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TAYLOR-HOOD LIKE FINITE ELEMENTS FOR NEARLY INCOMPRESSIBLE

STRAIN GRADIENT ELASTICITY PROBLEMS

YULEI LIAO, PINGBING MING, AND YUN XU

Abstract. We propose a family of mixed finite elements that are robust for the nearly incompressible

strain gradient model, which is a fourth-order singular perturbed elliptic system. The element is similar

to [C. Taylor and P. Hood, Comput. & Fluids, 1(1973), 73-100] in the Stokes flow. Using a uniform

discrete B-B inequality for the mixed finite element pairs, we show the optimal rate of convergence that

is robust in the incompressible limit. By a new regularity result that is uniform in both the materials

parameter and the incompressibility, we prove the method converges with 1/2 order to the solution with

strong boundary layer effects. Moreover, we estimate the convergence rate of the numerical solution

to the unperturbed second-order elliptic system. Numerical results for both smooth solutions and the

solutions with sharp layers confirm the theoretical prediction.

1. Introduction

The strain gradient models have drawn great attention recently because they capture the size effect

of nano-materials for plasticity [FH97] as well as for mechanical meta-materials [KN20] by incorporating

the higher-order strain gradient and the intrinsic material length scale into the constitutive relations.

Studies from the perspective of modeling, mechanics and mathematics may date back to 1960s [Koi64,

Min64, HH69], while large-scale simulations are relatively recent [PZV09, ZMKZ12, RVdVG14, PB15].

Different methods such as H2 conforming finite element methods [ZPV09,FMS10], H1 conforming mixed

finite element methods [AA02a,PB15], nonconforming finite element methods [LMS17,LM19,LMW21],

discontinuous Galerkin methods [EGH+02], isogeometric analysis [FKM+11, NKBN16], and meshless

methods [AA02b] have been used to simulate the strain gradient elastic models with different complexity,

just to mention a few. One of the numerical difficulties is that the number of the materials parameters

is too large [Min64], another is that the materials parameters may cause boundary layer or numerical

instability when they tend to certain critical values [EGH+02].

The strain gradient elasticity model proposed by Altan and Aifantis [AA92] seems the simplest one

among them because it contains only one material parameter besides the Lamé constants, while it still

models the size effect adequately [Aif99]. This model is described by the following boundary value

problem:

(1.1)

{
(ι2∆− I) (µ∆u+ (λ+ µ)∇ divu) = f in Ω,

u = ∂nu = 0 on ∂Ω,

where Ω ⊂ R2 is a smooth domain, u : Ω → R2 is the displacement, ∂nu is the normal derivative of u,

λ and µ are the Lamé constants, and ι is the microscopic parameter such that 0 < ι ≤ 1, which stands

for the intrinsic length scale. Besides modeling the strain gradient elasticity, the system (1.1) may also

be regarded as a vector analog of the fourth-order singular perturbed problem, which usually models
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a clamped plate problem [Joh72, Sch76, Sem92, Sem94, NTW01, BN11], or arises from a fourth-order

perturbation of the fully nonlinear Monge-Ampère equation [BGNS11,FN14]. System of the form (1.1)

may also come from the linearized model in MEMS [LW17].

In the present work, we are interested in (1.1) for the nearly incompressible materials. Such materials

are commonly used in industry and a typical example is natural rubber. To the best of our knowledge,

the studies on the approximation of incompressible and nearly incompressible strain gradient elastic-

ity have not been sufficiently addressed in the literature, although vast efforts have been devoted to

finite element approximation of the incompressible and nearly incompressible elasticity problems; See

e.g., [Her65,Vog83,STP85,BS92a,BS92b,BM05,ABdVL+13]. In [FH97, §III. C], the authors studied the

incompressible limit of the strain gradient model. Mixed finite elements for the incompressible Fleck-

Hutchinson strain gradient model have been designed and tested in [SKF99]. A finite element method

has been tested for the nearly incompressible strain gradient model in [Wei06]. A mixed finite element,

which approximated the displacement with Bogner-Fox-Schmidt element [BFS65] and approximated the

pressure with the 9−node quadrilateral element, was constructed for the coupled stress model in [Fis11],

and bore certain similarities with problem (1.1). Recently, Hu and Tian [Tia21] have proposed several

robust elements for the two-dimensional strain gradient model in the framework of reduced integration.

Unfortunately, none of the above work proved the robustness of the proposed elements rigorously in the

incompressible limit.

Following the classical approach dealing with the nearly incompressible elasticity problem [Her65], we

introduce an auxiliary variable “pressure” p and recast (1.1) into a displacement-pressure mixed varia-

tional problem, i.e., the so-called (u, p)−formulation. We approximate the displacement by augmenting

the finite element space in [GLN12] with certain new bubble functions. The original motivation for

the bubble functions is to design the stable finite element pair for the Stokes problem [ABF84,BG85].

The augmented bubble functions help out in dealing with the extra constraints such as the divergence

stability in Stokes problem and the high order consistency error [NTW01,GLN12,WZZ12]. Such idea

has been exploited by one of the authors to design robust finite elements for the strain gradient elasticity

model [LMS17]. Besides, we employ the standard continuous Lagrangian finite element of one order

lower than that for the displacement to approximate the pressure. Such a finite element pair is similar to

the Taylor-Hood element in the Stokes flows [TH73] which is Pr − Pr−1 scheme and continuous pressure

approximation. For both smooth solutions and solutions with strong boundary layer effects, these mixed

finite element pairs are robust in the incompressible limit, here the robustness is understood in the sense

that the rate of convergence is uniform in both ι and λ. The bubble function spaces in approximating

the displacement are defined by certain orthogonal constraints, and the explicit representations of these

spaces are desired for the sake of implementation. We achieve this with the aid of the Jacobi polynomial.

In addition to perspicuous results in view of analytics, such representation lends itself to the construction

of the analytical shape functions for the approximating space of the displacement. Though we focus on

the two-dimensional problem, the element may be readily extended to the three-dimensional problem.

cf., Remark 3.3.

By standard mixed finite element theory [BBF13], a discrete B-B inequality that is uniform in ι is

needed for the well-posedness of the mixed (u, p)−discretization problem. This B-B inequality reduces to

the remarkable B-B inequality for the Stokes problem when ι tends to zero. A natural way to prove the

discrete B-B inequality is to construct a uniformly stable Fortin operator [For77,MSW13,MTW02], which

does not seem easy due to the complication of the constraints. To this end, we construct a quasi-Fortin

operator that takes different forms for small ι as well as large ι. This quasi-Fortin operator is bounded in

a weighted energy norm in the corresponding regimes of ι. Besides the discrete B-B inequality, another

ingredient in proving the robustness is a new regularity result for the solution of (1.1) that is uniform in
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both λ and ι, which is crucial to prove the convergence rate for the layered solution. The proof combines

the method dealing with the nearly incompressible linear elasticity [Vog83] and the regularity estimate

for the fourth-order singular perturbed problem [NTW01,LMW21].

The outline of the paper is as follows. In §2, we introduce Altan and Aifantis’ strain gradient model and

its mixed variational formulation. We demonstrate the numerical difficulty caused by large λ, and prove

the uniform regularity estimate for problem (1.1). In §3, we construct a family of nonconforming finite

elements, and derive the explicit formulations for the bubble spaces. In §4, we use the nonconforming

elements proposed in §3 together with the continuous Lagrangian finite elements to discretize the mixed

variational problem and prove the optimal rate of convergence. In the last section, we report the numerical

results, which are consistent with the theoretical prediction.

Throughout this paper, the constant C may differ from line to line, while it is independent of the

mesh size h, the materials parameter ι and the Lamé constant λ.

