP || 22 || VP00 || 2
S C (| Flla—2+2ull VPwl|2) | Voo |2
SO F g2 Vdive || L.

This implies || Vdivw |2 < C|| F || g-2, which together with (ZI3]) and Poincaré’s inequality gives ([212]).
(]

Now we turn to prove the regularity estimate of problem (ZTIT]). We consider an auxiliary elliptic
system: For any F € [L?(Q)]? and G € H*(Q), find 2 € V and ¢ € P such that the following boundary
value problem is valid in the sense of distribution:

pA’z +VAg=F in Q,
Adivz =G in €,
(2.14)
z2=0r,z=0 on 0,
qg=20 on Of.

Lemma 2.5. Let z € [H*(Q)]? and g € H3(Q) be the solution of Z.I4). Assume that m is a nonnegative
integer, then there exists C' depending only on Q and u such that

(2.15) 2 lrwes + L almmes < C (I im + 11 G llmes + 12 122+l allzz) -

Proof. We write (214); and (ZTI4); as

MA2 0 &CA Z1 F1
0 MA2 GyA z9 = ﬁg
AO,  AJ, 0 q G
The symbol of the above system is

pll* 0 &g
L(§) = 0 plélt &lEf?
&ilE? &l¢f? 0

A direct calculation gives
det ()| = ule™ >0 if ¢ 40,
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This means that the boundary value problem (2I4)) is elliptic in the sense of Agmon-Douglis-Nirenberg [ADNG4].
Moreover, the boundary condition is pure Dirichlet, and it is straightforward to verify that the bound-
ary condition satisfies the complementing condition [ADNG4]. The regularity estimate (ZIT) follows
from [ADNG4]. O

A direct consequence of the above lemma is the following regularity estimate for problem (Z.IT]).

Lemma 2.6. Let w € V be the solution of (ZI1)), there exists C independent of A such that
(2.16) lw|lgs + Al divw ||g2 < C|| F||g-1-
Proof. Using the standard elliptic regularity estimate, there exists a unique solution w € [H*(2)]?> when
F € [L*(Q)])?. We introduce z = w and ¢ = (A + p)divw, hence z € [H4(Q)]? and ¢ € H3()
satisfy (ZI4) with F = F and G = Adivw.
By (ZI3) with m = 0, we obtain
fwllgs + A+ p)ll divw|[gs < C (| Flle + || divw|[gs + w22 + A+ p)l| divew |[22) .
Using the a-priori estimate ([212), we obtain
[wllgs + A+ p)l divw|[gs < Co (| Fll2 + | divew [[gs).

Now for A + p > 2C), it follows from

. A+ .
lwllms + A+ ) dive [gs < Cof F |2 + TMII divaw | zo

that
lw | e + Al divew || gs < 2C]|| F || 2.
Interpolating the above inequality with [212), we obtain (2.I6]).

If A+ p < 200, then (2I6) follows from the standard regularity estimates [ADNG4] for problem (Z.1T)).
g

We turn to prove the regularity of problem (LI) when f € [L2(2)]%. Let w and ug be the solutions
of (L) and (1), respectively. For any v € [H}(Q) N H%(Q)]?, integration by parts gives

(2.17) (Ce(u), e(v)) = —(Lu,v),
and
(2.18) 2 (DVe(u), Ve(v)) = *(ALu,v) + 12 /BQ (Onom) - Opvdo(x),

where o: = 2ue(u) + Adivul and (0,0)j: = Opoij. The boundary term in (ZI8)) is derived by the fact
8jvi = njanvi + tjﬁtvi = njanvi and
(2.19)

2u On€e(u) : e(v)do(x) + A Op, divu divodo(x) = / Ono : Vodo(x)
o0 o0 a0

:/ Onoij0jvido(x) = / On0oijnjOnvido(x) = / (Onpomn) - Opvdo(x).
o9 o9 T9)
A combination of [2I7)) and (2Z.I8)) leads to
(Ce(u), e(v)) + *(DVe(u), Ve(v)) = L2/ (Onom) - Onvdo(x) + (£, v),
o0
which together with (2:9) yields
(2.20) (Ce(u — ug), €(v)) + 1*(DVe(u), Ve(v)) = L2/ (Onon) - Opvdo(x).
o9

This identity is the starting point of the proof.
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We shall frequently use the following multiplicative trace inequality. There exists C that depends only
on (2 such that

(2.21) 19 [ z200y < Ol [ faroy | 1y, % € HY(Q).

Using Lemma [2Z6] we condense the regularity of problem (L)) to estimating u — up and p — po in
various norms, with p = Adivu and pg = A div ug.

Lemma 2.7. There exists C independent of ¢ and A such that
(2.22) lullms +pllaz < Co(l e(u —uo) 22 + |p = po l|z2).
Proof. We rewrite (L) as

ALu = 172L(u — ug) in
u=0,u=0 on 0.

Applying the regularity estimate ([Z.I0]) to the elliptic system (ZI1J), and using [ZI7), we obtain
lwllms + [ pllaz < C7?) Llu—uo) |-+ < Ce2(|| e(w —uo) (|22 + | p = po | 22)-
[l

The next lemma is crucial to prove Theorem [2.9] which transforms the estimate of || p —po ||, in terms

of || V(u — ug) ||, besides a term concerning f.
Lemma 2.8. There exists C independent of ¢ and A such that
(2.23) Ip = polle < C(IV(u —uo) [l + /|| f [|2)-

Proof. By [DM13, Theorem 3.1] and Poincaré’s inequality, there exists vo € [H?(Q2) N H{ (2)]? such that
div vy = div(u — uyp), and

(2.24) lvo |z < CJ div(u — ug) || 22, [vo|lgz < C|| Vdiv(u — ug) || 2.
Substituting v = vy into (Z20)), multiplying the resulting identity by A, we obtain
1= poll? = =2(Tpo, V(p = po)) — 221 (e(w — wo), e(v0)) + (Ve(w), Ve(vo)) )
(2.25) + )\L2/ (Onom) - Opvodo(x).
o0

By the regularity estimate ([2.I0)), the first term may be bounded as

*|(Vpo, V(p = po))| < gll Vo — o) [ + 22 Vo [ < <llp— o2 + €22 £ 3.
Using the triangle inequality and (2.I0) again, we obtain
(2.26) U Ve(u) [z < ol Ve(u —uo) |12 + o] Ve(uo) [|z2 < (| V(w —wo) [l + Cul f |-
Using (2:24) and the above inequality, we bound the second term as
22p1] (€(u — o), €(v0)) + 1*(Ve(u), Ve(vo))| < O([| e(u — uo) ||z + ol Ve(u) [[22)[[p = po .

1
< glp=polZ+C IV —uo) |7+ f1I7z) -



TAYLOR-HOOD LIKE FEMS FOR NEARLY INCOMPRESSIBLE SGE PROBLEMS
Using (2.19) and the definition of vy, we rewrite the boundary term as

/\L2/ (Onon) - Opvodo(z) = 2\u” One(u) : €(vo)do(z) + A2 Op, div u div vodo(x)
o0 a0 o0

= 2\ u? One(u) : €(vg)do(x) + L2/ Onp(p — po)do(x)
o0 [219]

= 2\u? On€(u) : €(vg)do(x) — L2/ Onp podo(x).
19) ET)

Recalling the trace inequality (Z21]), we estimate the first boundary term as

2Ap0?

One(u) : €(vo)do(x)

< 22| One(w) || L2(00) || €(v0) Il L2002
o0

< CN2|| Ve(u) 11571 Ve(w) 1112 €(vo) 1121 €(wo) |1 112-

L2 H1!

Using (Z24), there exists C independent of A and ¢ such that
Nl e(vo) || 2]l €(wo) [l < Cllp—po llz2 [ V(p = po) 22 < Ce™Hlp = po lI7.
Using (2.26) to estimate || Ve(u) |2 and using ([2:22) to bound || Ve(u) || g1, we obtain
I Ve(w) |2l Ve(w) [l < Co7% (| V(w = o) [l + ol £ ll22) (Il e(w — o) [[z2 + | p = po [l 2)
< 0 (1w — o) 2 + 20 £ 13+ (Vs — o) [+ 21 £ 122) 12— poll.).

A combination of the above three inequalities gives

2\ ut? /{m On€e(u) : €(vg)do(x)

SC((II V(= wo) [l + ¢l £llz2)llp = po .

(¥ (w = wo) I+ ¢l £ 122) 211 p = o |72
1
<llp=poll? +C (I V(u = wo) |2+ 21 £ I3:).

Using the trace inequality (2.21I) and the regularity estimate (2Z10) again, we bound

/ Onppodo(x)
o0

Using the triangle inequality and (2I0) again, we obtain

2

1/2 1 1/2 1/2
2 < | Vp 2N Ve 1 po L < CENVR 1L VDI £ e

U Vpllz < llp=poll.+ el Vo e < lp—poll. + Cull £ ]2,
which together with ([2:22) implies
[Vl Ve lla < CFS(IIP*po 17+ (I V(= o) [l + el £llz2) 2 = po [l + o]l V(u — uo) ||L||f||L2)-

Combining the above three inequalities, we bound the second boundary term as

/ Onppodo ()
o0

L2

<C(20p = polll £ 12 + (1 V= wo) [l + 2] £ [122)*2| p = po |12
3/2
+ ol V(- o) 112 £ 117)

1
< glp=pollZ+C IV —uo) |7+l £IIZ2) -
Substituting the above inequalities into ([2:25]), we obtain
1
Ip=pollf < Slp=poll? +C (I V(u—uo) lI7 + ] £II72)-
This immediately gives ([2:23]). d

We are ready to prove the regularity of problem (LT).
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Theorem 2.9. There exists C' independent of v and A such that

(2.27) w—uo Iz + [Ip—pollzz < CM2|| f | re,
and
(2.28) wlgrzen + || pllgnen < Co275 f e, k=0,1

The estimate ([2.27) improves the known results [LMW21, Lemma 1] in two aspects. It clarifies the
fact that the estimate is A—independent and it gives the convergence rate for the pressure. The rate /2

is optimal even for the scalar counterpart; cf., [NTWO01, Lemma 5.1].
Proof. Substituting v = u — ug into (Z20)), we get
a(u — ug,u — ug) = —12(DVe(u), Ve(u — ug)) — 12 / (Onon) - Onupdo(x).
o0

Using the regularity estimate (2.10), we bound the first term as

/2
4
To bound the second term, we let v = ug in (ZI9) and obtain

2|(DVe(u), Ve(u—ug))| < —(DVe(u—ug), Ve(u—ug))+i*(DVe(ug), Ve(up)) < ~a(u—ug, u—ug)+Ci?|| f||2..

»I>I>—‘

L2/ (Onom) - Opupdo(x) = 2,uL2/ One(u) : €(ug)do(x) + 2 O, div u podo ().
o9 o9 ro)

Invoking the trace inequality, using the fact || Vdivu ||p2 < || Ve(u) || 2 and 2I0), we obtain

/ (Onomn) - Opupdo(x)
o)

L2

1/2 1/2 1/2 . 1/2

< 2 (|| Ve(u) |21 Ve(w) 5771 elwo) s + 1V dives | 2219 div |37 po |10

1/2 1/2
< O Ve(u) | 21wl (o e + | polle)

1/2 1/2
< C2|| Ve(w) | 21wl £ llze-
Substituting (Z23)) into (Z22]), we obtain,

s + | p Iz < Com2(|| V(w — o) o + /2] £ | 22)-
Invoking ([2.20) again, we get
2| Ve(w) || 2 wllfs < CO2()V(w— o) |l + 2]  [[12)-

A combination of the above three inequalities gives

L2

| (@nom) - duuoda(a) | < 71 V(= o) 2+ Cil £ -
Combining the above inequalities, we obtain
IV (u— o) | < Ct2| Fllze,
which together with ([223]) leads to
Ip=poll. < CH2| f 2.
The above two estimates immediately give [2.27) and
V2w = uo) [z + | V(p = po) [z < Cu™ V2| £ |12,

which together with (2.10) gives [2.28) with k£ = 0.
Substituting (Z27) into (Z22]), we obtain the higher regularity estimate (Z28) with k = 1. O

A direct consequence of the above theorem is
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Corollary 2.10. There exists C independent of v and \ such that

(2.29) [ wllgse + 1P gz < Cl Fllee,
and
(2.30) lwllgsre + I pllgarz < CH F e

Proof. Using triangle inequality, (ZI0) and ([Z28]), we obtain
lu—ollgz+[lp=pollar < |l wlmz + [ plla + |l wolluz + I po las < Co V2| f [|e.
Interpolating the above inequality and (Z.27]), we obtain
[ —wollgsz +11p—pollmiz < Cll fze
Using (ZI0), we get
w0 sz + [ pollgie < Clluo [z + [ po [ < Cll F ]2
A combination of the above two inequalities and the triangle inequality leads to ([2Z29)).
Interpolating (Z28) with k = 0 and (Z28) with k& = 1, we obtain (Z30)). O
3. A FaMILY OF NONCONFORMING FINITE ELEMENTS

We introduce a family of finite elements to approximate the mixed variational problem ([Z2)). Let T,
be a triangulation of 2 with maximum mesh size h. We assume all elements in 7}, are shape-regular in
the sense of Ciarlet and Raviart [Cia78]. We also assume that 7; satisfies the inverse assumption: there

exists oo such that h/hx < o9 for all K € Tj,. The space of piecewise vector fields is defined by
[H™(Q,Th)]*: = {v e [L*(V]? | v|x € [H™(T)]> forall KeT,},

which is equipped with the broken norm

m
1o llam @70 = v e + Y I Vivlle,
k=1

where || Viv 7. =Y ger | Vi ||%2(K). For an interior edge e shared by the triangles K+ and K~, we

define the jump of v across e as
[v]: =v nt +v n~ with  vF = v| g+,
where n is the unit normal vector of e towards the outside of K*. For e N 99 # ), we set [v] = vn.

3.1. A family of finite elements. Our construction is motivated by the element proposed in [GLN12].
Define the element with a triple (K, Pk, X k) by specifying K as a triangle, and

3
(3.1) Pr: =Pr(K) + bk Y biQ) *(K) + bi " 2(K),

=1

where b = H§:1 i and b; = br/\; with {\;}3_; the barycentric coordinates of K.
Define

(3.2) QI (K): = {v eP_5(K) | / brbivgdx =0 for all ¢ € P,_3(K) } ,
K
and

(3.3) R 2(K): = {v €P,_o(K) | / b3-vgdx =0 for all ¢ € P,_3(K) } .
K
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The degrees of freedom (DoFs) for Pk are given by

v(a) for all verticesa,

/vq do(x) for all edges e andq € P,._s(e),

/anvq do(x) for all edges e andq € P,_s(e),

/ vgde for allg € P,_o(K).
K

We plot the DoF's for » = 2,3 in Figure[dl

a3 as
[ J
€2 €1 €2 €1
[
[ J ([ J
€3 €3
aq I as aq I I a9

F1GURE 1. Diagram for DoFs. Left: DoF's for r = 2 are point evaluations of the function

values at the vertex, the mean of the function along each edge, the mean of the normal
derivative along each edge, and the mean of the function over the element; Right: DoFs
for r = 3 are point evaluations of the function values at the vertex, the means of the
function against P; along each edge, the means of the normal derivative against P; along

each edge, and the means of the function against P; over the element

Lemma 3.1. The set (K, Px,X k) is unisolvent.