2. The Mixed Variational Formulation and Regularity Estimates

First we fix some notations. The space L2(Ω) of the square-integrable functions defined on a smooth

domain Ω is equipped with the inner product (·, ·) and the norm ‖ · ‖L2(Ω), while L
2
0(Ω) is the subspace

of L2(Ω) with mean value zero. Let Hm(Ω) be the standard Sobolev space [AF03] with the norm

‖ · ‖Hm(Ω), while Hm
0 (Ω) is the closure in Hm(Ω) of C∞

0 (Ω). We may drop Ω in ‖ · ‖Hm(Ω) when

no confusion may occur. For any vector-valued function v, its gradient is a matrix-valued function

with components (∇v)ij = ∂jvi, and the symmetric part of ∇v is defined by ǫ(v) = (∇v + [∇v]T )/2.

The divergence operator is defined as div v = ∂1v1 + ∂2v2. The Sobolev spaces [Hm(Ω)]2, [Hm
0 (Ω)]2

and [L2(Ω)]2 of a vector-valued function may be defined similarly as their scalar counterpart. This

rule equally applies to the inner products and the norms. The double inner product between tensors

A = (Aij)
2
i,j=1,B = (Bij)

2
i,j=1 equals A : B =

∑2
i,j=1 AijBij .

We recast (1.1) into a variational problem: Find u ∈ V : = [H2
0 (Ω)]

2 such that

(2.1) a(u,v) = (f ,v) for all v ∈ V,

where a(u,v): = (Cǫ(u), ǫ(v)) + ι2(D∇ǫ(u),∇ǫ(v)), and the fourth-order tensor C and the sixth-order

tensor D are defined as

Cijkl = λδijδkl + 2µδikδjl and Dijklmn = λδilδjkδmn + 2µδilδjmδkn,

respectively. Here δij is the Kronecker delta function. The strain gradient ∇ǫ(v) is a third-order tensor

that is defined by (∇ǫ(v))ijk = ∂i(ǫ(v))jk.

We are interested in the regime when λ→ ∞, which means that the material is nearly incompressible.

Proceeding along the same line that leads to [LMW21, Theorem 5], the tensor product of the element

(NTW) proposed in [NTW01] may be used to approximate (1.1), and the error estimate reads as

‖u− uh‖ ≤ Cλ(h2 + ιh)‖u ‖H3 ,

where ‖v‖2: = a(v,v), and C is independent of the mesh size h, and ι and λ. Therefore, the error

bound degenerates when λ is large, and the NTW element does not seem a good candidate for the nearly

incompressible material. The following numerical example confirms this observation.

Example 2.1. Let Ω = (0, 1)2, and u = (u1, u2) with

u1 = − sin3(πx) sin(2πy) sin(πy), u2 = sin(2πx) sin(πx) sin3(πy).

It is clear that divu = 0, hence the material is completely incompressible. The details of the numerical

experiment such as the mesh generation, are the same as those in § 5. The relative error ‖u− uh‖/‖u‖
in Table 1 shows that the rate of convergence deteriorates when λ is large.
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Table 1. Relative errors and rate of convergence for NTW

ι\h 1/8 1/16 1/32 1/64

ν = 0.3000, λ = 0.5769, µ = 0.3846

1e+00 2.681e-01 1.373e-01 6.698e-02 3.334e-02

rate 0.97 1.04 1.01

1e-06 4.550e-02 1.244e-02 3.001e-03 7.467e-04

rate 1.87 2.05 2.01

ν = 0.499999, λ = 1.6667e5, µ = 0.3333

1e+00 9.995e-01 9.979e-01 9.916e-01 9.682e-01

rate 0.00 0.01 0.03

1e-06 9.752e-01 7.233e-01 2.502e-01 6.561e-02

rate 0.43 1.53 1.93

2.1. The mixed variational formulation. We introduce an auxiliary variable p = λdivu, and p ∈
P : = L2

0(Ω) ∩H1
0 (Ω). We write Problem (2.1) into a mixed variational problem as

(2.2)

{
aι(u,v) + bι(v, p) = (f ,v) for all v ∈ V,

bι(u, q)− λ−1cι(p, q) = 0 for all q ∈ P,

where

aι(v,w): = 2µ
(
(ǫ(v), ǫ(w)) + ι2(∇ǫ(v),∇ǫ(w))

)
, v,w ∈ V,

bι(v, q): = (div v, q) + ι2(∇ div v,∇q), v ∈ V, q ∈ P,

cι(s, q): = (s, q) + ι2(∇s,∇q), s, q ∈ P.

It is convenient to define the weighted norm for all q ∈ P as

‖q‖ι: = ‖ q ‖L2 + ι‖∇q ‖L2.

‖q‖ι is a norm over P for any q ∈ P and any finite ι. By Poincaré’s inequality, ‖∇v‖ι is a norm over V

for any v ∈ V . To study the well-posedness of Problem (2.2), we start with the following B-B inequality

that is uniform for any ι.

Lemma 2.2. For any q ∈ P , there exists v ∈ V such that

(2.3) div v = q and ‖∇v‖ι ≤ C‖q‖ι,

where C only depends on Ω but is independent of ι.

Proof. By [Gal11, Theorem III 3.3] and [CM10, Proposition 4.1], for any q ∈ P , there exists v ∈ V such

that div v = q and

(2.4) ‖ v ‖H1 ≤ C‖ q ‖L2 and ‖ v ‖H2 ≤ C‖ q ‖H1 ,

where the constant C only depends on Ω.

Because the mean of q is zero for any q ∈ P , by Poincaré’s inequality, there exists C such that

‖ q ‖H1 ≤ C‖∇q ‖L2 .

Combining the above two inequalities, we obtain

‖∇v‖ι = ‖∇v ‖L2 + ι‖∇2v ‖L2 ≤ C‖q‖ι.

This gives (2.3). �
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Lemma 2.3. There exists a unique u ∈ V and p ∈ P satisfying (2.2), and there exists C independent

of ι and λ such that

(2.5) ‖∇u‖ι + ‖p‖ι ≤ C‖ f ‖H−1 .

Proof. By the first Korn’s inequality [Kor08,Kor09],

(2.6) ‖ ǫ(v) ‖2L2 ≥ 1

2
‖∇v ‖2L2 for all v ∈ [H1

0 (Ω)]
2,

and the H2 Korn’s inequality [LMW21, Theorem 1],

(2.7) ‖∇ǫ(v) ‖2L2 ≥
(
1− 1√

2

)
‖∇2v ‖2L2 for all v ∈ [H2(Ω)]2,

we obtain

aι(v,v) ≥ 2µ

(
1

2
‖∇v ‖2L2 +

(
1− 1√

2

)
ι2‖∇2v ‖2L2

)
≥ µ

2
‖∇v‖2ι .

Using (2.3), for any p ∈ P , there exists v0 ∈ V such that div v0 = p and ‖∇v0‖ι ≤ C‖p‖ι. This

implies

sup
v∈V

bι(v, p)

‖∇v‖ι
≥ bι(v0, p)

‖∇v0‖ι
=

‖p‖2ι
‖∇v0‖ι

≥ C‖p‖ι.

By [Bra96, Theorem 2], we immediately obtain the well-posedness of (2.2) and the estimate (2.5) by

noting

|(f ,v)| ≤ ‖ f ‖H−1‖ v ‖H1 ≤ C‖ f ‖H−1‖∇v ‖L2 ≤ C‖ f ‖H−1‖∇v‖ι.
�

By the standard regularity theory for the elliptic system, we find u ∈ [H4(Ω)]2 and p ∈ H3(Ω) provided

that f ∈ [L2(Ω)]2, while we are interested in whether the shift estimate ‖∇2u ‖ι+ ‖∇p ‖ι ≤ C(ι)‖ f ‖L2

is true with a λ−independent constant C(ι), this is the objective of the next part.

2.2. Regularity estimates. We aim to study the regularity of the solution of (1.1). Letting ι→ 0, we

find u0 ∈ [H1
0 (Ω)]

2 satisfying

(2.8) − Lu0 = f in Ω, u0 = 0 on ∂Ω,

in the sense of distribution, where Lu0: = µ∆u0 + (λ + µ)∇ divu0. The H1−error for u − u0 will be

given in Theorem 2.9, which is crucial for the regularity estimate of problem (1.1). We reshape (2.8)

into a variational problem: Find u0 ∈ [H1
0 (Ω)]

2 such that

(2.9) (Cǫ(u0), ǫ(v)) = (f ,v) for all v ∈ [H1
0 (Ω)]

2.