Proof. Firstly we show that if the DoFs (34]) can determine an element in Pk, then the element is
unique. Suppose v € Pg vanishes at the DoF's listed in (3.4]), it suffices to show v = 0. Assume that

3
v=Dpr+ bKZbiQi + bk ar,

i=1
where p, € P.(K), and ¢; € Q; *(K), and ¢, € R"~?(K). DoFs associated with P,.(K) are

v(a) for all verticesa,

s /evq do(x) for all edges e andq € P,_s(e),

/qum for allqg € P,_3(K).
K

The bubble space vanishes on this subset of DoFs by ([2) and [B3). The number of the DoFs is
3+3(r—1)+(r—1)(r—2)/2 = (r+1)(r+2)/2, which equals to the cardinality of P,(K). Hence p, = 0.
A direct calculation gives

/ Onpvqdo(z) = 7|V)\Z-|/ blgigdo(x) =0 for all ¢ € Pr_a(e;).
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Taking ¢ = ¢; in the above identity, we obtain ¢; = 0 on e;. Therefore, we write ¢; = \;p,._3 for certain
pr—3 € Pr_3(K). Using B2), we get

/ brbigiqdx = / b2pr_3qdx =0 for all ¢ € P,_5(K).
K K

Taking ¢ = p,—_3 in the above identity, we obtain p,_3 = 0. Therefore v = b%¢q, for certain ¢, € R"2(K).

The last set of DoF's equals zero, i.e.,

/ bigrgdz =0 for all ¢ € P,._o(K).
K

Taking ¢ = g, in the above identity, we obtain ¢, = 0. So does v.
It remains to show the dimension of Pk equals the number of DoF's ([B.4]). Proceeding along the same

line as above, the element v = 0 has a unique representation. Therefore [B.]) is a direct sum, and
1
dim Py = dimP,.(K) + 4 (dimP, _5(K) — dimP,_3(K)) = §(r2 + 117 — 6),
which equals to the number of DoFs (4] exactly. O

We define a local interpolation operator mx : H?(K) + Pk as:

mrv(a) = v(a) for all vertices a,
/vaq do(x) = /vq do(x) for all edges e and ¢ € P,_s(e),

/anﬂ'qu do(x) = /anvq do(x) for all edges e and ¢ € P,_s(e),

/ rrvgde = / vgdx for allq € P, _o(K).

K K

Lemma 3.2. There exists C independent of hxc such that for v € H*(K) with 2 < k < r+1, there holds
(3.6) IV (v = mxc0) |2y < CRE | VR0 L2 (i),

where 0 < j < k.

Proof. For any v € P,.(K) C P, the definition (3.5]) shows that v — mxv € Pk and all DoFs of v — Pxv
vanish, then v = mxv. The estimate [B.6) immediately follows from the P,(K)—invariance of the local

interpolation operator mx [CR72]. O

Remark 3.3. The element has a natural extension to three-dimensions by specifying K as a tetrahedron,

and
4
Pr: =Pr(K) + bk Y biQ) *(K) + bi R 2(K),
i=1
where b = Hle A; is the element bubble function with A; the barycentric coordinates associated with

the vertices a; for i = 1,--- ,4. b; = by /\; is the face bubble function associated with the face f;.
Define

Qr2(K): = {v €P,_5(K) | / bibvgdz = 0 for all ¢ € Py_s(K) } ,
K

and

R™(K): = {v €P, o(K) | /K b3vgdx =0 for all ¢ € P,_4(K) } .
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The DoF's for Pk are given by

v(a) for all vertices,

/Uq do(x) for all edges e andq € P,_s(e),
/vq do(x) for all faces f andq € P,._3(f),

f
/ Onvgdo(x) for all faces f andgq € P,._o(f),
f

/ vgdx for allg € P,_o(K).
K
Similar to Lemma B.] the set (K, Pk, Y ) is also unisolvent.

3.2. Explicit representation for the bubble space. We clarify the structures of (32) and (B3)
associated with the set of DoFs (34)s and the subset of ([Bd])4 respectively, and derive the explicit
formulations of the corresponding shape functions, which seems missing in the literature, while such
explicit representations are useful for implementation. We firstly recall the following facts about the

Jacobi polynomials [Sze75]. For any «, 8 > —1 and nonnegative integers n, m, there holds
(37) [0 0P PO R 0t = K,
where
h{eB) = /1 (1—6)*(1+8)? [P (6)] *ar.
-1
By [Sze75, Eq. (4.3.3)], we may write

2048+ Tn+a+1)I(n+B+1)
2n+a+fB+1T(n+a+p+1)(n+1)

(3.8) h{R) =

where I' is the Gamma function.

One of the explicit form for P\ is

(1—t)*(1+ )PP (1) = (2_711737 ;TT; (1=t (1 +¢)"tP) .

In particular,

PPty =1, PI) = %(a +B+2)t+ %(a — B).

Next we list certain facts about the Jacobi polynomials on the triangle [DX14], Section 2.4]. For a

triangle K with vertices a1, as, a3, any point x € K is uniquely expressed as
T = Aa1 + doas + Azaz, A; >0and A\ + Ao+ A3 = 1.

Then (A1, A2, A3) is the barycentric coordinates of the point « with respect to K. For nonnegative integers
k,n such that & < n, we define

(3.9) PP (A, Ao, Aa) = (Mo + ) BRI (= X — A3) PO (O = As) /(a2 + As)).
It is straightforward to verify Pé?;{’ﬁ ) ¢ P,,(K). In particular,
PSSPV A2 ) =1, PSP AeAs) = (B+ 7 + 201 — (a+ 1) + Ag),

and

Pl(i’ﬁﬁ)()\l, A2, A3) = (y+1)A2 — (B + 1)As.
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For all o, 8,7 > —1, and nonnegative integers j, k, m,n such that j < m and k < n, there holds

][ NENAT LD O, Aa, Ag) PLP ) (Mg, Mg, As) de
K

(3.10) =9 ﬁ APAS (L= A1 = A) PP (0, 1= A1 = M) PP (A, dey 1= Ar = Ao)dhidg
K
:2h](ca’:1ﬁﬁ)5jk6mna

where K := {(A1,22) | A1 > 0,22 >0,A1 + A2 < 1} is the standard reference triangle and

hl(;ffﬁ) :2—(2k+a+25+27+3)hsl2f;ﬂ+v+1,a)h§€v,ﬁ)

1
(3.11) T@ntatBart2)2kt By +1)
L ktot Dt k+B+y+20(k+ 5+ DI(k+y+1)
Pn—k+1l(n+k+a+B+y+2)0k+ 10k +F+y+1)

Using the notation (z), = I'(z + n)/T'(n), we may find that the expression BI1)) is equivalent to the
one in [DXT4, Eq. (2.4.3)]. The identity @I0) illustrates that { L% " (A1, A2, A3) | 0 < k < n <1} are
mutually orthogonal bases of P,.(K) with respect to the weight A¢ )\g A7

Next we study the structure of the bubble spaces. For the barycentric coordinate function A; such
+