By [BB03], we have the following shift estimate for u0: There exists C independent of λ such that

(2.10) ‖u0 ‖H2 + λ‖ divu0 ‖H1 ≤ C‖ f ‖L2 .

Next we study an auxiliary boundary value problem:

(2.11)

{
∆Lw = F , in Ω,

w = ∂nw = 0, on ∂Ω.

The a-priori estimate for the solution of the above boundary value problem reads as

Lemma 2.4. There exists a unique w ∈ V satisfying (2.11), and there exists C independent of λ such

that

(2.12) ‖w ‖H2 + λ‖ divw ‖H1 ≤ C‖F ‖H−2 .
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Proof. We recast (2.11) into a variational problem: Find w ∈ V such that

A(w,v) = (F ,v) for all v ∈ V,

where A(v, z): = 2µ(∇ǫ(v),∇ǫ(z)) + λ(∇ div v,∇ div z) for any v, z ∈ V .

For any v ∈ V , by the H2−Korn’s inequality (2.7) and Poincaré’s inequality, there exists C such that

A(v,v) ≥ 2µ‖∇ǫ(v) ‖2L2 ≥ µ

2
‖∇2v ‖2L2 ≥ C‖ v ‖2H2 .

The existence and uniqueness of w ∈ V follow from the Lax-Milgram theorem, and

(2.13) ‖∇2w ‖L2 ≤ ‖w ‖H2 ≤ C‖F ‖H−2 .

Noting that divw ∈ P , using (2.4), we obtain that, there exists v0 ∈ V such that div v0 = divw, and

‖∇2v0 ‖L2 ≤ C‖ divw ‖H1 ≤ C‖∇ divw ‖L2.

A combination of the above two inequalities gives

λ‖∇ divw ‖2L2 = λ(∇ divw,∇ div v0) = A(w,v0)− 2µ(∇ǫ(w),∇ǫ(v0))

= (F ,v0)− 2µ(∇ǫ(w),∇ǫ(v0))

≤ ‖F ‖H−2‖ v0 ‖H2 + 2µ‖∇2w ‖L2‖∇2v0 ‖L2

≤ C
(
‖F ‖H−2 + 2µ‖∇2w ‖L2

)
‖∇2v0 ‖L2

≤ C‖F ‖H−2‖∇ divw ‖L2 .

This implies λ‖∇ divw ‖L2 ≤ C‖F ‖H−2 , which together with (2.13) and Poincaré’s inequality gives (2.12).

�

Now we turn to prove the regularity estimate of problem (2.11). We consider an auxiliary elliptic

system: For any F̃ ∈ [L2(Ω)]2 and G̃ ∈ H1(Ω), find z ∈ V and q ∈ P such that the following boundary

value problem is valid in the sense of distribution:

(2.14)





µ∆2z +∇∆q = F̃ in Ω,

∆div z = G̃ in Ω,

z = ∂nz = 0 on ∂Ω,

q = 0 on ∂Ω.

Lemma 2.5. Let z ∈ [H4(Ω)]2 and q ∈ H3(Ω) be the solution of (2.14). Assume that m is a nonnegative

integer, then there exists C depending only on Ω and µ such that

(2.15) ‖ z ‖Hm+4 + ‖ q ‖Hm+3 ≤ C
(
‖ F̃ ‖Hm + ‖ G̃ ‖Hm+1 + ‖ z ‖L2 + ‖ q ‖L2

)
.

Proof. We write (2.14)1 and (2.14)2 as


µ∆2 0 ∂x∆

0 µ∆2 ∂y∆

∆∂x ∆∂y 0






z1

z2

q


 =



F̃1

F̃2

G̃


 .

The symbol of the above system is

L(ξ) =



µ|ξ|4 0 ξ1|ξ|2
0 µ|ξ|4 ξ2|ξ|2

ξ1|ξ|2 ξ2|ξ|2 0


 .

A direct calculation gives

|detL(ξ)| = µ|ξ|10 > 0 if ξ 6= 0.
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This means that the boundary value problem (2.14) is elliptic in the sense of Agmon-Douglis-Nirenberg [ADN64].

Moreover, the boundary condition is pure Dirichlet, and it is straightforward to verify that the bound-

ary condition satisfies the complementing condition [ADN64]. The regularity estimate (2.15) follows

from [ADN64]. �

A direct consequence of the above lemma is the following regularity estimate for problem (2.11).

Lemma 2.6. Let w ∈ V be the solution of (2.11), there exists C independent of λ such that

(2.16) ‖w ‖H3 + λ‖ divw ‖H2 ≤ C‖F ‖H−1 .

Proof. Using the standard elliptic regularity estimate, there exists a unique solution w ∈ [H4(Ω)]2 when

F ∈ [L2(Ω)]2. We introduce z = w and q = (λ + µ) divw, hence z ∈ [H4(Ω)]2 and q ∈ H3(Ω)

satisfy (2.14) with F̃ = F and G̃ = ∆divw.

By (2.15) with m = 0, we obtain

‖w ‖H4 + (λ+ µ)‖ divw ‖H3 ≤ C (‖F ‖L2 + ‖ divw ‖H3 + ‖w ‖L2 + (λ + µ)‖ divw ‖L2) .

Using the a-priori estimate (2.12), we obtain

‖w ‖H4 + (λ+ µ)‖ divw ‖H3 ≤ C0 (‖F ‖L2 + ‖ divw ‖H3) .

Now for λ+ µ > 2C0, it follows from

‖w ‖H4 + (λ + µ)‖ divw ‖H3 ≤ C0‖F ‖L2 +
λ+ µ

2
‖ divw ‖H3

that

‖w ‖H4 + λ‖ divw ‖H3 ≤ 2C0‖F ‖L2 .

Interpolating the above inequality with (2.12), we obtain (2.16).

If λ+µ ≤ 2C0, then (2.16) follows from the standard regularity estimates [ADN64] for problem (2.11).

�

We turn to prove the regularity of problem (1.1) when f ∈ [L2(Ω)]2. Let u and u0 be the solutions

of (1.1) and (2.8), respectively. For any v ∈ [H1
0 (Ω) ∩H2(Ω)]2, integration by parts gives

(2.17) (Cǫ(u), ǫ(v)) = −(Lu,v),

and

(2.18) ι2(D∇ǫ(u),∇ǫ(v)) = ι2(∆Lu,v) + ι2
∫

∂Ω

(∂nσn) · ∂nvdσ(x),

where σ: = 2µǫ(u) +λdivuI and (∂nσ)ij : = ∂nσij . The boundary term in (2.18) is derived by the fact

∂jvi = nj∂nvi + tj∂tvi = nj∂nvi and

(2.19)

2µ

∫

∂Ω

∂nǫ(u) : ǫ(v)dσ(x) + λ

∫

∂Ω

∂n divudiv vdσ(x) =

∫

∂Ω

∂nσ : ∇vdσ(x)

=

∫

∂Ω

∂nσij∂jvidσ(x) =

∫

∂Ω

∂nσijnj∂nvidσ(x) =

∫

∂Ω

(∂nσn) · ∂nvdσ(x).

A combination of (2.17) and (2.18) leads to

(Cǫ(u), ǫ(v)) + ι2(D∇ǫ(u),∇ǫ(v)) = ι2
∫

∂Ω

(∂nσn) · ∂nvdσ(x) + (f ,v),

which together with (2.9) yields

(2.20) (Cǫ(u− u0), ǫ(v)) + ι2(D∇ǫ(u),∇ǫ(v)) = ι2
∫

∂Ω

(∂nσn) · ∂nvdσ(x).

This identity is the starting point of the proof.
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We shall frequently use the following multiplicative trace inequality. There exists C that depends only

on Ω such that

(2.21) ‖ψ ‖L2(∂Ω) ≤ C‖ψ ‖1/2L2(Ω)‖ψ ‖1/2H1(Ω), ψ ∈ H1(Ω).

Using Lemma 2.6, we condense the regularity of problem (1.1) to estimating u − u0 and p − p0 in

various norms, with p = λdivu and p0 = λdivu0.