%

that A\; =0 on ¢;, let )\;-" and A, be the two other barycentric coordinates associated with the edges e
and e; , respectively. (e;,e;,e;) are chosen in a counterclockwise manner. The space QTQ(K ) can be

clarified by the Jacobi polynomials with respect to the weight bxb;, while R"~2(K) can be clarified by

the Jacobi polynomials with respect to the weight b%, which are formulated in the following lemmas.
Lemma 3.4. The space Q; *(K) takes the form
Qi 2(K) = span { PP 0N AT) [0k <r -2}
Proof. For any v € Q7 *(K) C P,_2(K), v may be expanded into
v= Z aknP;E,l,’LM)()\u/\ja/\i_)
0<k<n<r—2

with unknown parameters ag,. Using the above representation, we may write the constraint in the
definition (B2) as

S ][ brbi PP (A A A Jadz =0 forall g € Py_s(K).
K

0<k<n<r—2

Substituting ¢ = P]-(117;12’2)()\1-,)\‘-|r A;) for 0 < j < m < r — 3 into the above equation, and using the

(AREAY)

orthogonal relation (BI0), we obtain a;jm, = 0 for 0 < j <m < r — 3. This concludes the lemma. O
Motivated by the above lemma, we change the definition of DoF's for the bubble space bg Zf’: LhiQI (K
from [ Opvgdo(zx) for any ¢ € Pr_s(e;) to

][ %PIEQQ)()\:_*)\*)dU(m), k=0, r—2.

Lemma 3.5. The shape functions for the bubble space by Zle biQ§_2(K) associated with the above
definition of DoFs are

arr-2brbi P2 (i AT D)
with
(=17 * (k+3)(k +4)(2k 4 5)

(3.12) =2 =GN r—k— Dk + Dk +2)
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Proof. A direct calculation gives

0
D (b PR 0N D)) b = VAP (CDPEA (1 — 47,

19 N\ 9 NG

For j =1,---,r — 2. Using the relation (1), and noting that b; = /\Zr/\; = )\;r(l — )\j) on e;, we obtain
0
][ - (be P2 (AT A;)) PP — A7) do(z)
1
2k+5,1 2 (2,2 2.2
— VAPPSO [ (=) RPN — )PP @af — DXt

VA Sektsn) ! (2,2) (2,2)

=—-——P7 " (-1) (1 —t) (1—|—t) PO ()P (t)dt

32 .

Vil 2k45.1 2,2
= ?Pf—;;k )(*1)}11(€ )5jk

This gives
32

2k+5,1 2.2)
YNBSS (R
y [Sze75, Eq. (4.1.1),(4.1.3)], we obtain P(%;“r;cl)( 1) = (=1)""*(r —k —1). Using ([3:8), we obtain

Qg r—2 = —

h(2 2) _ 32(k+1)(k+2) -
-~ (k+3)(k+4)(2k +5)
A combination of the above three identities leads to (B.12]). O

Next we list the shape functions for the elements of low-order.

Example 3.6. The bubble space bx Zle Q7 *(K) for the lowest-order r = 2 is
brspan{b; | i=1,2,3}.

30
The shape functions associated with jfeanv do(x) is —Wb;(bi.

The bubble space bx 2?21 b:Q72(K) for the case r = 3 is
The shape functions associated with -f Onvdo(x) is

30
VA

The shape functions associated with 3 Onv( (A = A7) do(z) is

70
2N

— b (3N — AT — A7).

3 K2

— b (AT — A7).

Lemma 3.7. The space R"?(K) takes the forms
R2(K) = span { PA2D (M, e,00) [0Sk <r -2},

Proof. For any v € R""2(K) C P,_2(K), we expand v into
v=" Y amPEPY (A2 )
0<k<n<r—2

with ag, to be determined later on. Using the above representation, we may write the constraint in the
definition of the space (B3] as: For all ¢ € P,_3(K),

“’”‘][ b2 P2 (A1, A2, As)gdz = 0.
K

0<k<n<r—2
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We substitute ¢ = Pj(ifg)()\l, A2, Az) for 0 < 7 < m < r—3 into the above equation. Using the orthogonal
relation ([B.I0), we may obtain aj, =0 for 0 < j < m < r — 3. This completes the proof. O

Motivated by the above lemma, we change the definition of DoFs for b% R"~*(K) from [, vqgda for
any q € Pr._o(K) \ P._3(K) to

][ ’UP1§727~’2_7§)(/\1,>\2,>\3)(1:13, k=0,---,r—2.
K

Lemma 3.8. The shape functions for the bubble space b% R"~%(K) associated with the above definition

of DoF's are

ak,rfzbf(P,fﬁ’i)(M, A2, A3)

with (20 + 4)(2k + 5)(r + k+ 4)(r + k + 5)(k + 3)(k + 4)
20— B)r — 1= k)(k+ 1)k +2)

Af,r—2 =
Proof. For j =1,--- ,r — 2, we obtain
][Kbip,fi?(xl, A2, A3) P22 (Ar, Ao, As) dae = 2052 3,

J,r—2

which gives

1
Ak,r—2 = m
Using (BI1]), we obtain
(222 _ (r—k)(r—1-k)(k+1)(k+2) .
=2 2r +4)(2k+5)(r + k+4)(r + k +5)(k + 3)(k +4)
These give the simplified expression of ay ,—2. O

According to the definition of bubble space, we may have

Example 3.9. The bubble space b% R"2?(K) for the lowest-order case r = 2 is span{b3}.
The shape functions associated with va dz is 25200
The bubble space b3 R"?(K) for the case r = 3 is b%span{2X\; — a2 — A3, A2 — A3 }.
The shape functions associated with 3+, v(2A1 — Az — A3) da is 420005 (2X1 — A2 — A3).
The shape functions associated with 3+, v(A2 — Ag) daz is 1260063 (A2 — A3).

Remark 3.10. Based on the above results, we give the details for the element of the lowest-order, i.e.,

r = 2, which have been used in the numerical examples. The local finite element space

3
Pic = Py(K) +bic > span{b} + span{b3},

i=1

Yk = {v(ai),][e.v da(m),]leianv da(m),][Kv de | i=1,2,3 }

7

and DoF's

The shape functions associated with {v(a;)}i=1,2,3 are

Vi - VA

¢i = Ai(3Ni — 2) + 30bx [ 20+ gwE L (4X; — 1) + 6bx
J#i J

The shape functions associated with {f _ vdo(x)}i=1,2,3 are

i = 6b; + 90bx | bi — Y b; — 10bx
J#i
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The shape functions associated with {{_ dnpvdo(x)}i=12,3 are

30

— 7 bbi (4N — 1).
V| ¢ ( )

Vi

The shape functions associated with v da is ¢o = 2520b%.

4. THE MIXED FINITE ELEMENTS APPROXIMATION

In this part, we construct stable finite element pairs to approximate ([2:2)). We ignore the influence of

the curved boundary for error estimates for brevity. Define
Xp: = {v € Hy(Q) | v|k € Pk for all K € Ty, /ﬂ@nv]]qda(m) =0foralle € &,,q € Pr_z(e) } :

and Vj,: = [X},]2. Let P, C P be the continuous Lagrangian finite element of order r — 1. We shall prove
a uniform discrete B-B inequality for the pair (V4, Py).

The following rescaled trace inequality will be used later on: There exists C' independent of hx such
that

—1/2 1/2 1/2
(4.1) v llz2or) < C (R 21w llaaao + 10 1 ot | Vo I ) ) -

This inequality may be found in [BS0§].