Lemma 2.7. There exists C independent of ι and λ such that

(2.22) ‖u ‖H3 + ‖ p ‖H2 ≤ Cι−2(‖ ǫ(u− u0) ‖L2 + ‖ p− p0 ‖L2).

Proof. We rewrite (1.1) as

{
∆Lu = ι−2L(u− u0) in Ω,

u = ∂nu = 0 on ∂Ω.

Applying the regularity estimate (2.16) to the elliptic system (2.11), and using (2.17), we obtain

‖u ‖H3 + ‖ p ‖H2 ≤ Cι−2‖L(u− u0) ‖H−1 ≤ Cι−2(‖ ǫ(u− u0) ‖L2 + ‖ p− p0 ‖L2).

�

The next lemma is crucial to prove Theorem 2.9, which transforms the estimate of ‖ p−p0 ‖ι in terms

of ‖∇(u− u0) ‖ι besides a term concerning f .

Lemma 2.8. There exists C independent of ι and λ such that

(2.23) ‖ p− p0 ‖ι ≤ C(‖∇(u − u0) ‖ι + ι1/2‖ f ‖L2).

Proof. By [DM13, Theorem 3.1] and Poincaré’s inequality, there exists v0 ∈ [H2(Ω)∩H1
0 (Ω)]

2 such that

div v0 = div(u− u0), and

(2.24) ‖ v0 ‖H1 ≤ C‖ div(u− u0) ‖L2 , ‖ v0 ‖H2 ≤ C‖∇ div(u− u0) ‖L2.

Substituting v = v0 into (2.20), multiplying the resulting identity by λ, we obtain

‖ p− p0 ‖2ι = −ι2(∇p0,∇(p− p0))− 2λµ
(
(ǫ(u− u0), ǫ(v0)) + ι2(∇ǫ(u),∇ǫ(v0))

)

+ λι2
∫

∂Ω

(∂nσn) · ∂nv0dσ(x).(2.25)

By the regularity estimate (2.10), the first term may be bounded as

ι2|(∇p0,∇(p− p0))| ≤
ι2

8
‖∇(p− p0) ‖2L2 + 2ι2‖∇p0 ‖2L2 ≤ 1

8
‖ p− p0 ‖2ι + Cι2‖ f ‖2L2 .

Using the triangle inequality and (2.10) again, we obtain

(2.26) ι‖∇ǫ(u) ‖L2 ≤ ι‖∇ǫ(u − u0) ‖L2 + ι‖∇ǫ(u0) ‖L2 ≤ ‖∇(u− u0) ‖ι + Cι‖ f ‖L2.

Using (2.24) and the above inequality, we bound the second term as

2λµ|(ǫ(u− u0), ǫ(v0)) + ι2(∇ǫ(u),∇ǫ(v0))| ≤ C(‖ ǫ(u − u0) ‖L2 + ι‖∇ǫ(u) ‖L2)‖ p− p0 ‖ι

≤ 1

8
‖ p− p0 ‖2ι + C

(
‖∇(u− u0) ‖2ι + ι2‖ f ‖2L2

)
.
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Using (2.19) and the definition of v0, we rewrite the boundary term as

λι2
∫

∂Ω

(∂nσn) · ∂nv0dσ(x) = 2λµι2
∫

∂Ω

∂nǫ(u) : ǫ(v0)dσ(x) + λ2ι2
∫

∂Ω

∂n divudiv v0dσ(x)

= 2λµι2
∫

∂Ω

∂nǫ(u) : ǫ(v0)dσ(x) + ι2
∫

∂Ω

∂np(p− p0)dσ(x)

= 2λµι2
∫

∂Ω

∂nǫ(u) : ǫ(v0)dσ(x)− ι2
∫

∂Ω

∂np p0dσ(x).

Recalling the trace inequality (2.21), we estimate the first boundary term as

2λµι2
∣∣∣∣
∫

∂Ω

∂nǫ(u) : ǫ(v0)dσ(x)

∣∣∣∣ ≤ 2λµι2‖ ∂nǫ(u) ‖L2(∂Ω)‖ ǫ(v0) ‖L2(∂Ω)

≤ Cλι2‖∇ǫ(u) ‖1/2L2 ‖∇ǫ(u) ‖1/2H1 ‖ ǫ(v0) ‖1/2L2 ‖ ǫ(v0) ‖1/2H1 .

Using (2.24), there exists C independent of λ and ι such that

λ2‖ ǫ(v0) ‖L2‖ ǫ(v0) ‖H1 ≤ C‖ p− p0 ‖L2‖∇(p− p0) ‖L2 ≤ Cι−1‖ p− p0 ‖2ι .

Using (2.26) to estimate ‖∇ǫ(u) ‖L2 and using (2.22) to bound ‖∇ǫ(u) ‖H1 , we obtain

‖∇ǫ(u) ‖L2‖∇ǫ(u) ‖H1 ≤ Cι−3 (‖∇(u− u0) ‖ι + ι‖ f ‖L2) (‖ ǫ(u− u0) ‖L2 + ‖ p− p0 ‖L2)

≤ Cι−3
(
‖∇(u− u0) ‖2ι + ι2‖ f ‖2L2 + (‖∇(u− u0) ‖ι + ι‖ f ‖L2) ‖ p− p0 ‖ι

)
.

A combination of the above three inequalities gives

2λµι2
∣∣∣∣
∫

∂Ω

∂nǫ(u) : ǫ(v0)dσ(x)

∣∣∣∣ ≤C
(
(‖∇(u− u0) ‖ι + ι‖ f ‖L2)‖ p− p0 ‖ι

+ (‖∇(u− u0) ‖ι + ι‖ f ‖L2)1/2‖ p− p0 ‖3/2ι

)

≤1

8
‖ p− p0 ‖2ι + C

(
‖∇(u− u0) ‖2ι + ι2‖ f ‖2L2

)
.

Using the trace inequality (2.21) and the regularity estimate (2.10) again, we bound

ι2
∣∣∣∣
∫

∂Ω

∂npp0dσ(x)

∣∣∣∣ ≤ Cι2‖∇p ‖1/2L2 ‖∇p ‖1/2H1 ‖ p0 ‖H1 ≤ Cι2‖∇p ‖1/2L2 ‖∇p ‖1/2H1 ‖ f ‖L2 .

Using the triangle inequality and (2.10) again, we obtain

ι‖∇p ‖L2 ≤ ‖ p− p0 ‖ι + ι‖∇p0 ‖L2 ≤ ‖ p− p0 ‖ι + Cι‖ f ‖L2,

which together with (2.22) implies

‖∇p ‖L2‖∇p ‖H1 ≤ Cι−3
(
‖ p− p0 ‖2ι + (‖∇(u− u0) ‖ι + ι‖ f ‖L2)‖ p− p0 ‖ι + ι‖∇(u− u0) ‖ι‖ f ‖L2

)
.

Combining the above three inequalities, we bound the second boundary term as

ι2
∣∣∣∣
∫

∂Ω

∂npp0dσ(x)

∣∣∣∣ ≤C
(
ι1/2‖ p− p0 ‖ι‖ f ‖L2 + (‖∇(u− u0) ‖ι + ι1/2‖ f ‖L2)3/2‖ p− p0 ‖1/2ι

+ ι‖∇(u− u0) ‖1/2ι ‖ f ‖3/2L2

)

≤ 1

8
‖ p− p0 ‖2ι + C

(
‖∇(u− u0) ‖2ι + ι‖ f ‖2L2

)
.

Substituting the above inequalities into (2.25), we obtain

‖ p− p0 ‖2ι ≤ 1

2
‖ p− p0 ‖2ι + C

(
‖∇(u− u0) ‖2ι + ι‖ f ‖2L2

)
.

This immediately gives (2.23). �

We are ready to prove the regularity of problem (1.1).
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Theorem 2.9. There exists C independent of ι and λ such that

(2.27) ‖u− u0 ‖H1 + ‖ p− p0 ‖L2 ≤ Cι1/2‖ f ‖L2,

and

(2.28) ‖u ‖H2+k + ‖ p ‖H1+k ≤ Cι−1/2−k‖ f ‖L2 , k = 0, 1.