4.1. The mixed finite element approximation. We define the mixed finite element approximation

problem as follows. Find u; € V}, and pp € P, such that

{ ab,h(uhav) + bb,h(vaph) = (f,’l)) forall ve Vh,
b

(4.2) :
or(un, @) = A el(pr,q) = 0 for all ¢ € Py,

where
a, (v, w): = 2u((e(v),e(w)) + ﬂ(vhe(v),vhe(w») for allv, w € Vi,
bon(v,q): = (divw, q) + *(Vy divw, Vq) for allv € Vj,,q € Py
Note that V3, ¢ V, and this is a nonconforming method, we introduce the broken norm
| Vollon: =Vl +f| Viv]z  forall veV,

Due to the continuity of v, || Vv ||, is a norm over Vj,.
The following broken Korn’s inequality was proved in [LMW21], Theorem 2]:

| Vre() e > (1-1/v2) | V3o |2,
which together with the first Korn’s inequality (Z.6]) gives
(4.3) a, n(v,v) > g” Voll?, for all v € V.

It remains to prove the discrete B-B inequality for the pair (V}, P,). To this end, we construct
a Fortin operator that is uniformly stable in the weighted norm ||V - ||, [MSW13]. The key is to
construct different Fortin operators for ¢/h in different regimes.

Firstly we define an interpolation operator ITy, : V — Vj, by IIj|k: = IIx = [rx]?, which satisfies
Lemma 4.1. For allv € V, there holds

(4.4) b, n(IIpv,p) =b,(v,p) for allp € Py.
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Proof. Using the fact that IT,v € V}, C [H}(Q)]?, an integration by parts gives
(4.5) / div(v — IIpv)pdx = Z / v — [Igv) - Vpde =0,
Q

KeTy

where we have used the identity (3.0])4 in the last step.
Next, integration by parts yields

/ Vdiv(v — [Iyv) - Vpdx = Z / div(v — ITgv)Oppdo(x Z / div(v — ITxv)Apdx = 0.
KeTh KeTh
The first term vanishes because 0; = ¢;0; + n;0p for components j = 1,2, and using ([B.5)2, we obtain
that for each edge e € 0K,
2

p
/ 8t — TgV;)Oppdo(x) = — /etj(vj - ﬂ'va)m do(x) = 0.

Using (33)3, we obtain
0

" on (v
While the second term vanishes because

/ div(v — IITgv)Apde = / (v—Ikv) nApdo(x) — / (v—Igv) - VApdx =0,
K K K

where we have used (30)2 and [B0)4. O

— TV, )Oppdo(x) = 0.

The operator I1}, is not H! —bounded by ([B.6]), and we construct an H! —bounded regularized interpo-

lation operator as follows.

Lemma 4.2. There exists an operator Iy, : V — V} satisfying

(4.6) /Qdiv(v — Ipv)pde =0 for all p e Py,
and if v € VN[H*(Q))? with 1 < s <r+1, then

(4.7) IV5,(0 = L) 12 < Ch* 77| Vo l2 0<j<s.

The construction of I, is based on a regularized interpolation operator in [GLN12] and the standard
construction of the Fortin operator [For77]. The operator I, is also well-defined for functions in [H?(2)N
H ()2,

Proof. Define Ij, : V + Vj, with Ij,: = [II1]? and
H12 = Ho(I — HQ) =+ HQ,

where the regularized interpolation operator IT5 : HZ(Q) — X}, was constructed in [GLNI2, Lemma 2],
which satisfies

(4.8) | VI (v — Iav) || 2 < CR*7I|| Vo0 |2, 1<s<r+1,0<j<s.
The operator Iy : Hi (2) — X}, is defined for any element K € Ty, as

Hyv(a) =0 for all verticesa,

/Hovq do(z) =0 VqeP,_s(e) for all edgese,

/anﬂovq do(x) =0 VqeP,_o(e) for all edgese,

/Hoqua::/ vgdx for all g€ P,_o(K).
K K
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On each element K, we have (IIgv)|x € H}(K) for any v € Hg (), and hence v € X},. A standard
scaling argument gives

| ITov (|22 < C|lv L2 for all v € H}(Q).
For any v € V, using the fact that Iyv € V}, and p € Py, an integration by parts gives

/le(’U*Ih’U pde = — Z/ (v — Ipv) - Vpdx + Z/ (v —Ipv) -npdo(x)

KeTh KeTn
=— Z/ v— Ipv) - Vpde = — Z/ (I — IIy)(I — [I2)v - Vpde
KeTn KeTh

:0,

where we have used the last property of ITy. This gives (LH6]).
Using (4.8), the L2-stability of [Ty and the inverse inequality, we obtain

| V.0 — [110) |l <I| (0 — aw) 12 + | Vi To(0 — [20) |12
<Ch* || Vo |2 + Ch7¥||v — ITw || 12
<CRT|| Vv | 2.
This implies (A7) and completes the proof. O

We are ready to prove the following discrete B-B inequality.

Theorem 4.3. There exists 3 independent of v and h, such that

Sup bL,h(vvp)
wvevi, || Vo lln
Proof. Using (23), for any p € P, C P, there exists vg € V such that

(4.9) > Blpll. for all pe€ Py.

bi(vo,p) =lpll}  and [[Vuol. < Clpll..
First, we consider the case ¢/h <~ with v to be determined later on. By (4.1, we obtain
[ VInvo [[on < Vool + 1| V(vo = Inwo) [ln < Cl[ Voo,
and
| Vi div(vo — Invo) |2 < C|| V200 |22 < C|| Vp | 2.
Combining the above inequality and using the inverse inequality for any p € P}, we obtain
(Vi div(ve — Invo), Vp)| < O Vp |72 < Cu(e/R)? (| p 72 < v*Cullpll?-
Fix ~ such that v2C, < 1, we obtain
bbﬁh(ltha ) b (’l)o, ) LQ(Vh diV(UO - Ith)v Vp) Z (1 - 720*)”]7”?

This gives

(4 10) sup bL7h(’l),p) > bbﬁh(IthOap) > 17720* || ||
vevi VO llon — [ VInvo [l —

Next, if ¢/h > 7, then we use (B.0) and obtain
IV (vo = IIywo) || 12 < Chl| VP00 |12, and || Vi (vo — Iyvo) ||z < C| VPwo |2
Therefore,
IV (vo = Invo) [lu.n < C(h+0)|| V2o |2 < C(L+h/0)|[ Vool < C(1+1/7)[Vwol..

Hence,
I VIThvo [[on < [[Vooll. + || V(vo = Hivo) [|on < C(2+ 1/7)[[Voll.,
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which together with (£4) gives

(411) sup bL,h(vap) > bL,h(Hthap) — bb,h(UOap) — ||p||% > Y HPH )
vevi IVOllon = IVITwvollon | VIwo lln || VIavo n = C(1+27)

A combination of ([@I0) and [@IT]) shows that (@3] holds true with 5 independent of ¢ and h. O

The well-posedness of the mixed approximation problem ([@2) follows from the ellipticity of a,  and
the discrete B-B inequality of b, . We are ready to derive the error estimate.

4.2. Error estimates. To carry out the error estimate, we define the bilinear form A as
Alv, ¢;w, 2): = a, p(v,w) + b, p(w, q) + b, p(v,2) — A te,(q, 2)
for all v,w € V), and ¢, z € Pp,.
We prove the following inf-sup inequality for A with the aid of the discrete B-B inequality (9]
Lemma 4.4. There exists o depending on p and B such that

(4.12) inf sup AW, giw, 2) >
(0.0)EVix Pr (w,2)e Vi x P [I(W 2)nll (v, @)l n

where ||(w, 2)|l.n: = || Vw ||on + ||2]l. + A"V2||2]|, and B has appeared in [@EJ).