The estimate (2.27) improves the known results [LMW21, Lemma 1] in two aspects. It clarifies the

fact that the estimate is λ−independent and it gives the convergence rate for the pressure. The rate ι1/2

is optimal even for the scalar counterpart; cf., [NTW01, Lemma 5.1].

Proof. Substituting v = u− u0 into (2.20), we get

a(u− u0,u− u0) = −ι2(D∇ǫ(u),∇ǫ(u − u0))− ι2
∫

∂Ω

(∂nσn) · ∂nu0dσ(x).

Using the regularity estimate (2.10), we bound the first term as

ι2|(D∇ǫ(u),∇ǫ(u−u0))| ≤
ι2

4
(D∇ǫ(u−u0),∇ǫ(u−u0))+ι

2(D∇ǫ(u0),∇ǫ(u0)) ≤
1

4
a(u−u0,u−u0)+Cι

2‖ f ‖2L2.

To bound the second term, we let v = u0 in (2.19) and obtain

ι2
∫

∂Ω

(∂nσn) · ∂nu0dσ(x) = 2µι2
∫

∂Ω

∂nǫ(u) : ǫ(u0)dσ(x) + ι2
∫

∂Ω

∂n divu p0dσ(x).

Invoking the trace inequality, using the fact ‖∇ divu ‖L2 ≤ ‖∇ǫ(u) ‖L2 and (2.10), we obtain

ι2
∣∣∣∣
∫

∂Ω

(∂nσn) · ∂nu0dσ(x)

∣∣∣∣ ≤ Cι2
(
‖∇ǫ(u) ‖1/2L2 ‖∇ǫ(u) ‖1/2H1 ‖ ǫ(u0) ‖H1 + ‖∇ divu ‖1/2L2 ‖∇ divu ‖1/2H1 ‖ p0 ‖H1

)

≤ Cι2‖∇ǫ(u) ‖1/2L2 ‖u ‖1/2H3 (‖u0 ‖H2 + ‖ p0 ‖H1)

≤ Cι2‖∇ǫ(u) ‖1/2L2 ‖u ‖1/2H3 ‖ f ‖L2.

Substituting (2.23) into (2.22), we obtain,

‖u ‖H3 + ‖ p ‖H2 ≤ Cι−2(‖∇(u− u0) ‖ι + ι1/2‖ f ‖L2).

Invoking (2.26) again, we get

ι2‖∇ǫ(u) ‖1/2L2 ‖u ‖1/2H3 ≤ Cι1/2(‖∇(u− u0) ‖ι + ι1/2‖ f ‖L2).

A combination of the above three inequalities gives

ι2
∣∣∣∣
∫

∂Ω

(∂nσn) · ∂nu0dσ(x)

∣∣∣∣ ≤
1

4
‖∇(u− u0) ‖2ι + Cι‖ f ‖2L2 .

Combining the above inequalities, we obtain

‖∇(u− u0) ‖ι ≤ Cι1/2‖ f ‖L2 ,

which together with (2.23) leads to

‖ p− p0 ‖ι ≤ Cι1/2‖ f ‖L2 .

The above two estimates immediately give (2.27) and

‖∇2(u − u0) ‖L2 + ‖∇(p− p0) ‖L2 ≤ Cι−1/2‖ f ‖L2 ,

which together with (2.10) gives (2.28) with k = 0.

Substituting (2.27) into (2.22), we obtain the higher regularity estimate (2.28) with k = 1. �

A direct consequence of the above theorem is
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Corollary 2.10. There exists C independent of ι and λ such that

(2.29) ‖u ‖H3/2 + ‖ p ‖H1/2 ≤ C‖ f ‖L2 ,

and

(2.30) ‖u ‖H5/2 + ‖ p ‖H3/2 ≤ Cι−1‖ f ‖L2.

Proof. Using triangle inequality, (2.10) and (2.28), we obtain

‖u− u0 ‖H2 + ‖ p− p0 ‖H1 ≤ ‖u ‖H2 + ‖ p ‖H1 + ‖u0 ‖H2 + ‖ p0 ‖H1 ≤ Cι−1/2‖ f ‖L2.

Interpolating the above inequality and (2.27), we obtain

‖u− u0 ‖H3/2 + ‖ p− p0 ‖H1/2 ≤ C‖ f ‖L2 .

Using (2.10), we get

‖u0 ‖H3/2 + ‖ p0 ‖H1/2 ≤ C‖u0 ‖H2 + ‖ p0 ‖H1 ≤ C‖ f ‖L2 .

A combination of the above two inequalities and the triangle inequality leads to (2.29).

Interpolating (2.28) with k = 0 and (2.28) with k = 1, we obtain (2.30). �

3. A Family of Nonconforming Finite Elements

We introduce a family of finite elements to approximate the mixed variational problem (2.2). Let Th
be a triangulation of Ω with maximum mesh size h. We assume all elements in Th are shape-regular in

the sense of Ciarlet and Raviart [Cia78]. We also assume that Th satisfies the inverse assumption: there

exists σ0 such that h/hK ≤ σ0 for all K ∈ Th. The space of piecewise vector fields is defined by

[Hm(Ω, Th)]2: =
{
v ∈ [L2(Ω)]2 | v|K ∈ [Hm(T )]2 for all K ∈ Th

}
,

which is equipped with the broken norm

‖ v ‖Hm(Ω,Th): = ‖ v ‖L2 +

m∑

k=1

‖∇k
hv ‖L2 ,

where ‖∇k
hv ‖2L2 =

∑
K∈Th

‖∇kv ‖2L2(K). For an interior edge e shared by the triangles K+ and K−, we

define the jump of v across e as

[[v]]: = v+n+ + v−n− with v± = v|K± ,

where n± is the unit normal vector of e towards the outside of K±. For e ∩ ∂Ω 6= ∅, we set [[v]] = vn.

3.1. A family of finite elements. Our construction is motivated by the element proposed in [GLN12].

Define the element with a triple (K,PK ,ΣK) by specifying K as a triangle, and

(3.1) PK : = Pr(K) + bK

3∑

i=1

biQ
r−2
i (K) + b2KR

r−2(K),

where bK =
∏3

i=1 λi and bi = bK/λi with {λi}3i=1 the barycentric coordinates of K.

Define

(3.2) Qr−2
i (K): =

{
v ∈ Pr−2(K) |

∫

K

bKbivq dx = 0 for all q ∈ Pr−3(K)

}
,

and

(3.3) Rr−2(K): =

{
v ∈ Pr−2(K) |

∫

K

b2Kvq dx = 0 for all q ∈ Pr−3(K)

}
.
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The degrees of freedom (DoFs) for PK are given by

(3.4) v 7→





v(a) for all vertices a,
∫

e

vq dσ(x) for all edges e and q ∈ Pr−2(e),

∫

e

∂nvq dσ(x) for all edges e and q ∈ Pr−2(e),

∫

K

vq dx for all q ∈ Pr−2(K).

We plot the DoFs for r = 2, 3 in Figure 1.

a1 a2

a3

e1e2

e3
a1 a2

a3

e1e2

e3

Figure 1. Diagram for DoFs. Left: DoFs for r = 2 are point evaluations of the function

values at the vertex, the mean of the function along each edge, the mean of the normal

derivative along each edge, and the mean of the function over the element; Right: DoFs

for r = 3 are point evaluations of the function values at the vertex, the means of the

function against P1 along each edge, the means of the normal derivative against P1 along

each edge, and the means of the function against P1 over the element

Lemma 3.1. The set (K,PK ,ΣK) is unisolvent.

Proof. Firstly we show that if the DoFs (3.4) can determine an element in PK , then the element is

unique. Suppose v ∈ PK vanishes at the DoFs listed in (3.4), it suffices to show v ≡ 0. Assume that

v = pr + bK

3∑

i=1

biqi + b2Kqr,

where pr ∈ Pr(K), and qi ∈ Qr−2
i (K), and qr ∈ Rr−2(K). DoFs associated with Pr(K) are

v 7→





v(a) for all vertices a,
∫

e

vq dσ(x) for all edges e and q ∈ Pr−2(e),

∫

K

vq dx for all q ∈ Pr−3(K).