)

Proof. Noting that a, p is elliptic over V;, (£3) and the discrete B-B inequality for b, , holds (£9), we
obtain ({12 by [Bra96, Theorem 2]. O

We are ready to prove error estimates.

Theorem 4.5. There exists C' independent of 1, \ and h such that

(4.13) I(w = wn,p = pr)lln < C(R™ 4+ b ) (| wllgrss + [ p [l a0),
and
(4.14) Il(w = wn, p = pn)lln < CRV2| £ |12

Proof. Let v =up — uy and ¢ = pp, — py with uy € Vj, and p; € Py, for any w € Vj, and z € Py,
A(v, ¢;w, z) = A(un, pr; w, z) — A(u, pyw, 2) + Alu — us,p — pr;w, 2)
= (f,w) — Au,p;w, 2) + Alu —us,p — pr;w, 2)
= Alw —ur,p—pryw,z) — 12 Z (Onon) - [Opw] do(x).
e€y, €
The boundedness of A yields
|A(w —ur, p— pr;w, 2)| < max(L,20)[[(w — wr, p — po) e nll(w, 2)|o,n-

Let u; = IIu be the interpolation of © and p; be the r — 1 order Lagrangian interpolation of p,
respectively. The standard interpolation error estimates in (B.6) gives

Iw —wrp = p)llen < CO + b ([ w |l grrss + [ 2 lar).
Note that
/[[8nw]]qdo(a:) =0 for all ¢ € P,_o(e).

e
A standard estimate for the consistency error functional with trace inequality (II) gives

/2 Z (Onon) - [Opw] do(x)

e€ly €

< CPR T ([wllgres + o o)l Viw | 22

< Cl (|l g + 2 )l Vo [l
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A combination of the above three inequalities, the discrete inf-sup condition (12 and the triangle
inequalities gives (£I3)).
Next, let u; = Iu and let p; be the Clément interpolation [CIE75] of p, respectively. The interpolation

error (A7) and the error estimates for the Clément interpolation give

I = wr,p = p0)lon < CR2 (e + 1 e + el grssz + 2 aros2)) < CHY2ILf 2,

where we have used (229) and (230) in the last step.
Using the trace inequality ([&I]), we bound the consistency error functional as
2

< CERY2(Jlullmz + o )2 (lullms + 12 12)'2 ) Viw |2

> [ (@Onon) - [Onw] do(x)

e€Ep V€

< O £ 2]l Vaw |lun,

where we have used (2.28) in the last step.
Combining these inequalities, the discrete inf-sup condition [@I2]) and the triangle inequalities gives ([{14]).

O
Corollary 4.6. There exists C independent of v, A\ and h such that
(4.15) (w0 — wnspo = pr)llen < CH2 4+ B3| f || 2,
where ug is the solution of 28], and po = Adivuy.
Proof. A combination of Theorem 23] Theorem 5] and the triangle inequality gives ([@13)). O

5. NUMERICAL EXAMPLES

In this part, we report the numerical performance for the proposed element of the lowest-order, i.e.,
r = 2. We test the accuracy and robustness of the element pair for the nearly incompressible materials.
All examples are carried out on the nonuniform mesh. We are interested in the case when the Poisson’s
ratio v is close to 0.5 and we report the relative errors | V(u—wus) ||.,n/ || Vul|, and the rates of convergence.
We let = (0,1)2, and set Young’s modulus £ = 1. The Lamé constants are determined by

Ev E

7 ()

We set v = 0.3 for the ordinary cases, hence A = 0.5769, and p = 0.3846, and we set v = 0.4999 for the
nearly incompressible materials, hence A = 1.6664e3, and p = 0.3334.

5.1. The first example. We test the performance of the element pair by solving a completely incom-

pressible problem, which means divu = 0. Let w = (u1,us) with
uy = — sin®(mx) sin(2my) sin(my),  ug = sin(27x) sin(7x) sin®(7y).

Therefore divu = 0, and f is independent of .
In view of Table 2] the optimal rates of convergence are observed with the completely incompressible
media, which is consistent with the error bound (@I3).
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TABLE 2. Relative errors and convergence rates for the 1st example
\h 1/8 1/16 1/32 1/64
v=0.3,\=0.5769, u = 0.3846
le4+00 2.592e-01 1.333e-01 6.519e-02 3.246e-02

rate 0.96 1.03 1.01
1le-06 4.252e-02 1.159e-02 2.784e-03 6.918e-04
rate 1.88 2.06 2.01

v = 0.4999, \ = 1.6664e3, 11 = 0.3334
1e+00 2.592e-01 1.333e-01 6.519¢-02 3.246e-02

rate 0.96 1.03 1.01
1le-06  4.252e-02 1.159e-02 2.784e-03 6.918e-04
rate 1.88 2.06 2.01

5.2. The second example. This example is motivated by [Wih06], which admits a singular solution.

The exact solution w = (u1,u2) expressed in the polar coordinates as
ur = uy(p,0) cosd —ug(p,0)sinb, wus =u,(p,8)siné + ug(p, ) cosb,
where

up = ipa (—(a + 1) cos((a + 1)8) + (C2 — (e + 1))C cos((a — 1)9)),

1
up = ﬂpa((a + 1) sin((a + 1)0) + (Co + a — 1)Cy sin((a — 1)9)),
and o = 1.5,w = 37/4,
2
_cos((ar + 1w) and  Cy — 2(A + u)'
cos((a — 1)w) A+ pu
It may be verified that w € [H®/27¢(Q)]? for a small number ¢ > 0. A direct calculation gives that

C, =

f = 0, while it is nearly incompressible because

divu = 3(1%\55%1/2 cos(6/2).

TABLE 3. Relative errors and convergence rates for the 2nd example
\h 1/8 1/16 1/32 1/64
v=0.3,A=0.5769, u = 0.3846
1le+00 1.062e-01 7.554e-02 5.355e-02 3.792e-02

rate 0.49 0.50 0.50
1le-06  2.809e-03 1.001e-03 3.549e-04 1.257e-04
rate 1.49 1.50 1.50

v =0.4999, A = 1.6664e3, n = 0.3334
le4+00 1.149e-01 8.200e-02 5.824e-02 4.135e-02

rate 0.49 0.49 0.49
le-06  4.399e-03 1.567e-03 5.558e-04 1.968e-04
rate 1.49 1.50 1.50

It follows from Table [@] that the rates of convergence are sub-optimal. It is reasonable because the
solution w is singular, which is similar to the results in [Wih06]. The element pair is robust for the nearly

incompressible materials.
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5.3. The third example. In the last example, we test a problem with strong boundary layer effects.
Such effects have been frequently observed in the stain elasticity model [EGHT02|[LMST7[LMTLMW2T].
It is shown that the numerical solution converges to the solution of (2.8) when ¢ < h.

When ¢ — 0, the boundary value problem (L)) reduces to [28)). Let ug = (u?,u3) with

ui = —sin®(7x) sin(27y), w9 = sin(27z) sin® (7y)

be the solution of problem (2.8). The source term f is computed from (23]). A direct calculation gives
that divug = 0, and f is independent of A. The exact solution u for (L)) is unknown, while it has strong

boundary layer effects. In this case, we take ¢ < h, and report the relative error || V(uo—us) ||,.1/||Vuol.