The bubble space vanishes on this subset of DoFs by (3.2) and (3.3). The number of the DoFs is

3+3(r− 1)+ (r− 1)(r− 2)/2 = (r+1)(r+2)/2, which equals to the cardinality of Pr(K). Hence pr ≡ 0.

A direct calculation gives
∫

ei

∂nvq dσ(x) = −|∇λi|
∫

ei

b2i qiq dσ(x) = 0 for all q ∈ Pr−2(ei).
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Taking q = qi in the above identity, we obtain qi = 0 on ei. Therefore, we write qi = λipr−3 for certain

pr−3 ∈ Pr−3(K). Using (3.2), we get

∫

K

bKbiqiq dx =

∫

K

b2Kpr−3q dx = 0 for all q ∈ Pr−3(K).

Taking q = pr−3 in the above identity, we obtain pr−3 ≡ 0. Therefore v = b2Kqr for certain qr ∈ Rr−2(K).

The last set of DoFs equals zero, i.e.,
∫

K

b2Kqrq dx = 0 for all q ∈ Pr−2(K).

Taking q = qr in the above identity, we obtain qr ≡ 0. So does v.

It remains to show the dimension of PK equals the number of DoFs (3.4). Proceeding along the same

line as above, the element v ≡ 0 has a unique representation. Therefore (3.1) is a direct sum, and

dimPK = dimPr(K) + 4 (dimPr−2(K)− dimPr−3(K)) =
1

2
(r2 + 11r − 6),

which equals to the number of DoFs (3.4) exactly. �

We define a local interpolation operator πK : H2(K) 7→ PK as:

(3.5)





πKv(a) = v(a) for all vertices a,
∫

e

πKvq dσ(x) =

∫

e

vq dσ(x) for all edges e and q ∈ Pr−2(e),

∫

e

∂nπKvq dσ(x) =

∫

e

∂nvq dσ(x) for all edges e and q ∈ Pr−2(e),

∫

K

πKvq dx =

∫

K

vq dx for all q ∈ Pr−2(K).

Lemma 3.2. There exists C independent of hK such that for v ∈ Hk(K) with 2 ≤ k ≤ r+1, there holds

(3.6) ‖∇j(v − πKv) ‖L2(K) ≤ Chk−j
K ‖∇kv ‖L2(K),

where 0 ≤ j ≤ k.

Proof. For any v ∈ Pr(K) ⊂ PK , the definition (3.5) shows that v− πKv ∈ PK and all DoFs of v−PKv

vanish, then v = πKv. The estimate (3.6) immediately follows from the Pr(K)−invariance of the local

interpolation operator πK [CR72]. �

Remark 3.3. The element has a natural extension to three-dimensions by specifying K as a tetrahedron,

and

PK : = Pr(K) + bK

4∑

i=1

biQ
r−2
i (K) + b2KR

r−2(K),

where bK =
∏4

i=1 λi is the element bubble function with λi the barycentric coordinates associated with

the vertices ai for i = 1, · · · , 4. bi = bK/λi is the face bubble function associated with the face fi.

Define

Qr−2
i (K): =

{
v ∈ Pr−2(K) |

∫

K

bKbivq dx = 0 for all q ∈ Pr−3(K)

}
,

and

Rr−2(K): =

{
v ∈ Pr−2(K) |

∫

K

b2Kvq dx = 0 for all q ∈ Pr−4(K)

}
.
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The DoFs for PK are given by

v 7→





v(a) for all vertices,
∫

e

vq dσ(x) for all edges e and q ∈ Pr−2(e),

∫

f

vq dσ(x) for all faces f and q ∈ Pr−3(f),

∫

f

∂nvq dσ(x) for all faces f and q ∈ Pr−2(f),

∫

K

vq dx for all q ∈ Pr−2(K).

Similar to Lemma 3.1, the set (K,PK ,ΣK) is also unisolvent.

3.2. Explicit representation for the bubble space. We clarify the structures of (3.2) and (3.3)

associated with the set of DoFs (3.4)3 and the subset of (3.4)4 respectively, and derive the explicit

formulations of the corresponding shape functions, which seems missing in the literature, while such

explicit representations are useful for implementation. We firstly recall the following facts about the

Jacobi polynomials [Sze75]. For any α, β > −1 and nonnegative integers n,m, there holds

(3.7)

∫ 1

−1

(1− t)α(1 + t)βP (α,β)
n (t)P (α,β)

m (t)dt = h(α,β)n δnm,

where

h(α,β)n =

∫ 1

−1

(1− t)α(1 + t)β
[
P (α,β)
n (t)

]2
dt.

By [Sze75, Eq. (4.3.3)], we may write

(3.8) h(α,β)n =
2α+β+1

2n+ α+ β + 1

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ α+ β + 1)Γ(n+ 1)
,

where Γ is the Gamma function.

One of the explicit form for P
(α,β)
n is

(1 − t)α(1 + t)βP (α,β)
n (t) =

(−1)n

2nn!

dn

dtn
(
(1− t)n+α(1 + t)n+β

)
.

In particular,

P
(α,β)
0 (t) = 1, P

(α,β)
1 (t) =

1

2
(α+ β + 2)t+

1

2
(α− β).

Next we list certain facts about the Jacobi polynomials on the triangle [DX14, Section 2.4]. For a

triangle K with vertices a1, a2, a3, any point x ∈ K is uniquely expressed as

x = λ1a1 + λ2a2 + λ3a3, λi ≥ 0 and λ1 + λ2 + λ3 = 1.

Then (λ1, λ2, λ3) is the barycentric coordinates of the point x with respect toK. For nonnegative integers

k, n such that k ≤ n, we define

(3.9) P
(α,β,γ)
k,n (λ1, λ2, λ3): = (λ2 + λ3)

kP
(2k+β+γ+1,α)
n−k (λ1 − λ2 − λ3)P

(γ,β)
k ((λ2 − λ3)/(λ2 + λ3)).

It is straightforward to verify P
(α,β,γ)
k,n ∈ Pn(K). In particular,

P
(α,β,γ)
0,0 (λ1, λ2, λ3) = 1, P

(α,β,γ)
0,1 (λ1, λ2, λ3) = (β + γ + 2)λ1 − (α+ 1)(λ2 + λ3),

and

P
(α,β,γ)
1,1 (λ1, λ2, λ3) = (γ + 1)λ2 − (β + 1)λ3.
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For all α, β, γ > −1, and nonnegative integers j, k,m, n such that j ≤ m and k ≤ n, there holds

(3.10)

∫
−

K

λα1λ
β
2λ

γ
3P

(α,β,γ)
k,n (λ1, λ2, λ3)P

(α,β,γ)
j,m (λ1, λ2, λ3) dx

=2

∫

K̂

λα1λ
β
2 (1 − λ1 − λ2)

γP
(α,β,γ)
k,n (λ1, λ2, 1− λ1 − λ2)P

(α,β,γ)
j,m (λ1, λ2, 1− λ1 − λ2)dλ1dλ2

=2h
(α,β,γ)
k,n δjkδmn,

where K̂ := { (λ1, λ2) | λ1 ≥ 0, λ2 ≥ 0, λ1 + λ2 ≤ 1 } is the standard reference triangle and

(3.11)

h
(α,β,γ)
k,n =2−(2k+α+2β+2γ+3)h

(2k+β+γ+1,α)
n−k h

(γ,β)
k

=
1

(2n+ α+ β + γ + 2)(2k + β + γ + 1)

× Γ(n− k + α+ 1)Γ(n+ k + β + γ + 2)Γ(k + β + 1)Γ(k + γ + 1)

Γ(n− k + 1)Γ(n+ k + α+ β + γ + 2)Γ(k + 1)Γ(k + β + γ + 1)
.

Using the notation (x)n = Γ(x + n)/Γ(n), we may find that the expression (3.11) is equivalent to the

one in [DX14, Eq. (2.4.3)]. The identity (3.10) illustrates that {P (α,β,γ)
k,n (λ1, λ2, λ3) | 0 ≤ k ≤ n ≤ r} are

mutually orthogonal bases of Pr(K) with respect to the weight λα1 λ
β
2λ

γ
3 .

Next we study the structure of the bubble spaces. For the barycentric coordinate function λi such

that λi ≡ 0 on ei, let λ
+
i and λ−i be the two other barycentric coordinates associated with the edges e+i

and e−i , respectively. (ei, e
+
i , e

−
i ) are chosen in a counterclockwise manner. The space Qr−2

i (K) can be

clarified by the Jacobi polynomials with respect to the weight bKbi, while R
r−2(K) can be clarified by

the Jacobi polynomials with respect to the weight b2K , which are formulated in the following lemmas.

Lemma 3.4. The space Qr−2
i (K) takes the form

Qr−2
i (K) = span

{
P

(1,2,2)
k,r−2 (λi, λ

+
i , λ

−
i ) | 0 ≤ k ≤ r − 2

}
.

Proof. For any v ∈ Qr−2
i (K) ⊂ Pr−2(K), v may be expanded into

v =
∑

0≤k≤n≤r−2

aknP
(1,2,2)
k,n (λi, λ

+
i , λ

−
i )

with unknown parameters akn. Using the above representation, we may write the constraint in the

definition (3.2) as

∑

0≤k≤n≤r−2

akn

∫
−

K

bKbiP
(1,2,2)
k,n (λi, λ

+
i , λ

−
i )qdx = 0 for all q ∈ Pr−3(K).

Substituting q = P
(1,2,2)
j,m (λi, λ

+
i , λ

−
i ) for 0 ≤ j ≤ m ≤ r − 3 into the above equation, and using the

orthogonal relation (3.10), we obtain ajm = 0 for 0 ≤ j ≤ m ≤ r − 3. This concludes the lemma. �

Motivated by the above lemma, we change the definition of DoFs for the bubble space bK
∑3

i=1 biQ
r−2
i (K)

from
∫
ei
∂nvq dσ(x) for any q ∈ Pr−2(ei) to

∫
−

ei

∂v

∂n
P

(2,2)
k (λ+i − λ−) dσ(x), k = 0, · · · , r − 2.

Lemma 3.5. The shape functions for the bubble space bK
∑3

i=1 biQ
r−2
i (K) associated with the above

definition of DoFs are

ak,r−2bKbiP
(1,2,2)
k,r−2 (λi, λ

+
i , λ

−
i )

with

(3.12) ak,r−2 =
(−1)r−k−1

|∇λi|
(k + 3)(k + 4)(2k + 5)

(r − k − 1)(k + 1)(k + 2)
k = 0, · · · , r − 2.
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Proof. A direct calculation gives

∂

∂n

(
bKbiP

(1,2,2)
k,r−2 (λi, λ

+
i , λ

−
i )

)
|ei = −|∇λi|b2iP (2k+5,1)

r−2−k (−1)P
(2,2)
k (λ+i − λ−),

For j = 1, · · · , r− 2. Using the relation (3.7), and noting that bi = λ+i λ
−
i = λ+i (1−λ+i ) on ei, we obtain∫

−
ei

∂

∂n

(
bKbiP

(1,2,2)
k,r−2 (λi, λ

+
i , λ

−
i )

)
P

(2,2)
j (λ+i − λ−) dσ(x)

=− |∇λi|P (2k+5,1)
r−2−k (−1)

∫ 1

0

(
λ+i (1− λ+i )

)2
P

(2,2)
k (2λ+i − 1)P

(2,2)
j (2λ+i − 1)dλ+i

=− |∇λi|
32

P
(2k+5,1)
r−2−k (−1)

∫ 1

−1

(1− t)2(1 + t)2P
(2,2)
k (t)P

(2,2)
j (t)dt

=− |∇λi|
32

P
(2k+5,1)
r−2−k (−1)h

(2,2)
k δjk.

This gives

ak,r−2 = − 32

|∇λi|P (2k+5,1)
r−2−k (−1)h

(2,2)
k

.

By [Sze75, Eq. (4.1.1),(4.1.3)], we obtain P
(2k+5,1)
r−2−k (−1) = (−1)r−k(r − k − 1). Using (3.8), we obtain

h
(2,2)
k =

32(k + 1)(k + 2)

(k + 3)(k + 4)(2k + 5)
.

A combination of the above three identities leads to (3.12). �

Next we list the shape functions for the elements of low-order.

Example 3.6. The bubble space bK
∑3

i=1 biQ
r−2
i (K) for the lowest-order r = 2 is

bKspan { bi | i = 1, 2, 3 } .

The shape functions associated with
∫
−

ei
∂nv dσ(x) is −

30

|∇λi|
bKbi.

The bubble space bK
∑3

i=1 biQ
r−2
i (K) for the case r = 3 is

bKspan
{
bi(3λi − λ+i − λ−i ), bi(λ

+
i − λ−i ) | i = 1, 2, 3

}
.

The shape functions associated with
∫
−ei

∂nv dσ(x) is

30

|∇λi|
bKbi(3λi − λ+i − λ−i ).

The shape functions associated with 3
∫
−

ei
∂nv(λ

+
i − λ−i ) dσ(x) is

− 70

|∇λi|
bKbi(λ

+
i − λ−i ).

Lemma 3.7. The space Rr−2(K) takes the forms

Rr−2(K) = span
{
P

(2,2,2)
k,r−2 (λ1, λ2, λ3) | 0 ≤ k ≤ r − 2

}
.

Proof. For any v ∈ Rr−2(K) ⊂ Pr−2(K), we expand v into

v =
∑

0≤k≤n≤r−2

aknP
(2,2,2)
k,n (λ1, λ2, λ3)

with akn to be determined later on. Using the above representation, we may write the constraint in the

definition of the space (3.3) as: For all q ∈ Pr−3(K),

∑

0≤k≤n≤r−2

akn

∫
−

K

b2KP
(2,2,2)
k,n (λ1, λ2, λ3)qdx = 0.
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We substitute q = P
(2,2,2)
j,m (λ1, λ2, λ3) for 0 ≤ j ≤ m ≤ r−3 into the above equation. Using the orthogonal

relation (3.10), we may obtain ajm = 0 for 0 ≤ j ≤ m ≤ r − 3. This completes the proof. �

Motivated by the above lemma, we change the definition of DoFs for b2KR
r−2(K) from

∫
K vq dx for

any q ∈ Pr−2(K) \ Pr−3(K) to
∫
−

K

vP
(2,2,2)
k,r−2 (λ1, λ2, λ3) dx, k = 0, · · · , r − 2.

Lemma 3.8. The shape functions for the bubble space b2KR
r−2(K) associated with the above definition

of DoFs are

ak,r−2b
2
KP

(2,2,2)
k,r−2 (λ1, λ2, λ3)

with

ak,r−2 =
(2r + 4)(2k + 5)(r + k + 4)(r + k + 5)(k + 3)(k + 4)

2(r − k)(r − 1− k)(k + 1)(k + 2)
k = 0, · · · , r − 2.

Proof. For j = 1, · · · , r − 2, we obtain
∫
−

K

b2KP
(2,2,2)
k,r−2 (λ1, λ2, λ3)P

(2,2,2)
j,r−2 (λ1, λ2, λ3) dx = 2h

(2,2,2)
k,r−2 δjk,

which gives

ak,r−2 =
1

2h
(2,2,2)
k,r−2

.

Using (3.11), we obtain

h
(2,2,2)
k,r−2 =

(r − k)(r − 1− k)(k + 1)(k + 2)

(2r + 4)(2k + 5)(r + k + 4)(r + k + 5)(k + 3)(k + 4)
.

These give the simplified expression of ak,r−2. �

According to the definition of bubble space, we may have

Example 3.9. The bubble space b2KR
r−2(K) for the lowest-order case r = 2 is span{b2K}.

The shape functions associated with
∫
−Kv dx is 2520b2K.