TABLE 4. Relative errors and convergence rates for the 3rd example
\h 1/8 1/16 1/32 1/64
v=0.3,A=0.5769, u = 0.3846
le-04 1.311e-01 8.966e-02 6.299e-02 4.476e-02

rate 0.55 0.51 0.49
le-06 1.311e-01 8.960e-02 6.283e-02 4.432¢-02
rate 0.55 0.51 0.50

v =0.4999, A = 1.6664e3, n = 0.3334
le-04 1.312e-01 8.968e-02 6.300e-02 4.476e-02

rate 0.55 0.51 0.49
1le-06 1.312e-01 8.963e-02 6.284e-02 4.432e-02
rate 0.55 0.51 0.50

It follows from Table[d that the rate of convergence for the element pair changes to 1/2 because of the
boundary layer effects, which is consistent with the theoretical result. The element is still robust when

the solution has strong boundary layer effects in the nearly incompressible limit.

REFERENCES

[AA02a] E. Amanatidou and N. Aravas, Mized finite element formulations of strain-gradient elasticity problems,
Comput. Methods Appl. Mech. Engrg. 191 (2002), 1723-1751.
[AA02b] H. Askes and E. C. Aifantis, Numerical modeling of size effects with gradient elasticity- Formulation, meshless
discretization and examples, Int. J. Fract. 117 (2002), 347-358.
[AA92] S. B. Altan and E. C. Aifantis, On the structure of the mode III crack-tip in gradient elasticity, Scripta
Metal. Mater. 26 (1992), 319-324.
[ABAVLT13] F. Auricchio, L. Beirdo da Veiga, C. Lovadina, A. Reali, R. L. Taylor, and P. Wriggers, Approzimation of
incompressible large deformation elastic problems: some unresolved issues, Comput. Mech. 52 (2013), 1153—
1167.
[ABF84] D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the Stokes equations, Calcolo 21 (1984),
337-344.
[ADN64] S. Agmon, L. Douglis, and A. Nirenberg, Estimates near the boundary for solutions of elliptic partial differ-
ential equations satisfying general boundary conditions II, Comm. Pure Appl. Math. 17 (1964), 35-92.
[AF03] R. A. Adams and J. J. F. Fournier, Sobolev Spaces, 2nd ed., Academic Press, 2003.
[Aif99] E. C. Aifantis, Strain gradient interpretation of size effects, Int. J. Fract. 95 (1999), 299-314.
[BB03] C. Bacuta and J. H. Bramble, Regularity estimates for solutions of the equations of linear elasticity in convex
plane polygonal domains, Z. Angew. Math. Phys. 54 (2003), 874-878.
[BBF13] D. Boffi, F. Brezzi, and M. Fortin, Mized Finite Element Methods and Applications, 2nd ed., Springer-Verlag,
Berlin Heidelberg, 2013.
[BFS65] F. A. Bogner, R. L. Fox, and L. A. Schmit, The generation of interelement compatible stiffness and mass
matrices by the use of interpolation formulas, Proceedings of the Conferences on the Matrix Methods in
Structural Mechanics, 1965.



(BG83
[BGNS11]
[BMO5]
[BN11]

[Bra96]
(BSO08]

[BS92a]
[BS92b)]

[CiaT8]
[Cl1é75]

[CM10]
[CR72]

[DM13)
[DX14]

[EGH*02]

[FHO7)
[Fis11]
[FKM™11]

[FMS10]

[FN14]
[For77]
[Gall1]
[GLN12]
[Her65)

[HH69)]

[Joh72]

[KN20]

TAYLOR-HOOD LIKE FEMS FOR NEARLY INCOMPRESSIBLE SGE PROBLEMS 25

C. Bernardi and R. Geneviéve, Analysis of some finite elements for the stokes problems, Math. Comp. 44
(1985), no. 169, 71-79.

S. C. Brenner, T. Gudi, M. Neilan, and L.-Y. Sung, C° penalty methods for the fully nonlinear Monge- Ampére
equation, Math. Comp. 80 (2011), 1979-1995.

D. Braess and P. B. Ming, A finite element method for nearly incompressible elasticity problems, Math.
Comp. 74 (2005), 25-52.

S. C. Brenner and M. Neilan, A C© interior penalty method for a fourth order elliptic singular perturbation
problem, SIAM J. Numer. Anal. 49 (2011), 869-892.

D. Braess, Stability of saddle-point problems with penalty, RAIRO Anal. Numér. 30 (1996), 731-742.

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3rd ed., Springer
Science + Buiness Media LLC, 2008.

I. Babuska and M. Suri, Locking effects in the finite element approrimation of elasticity problems, Numer.
Math. 62 (1992), 439-463.

S. C. Brenner and L.-Y. Sung, Linear finite element methods for planar linear elasticity, Math. Comp. 59
(1992), 321-338.

P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

Ph. Clément, Approximation by finite element functions using local regularization, RAIRO Anal. Numér. 9
(1975), 77-84.

M. Costabel and A. Mclntosh, On Bogovskii and regularized Poincaré integral operators for de Rham com-
plezes on Lipschitz domains, Math. Z. 265 (2010), no. 2, 297-320.

P. G. Ciarlet and P.-A. Raviart, General Lagrange and Hermite interpolation in R™ with applications to
finite element methods, Arch. Rational Mech. Anal. 46 (1972), 177-199.

R. Danchin and P. B. Mucha, Divergence, Discrete Contin. Dyn. Syst. Ser. S 6 (2013), 1163-1172.

C. F. Dunkl and Y. Xu, Orthogonal Polynomials of Several Variables, 2nd ed., Encyclopedia of Mathematics
and its Applications, Cambridge University Press, 2014.

G. Engel, K. Garikipati, T. J. R. Hughes, M. G. Larsson, L. Mazzei, and R. L. Taylor, Continu-
ous/discontinuous finite element approzimations of fourth-order elliptic problems in structural and contin-
uum mechanics with applications to thin beams and plates, and strain gradient elasticity, Comput. Methods
Appl. Mech. Engrg. 191 (2002), 3669-3750.

N. A. Fleck and J. W. Hutchinson, Strain gradient plasticity, Advances in Applied Mechanics, vol. 33,
Academic Press, 1997, pp. 295-361.

P. Fischer, C1 Continuous Methods in Computational Gradient Elasticity, 2011. Der Technischen Fakultit
der Universitat Erlangen-Nirnberg.

P. Fischer, M. Klassen, J. Mergheim, P. Steinmann, and R. Miiller, Isogeometric analysis of 2D gradient
elasticity, Comput. Mech. 47 (2011), 325-334.

P. Fischer, J. Mergheim, and P. Steinmann, On the C' continuous discretization of non-linear gradient
elasticity: a comparison of NEM and FEM based on Bernstein-Bézier patches, Int. J. Numer. Meth. Engng.
82 (2010), 1282-1307.

X. B. Feng and M. Neilan, Convergence of a fourth-order singular perturbation of the n-dimensional radially
symmetric Monge—-Ampére equation, Appl. Anal. 93 (2014), 1626-1646.

M. Fortin, An analysis of the convergence of mized finite element methods, RAIRO Anal. Numér. 11 (1977),
341-354.

G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State
Problems, Springer Science+Business Media, LLC, 2011.

J. Guzmién, D. Leykekhman, and M. Neilan, A family of non-conforming elements and the analysis of
Nitsche’s method for a singularly perturbed fourth order problem, Calcolo 49 (2012), 95-125.

L. R. Hermann, Elasticity equations for incompressible and nearly incompressible materials by a variational
theorem, ATAA, J. 3 (1965), 1896-1900.

I. Hlavacek and M. Hlavacek, On the existence and uniqueness of solution and some variational principles
in linear theories of elasticity with couple-stresses. II: Mindlin’s elasticity with microstructure and the first
strain-gradient theory, Aplikace Matematiky 14 (1969), 411-427.

F. John, The transition from thin plate to membrane in the case of a plate under uniform tension, Continuum
mechanics and related problems of analysis, Izdat. “Nauka”, Moscow, 1972, pp. 193-201.

S. Khakalo and J. Niiranen, Anisotropic strain gradient thermoelasticity for cellular structures: Plate models,
homogenization and isogeometric analysis, J. Mech. Phys. Solids 134 (2020), 103728.



26

[Koi64]
[Kor08]
[Kor09)]
[LM19]
[LMS17]
[LMW21]
[LW17]

[Min64]
[MSW13]

[MTWO02]

[NKBN16]

[NTWO1]
[PB15]
[PZV09)

[RVAVG14]

[Sch76]
[Sem92]
[Sem94]
[SKF99]
[STPSS5]

[SzeT5)]

[THT3]

[Tia21]
[Vog83]
[Wei06]
[Wiho6]

[WZZ12]

Y. L. LIAO, P. B. MING, AND Y. XU

W. T. Koiter, Couple-stresses in the theory of elasticity I, Nederl. Akad. Wetensch. Proc. Ser. B 67 (1964),
17-29.

A. Korn, Solution générale du probléme d’équilibre dans la théorie de l’élasticité dans le cas ou les efforts
sont donnés a la surface, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2) 10 (1908), 165-269.

, Uber einige ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen
eine Rolle spielen, Bull. Intern. Cracov. Akad. Umiejetnosci (Classe Sci. Math. Nat.) (1909), 706-724.

Y. L. Liao and P. B. Ming, A family of nonconforming rectangular elements for strain gradient elasticity,
Adv. Appl. Math. Mech. 11 (2019), no. 6, 1263-1286.

H. L. Li, P. B. Ming, and Z.-C. Shi, Two robust nonconforming H?—elements for linear strain gradient
elasticity, Numer. Math. 137 (2017), 691-711.

H. L. Li, P. B. Ming, and H. Y. Wang, H>—Korn’s inequality and the nonconforming elements for the strain
gradient elastic model, J. Sci. Comput. 88 (2021), 78-100. https://doi.org/10.1007/s10915-021-01597-7.

Ph. Laurencot and Ch. Walker, Some singular equations modeling MEMS, Bull. Amer. Math. Soc. 54 (2017),
437-479.

R. D. Mindlin, Micro-structure in linear elasticity, Arch. Rational Mech. Anal. 16 (1964), 51-78.

K.-A. Mardal, J. Schéberl, and R. Winther, A uniformly stable Fortin operator for the Taylor-Hood element,
Numer. Math. 123 (2013), 537-551.

K. A. Mardal, X.-C. Tai, and R. Winther, A robust finite element method for Darcy-Stokes flow, SIAM J.
Numer. Anal. 40 (2002), 1605-1631.

J. Niiranen, S. Khakalo, V. Balobanov, and A. H. Niemi, Variational formulation and isogeometric analysis

for fourth-order boundary value problems of gradient-elastic bar and plane strain/stress problems, Comput.
Methods Appl. Mech. Engrg. 308 (2016), 182—211.

T. K. Nilssen, X.-C. Tai, and R. Winther, A robust nonconforming H?-element, Math. Comp. 70 (2001),
489-505.

V. Phunpeng and P. M. Baiz, Mized finite element formulations for strain-gradient elasticity problems using
the FEniCS environment, Finite Elem. Anal. Des. 96 (2015), 23-40.

S.-A. Papanicolopulos, A. Zervos, and I. Vardoulakis, A three-dimensional C! finite element for gradient
elasticity, Int. J. Numer. Meth. Engng. 135 (2009), 1396-1415.

S. Rudraraju, A. Van der Ven, and K. Garikipati, Three-dimensional isogeometric solutions to general bound-
ary value problems of Toupin’s gradient elasticity theory at finite strains, Comput. Methods Appl. Mech.
Engrg. 278 (2014), 705-728.

Z. Schuss, Singular perturbations and the transition from thin plate to membrane, Proc. Amer. Math. Soc.
58 (1976), 139-147.

B. Semper, Conforming finite element approzximations for a fourth-order singular perturbation problem,
SIAM J. Numer. Anal. 29 (1992), 1043-1058.

, Locking in finite-element approzimations to long thin extensible beams, IMA J. Numer. Anal. 14
(1994), 97-109.

J. Y. Shu, W. E. King, and N. A. Fleck, Finite elements for materials with strain gradient effects, Internat.
J. Numer. Meth. Engreg., 44 (1999), 373-391.

J. Simo, R. L. Taylor, and K. Pister, Variational and projection methods for the volume constraint in finite
deformation elasto-plasticity, Comput. Methods Appl. Mech. Engrg. 51 (1985), 177-208.

G. Szegd, Orthogonal Polynomials, 4th ed., AMS, Providence, Rhode Island, 1975. AMS Coll. Publ. Vol.
XXIIT.

C. Taylor and P. Hood, A numerical solution of the Navier—Stokes equations using the finite element tech-
nique, Comput. & Fluids 1 (1973), 73-100.

S. D. Tian, New Nonconforming Finite Element Methods for Fourth Order Elliptic Problems, 2021. Ph.D.
Thesis, Peking University.

M. Vogelius, An analysis of the p-version of the finite element method for nearly incompressible materials
uniformly valid, optimal error estimates, Numer. Math. 41 (1983), 39-53.

Y. G. Wei, A new finite element method for strain gradient theories and applications to fracture analyses,
European Journal of Mechanics A/Solids 25 (2006), 897-913.

T. P. Wihler, Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems, Math. Comp.
75 (2006), 1087-1102.

M. Wang, P. H. Zu, and S. Zhang, High accuracy nonconforming finite elements for fourth order problems,
Sci. China Math. 55 (2012), no. 10, 2183-2192.



TAYLOR-HOOD LIKE FEMS FOR NEARLY INCOMPRESSIBLE SGE PROBLEMS 27

[ZMKZ12] L. Zybell, U. Miihlich, M. Kuna, and Z. L. Zhang, A three-dimensional finite element for gradient elasticity
based on mized-type formulation, Comput. Mater. Sci. 52 (2012), 268-273.
[ZPV09] A. Zervos, S.-A. Papanicolopulos, and I. Vardoulakis, Two finite element discretizations for gradient elastic-
ity, J. Eng. Mech.-ASCE 135 (2009), 203-213.

LSEC, INSTITUTE OF COMPUTATIONAL MATHEMATICS AND SCIENTIFIC/ENGINEERING COMPUTING, AMSS, CHINESE
ACADEMY OF SCIENCES, NO. 55, EAST RoAD ZHONG-GUAN-CUN, BEJING 100190, CHINA

SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF CHINESE ACADEMY OF SCIENCES, BEIJING 100049, CHINA

Email address: liaoyulei@lsec.cc.ac.cn, mpb@lsec.cc.ac.cn

LABORATORY OF COMPUTATIONAL PHYSICS, INSTITUTE OF APPLIED PHYSICS AND COMPUTATIONAL MATHEMATICS, BEI-
JING 100088, CHINA

Email address: xu_yun@iapcm.ac.cn



	1. Introduction
	2. The Mixed Variational Formulation and Regularity Estimates
	2.1. The mixed variational formulation
	2.2. Regularity estimates

	3. A Family of Nonconforming Finite Elements
	3.1. A family of finite elements
	3.2. Explicit representation for the bubble space

	4. The Mixed Finite Elements Approximation
	4.1. The mixed finite element approximation
	4.2. Error estimates

	5. Numerical Examples
	5.1. The first example
	5.2. The second example
	5.3. The third example

	References