The bubble space b2KR
r−2(K) for the case r = 3 is b2Kspan{2λ1 − λ2 − λ3, λ2 − λ3}.

The shape functions associated with 3
∫
−Kv(2λ1 − λ2 − λ3) dx is 4200b2K(2λ1 − λ2 − λ3).

The shape functions associated with 3
∫
−

K
v(λ2 − λ3) dx is 12600b2K(λ2 − λ3).

Remark 3.10. Based on the above results, we give the details for the element of the lowest-order, i.e.,

r = 2, which have been used in the numerical examples. The local finite element space

PK = P2(K) + bK

3∑

i=1

span{bi}+ span{b2K},

and DoFs

ΣK =

{
v(ai),

∫
−

ei

v dσ(x),

∫
−

ei

∂nv dσ(x),

∫
−

K

v dx | i = 1, 2, 3

}
.

The shape functions associated with {v(ai)}i=1,2,3 are

φi = λi(3λi − 2) + 30bK


2bi +

∑

j 6=i

∇λi · ∇λj
|∇λj |2

bj(4λj − 1) + 6bK


 .

The shape functions associated with {
∫
−

ei
vdσ(x)}i=1,2,3 are

ϕi = 6bi + 90bK


bi −

∑

j 6=i

bj − 10bK


 .
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The shape functions associated with {
∫
−ei

∂nvdσ(x)}i=1,2,3 are

ψi =
30

|∇λi|
bKbi(4λi − 1).

The shape functions associated with
∫
−Kv dx is φ0 = 2520b2K.

4. The Mixed Finite Elements Approximation

In this part, we construct stable finite element pairs to approximate (2.2). We ignore the influence of

the curved boundary for error estimates for brevity. Define

Xh: =

{
v ∈ H1

0 (Ω) | v|K ∈ PK for all K ∈ Th,
∫

e

[[∂nv]]q dσ(x) = 0 for all e ∈ Eh, q ∈ Pr−2(e)

}
,

and Vh: = [Xh]
2. Let Ph ⊂ P be the continuous Lagrangian finite element of order r− 1. We shall prove

a uniform discrete B-B inequality for the pair (Vh, Ph).

The following rescaled trace inequality will be used later on: There exists C independent of hK such

that

(4.1) ‖ v ‖L2(∂K) ≤ C
(
h
−1/2
K ‖ v ‖L2(K) + ‖ v ‖1/2L2(K)‖∇v ‖1/2L2(K)

)
.

This inequality may be found in [BS08].

4.1. The mixed finite element approximation. We define the mixed finite element approximation

problem as follows. Find uh ∈ Vh and ph ∈ Ph such that

(4.2)

{
aι,h(uh,v) + bι,h(v, ph) = (f ,v) for all v ∈ Vh,

bι,h(uh, q)− λ−1cι(ph, q) = 0 for all q ∈ Ph,

where

aι,h(v,w): = 2µ
(
(ǫ(v), ǫ(w)) + ι2(∇hǫ(v),∇hǫ(w))

)
for allv,w ∈ Vh,

bι,h(v, q): = (div v, q) + ι2(∇h div v,∇q) for allv ∈ Vh, q ∈ Ph.

Note that Vh 6⊂ V , and this is a nonconforming method, we introduce the broken norm

‖∇v ‖ι,h: = ‖∇v ‖L2 + ι‖∇2
hv ‖L2 for all v ∈ Vh

Due to the continuity of v, ‖∇v ‖ι,h is a norm over Vh.

The following broken Korn’s inequality was proved in [LMW21, Theorem 2]:

‖∇hǫ(v) ‖L2 ≥
(
1− 1/

√
2
)
‖∇2

hv ‖L2,

which together with the first Korn’s inequality (2.6) gives

(4.3) aι,h(v,v) ≥
µ

2
‖∇v ‖2ι,h for all v ∈ Vh.

It remains to prove the discrete B-B inequality for the pair (Vh, Ph). To this end, we construct

a Fortin operator that is uniformly stable in the weighted norm ‖∇ · ‖ι,h [MSW13]. The key is to

construct different Fortin operators for ι/h in different regimes.

Firstly we define an interpolation operator Πh : V → Vh by Πh|K : = ΠK = [πK ]2, which satisfies

Lemma 4.1. For all v ∈ V , there holds

(4.4) bι,h(Πhv, p) = bι(v, p) for all p ∈ Ph.
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Proof. Using the fact that Πhv ∈ Vh ⊂ [H1
0 (Ω)]

2, an integration by parts gives

(4.5)

∫

Ω

div(v −Πhv)p dx = −
∑

K∈Th

∫

K

(v −ΠKv) · ∇p dx = 0,

where we have used the identity (3.5)4 in the last step.

Next, integration by parts yields
∫

Ω

∇ div(v −Πhv) · ∇p dx =
∑

K∈Th

∫

∂K

div(v −ΠKv)∂np dσ(x)−
∑

K∈Th

∫

K

div(v −ΠKv)∆p dx = 0.

The first term vanishes because ∂j = tj∂t + nj∂n for components j = 1, 2, and using (3.5)2, we obtain

that for each edge e ∈ ∂K,
∫

e

tj
∂

∂t
(vj − πKvj)∂np dσ(x) = −

∫

e

tj(vj − πKvj)
∂2p

∂t∂n
dσ(x) = 0.

Using (3.5)3, we obtain ∫

e

nj
∂

∂n
(vj − πKvj)∂np dσ(x) = 0.

While the second term vanishes because∫

K

div(v −ΠKv)∆p dx =

∫

∂K

(v −ΠKv) · n∆p dσ(x)−
∫

K

(v −ΠKv) · ∇∆p dx = 0,

where we have used (3.5)2 and (3.5)4. �

The operator Πh is not H1−bounded by (3.6), and we construct an H1−bounded regularized interpo-

lation operator as follows.

Lemma 4.2. There exists an operator Ih : V 7→ Vh satisfying

(4.6)

∫

Ω

div(v − Ihv)p dx = 0 for all p ∈ Ph,

and if v ∈ V ∩ [Hs(Ω)]2 with 1 ≤ s ≤ r + 1, then

(4.7) ‖∇j
h(v − Ihv) ‖L2 ≤ Chs−j‖∇sv ‖L2 0 ≤ j ≤ s.

The construction of Ih is based on a regularized interpolation operator in [GLN12] and the standard

construction of the Fortin operator [For77]. The operator Ih is also well-defined for functions in [H2(Ω)∩
H1

0 (Ω)]
2.

Proof. Define Ih : V 7→ Vh with Ih: = [Π1]
2 and

Π1: = Π0(I −Π2) +Π2,

where the regularized interpolation operator Π2 : H2
0 (Ω) 7→ Xh was constructed in [GLN12, Lemma 2],

which satisfies

(4.8) ‖∇j
h(v −Π2v) ‖L2 ≤ Chs−j‖∇sv ‖L2, 1 ≤ s ≤ r + 1, 0 ≤ j ≤ s.

The operator Π0 : H1
0 (Ω) 7→ Xh is defined for any element K ∈ Th as





Π0v(a) = 0 for all vertices a,
∫

e

Π0vq dσ(x) = 0 ∀q ∈ Pr−2(e) for all edges e,

∫

e

∂nΠ0vq dσ(x) = 0 ∀q ∈ Pr−2(e) for all edges e,

∫

K

Π0vq dx =

∫

K

vq dx for all q ∈ Pr−2(K).
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On each element K, we have (Π0v)|K ∈ H1
0 (K) for any v ∈ H1

0 (Ω), and hence Π0v ∈ Xh. A standard

scaling argument gives

‖Π0v ‖L2 ≤ C‖ v ‖L2 for all v ∈ H1
0 (Ω).

For any v ∈ V , using the fact that Ihv ∈ Vh and p ∈ Ph, an integration by parts gives
∫

Ω

div(v − Ihv)p dx = −
∑

K∈Th

∫

K

(v − Ihv) · ∇p dx+
∑

K∈Th

∫

∂K

(v − Ihv) · np dσ(x)

= −
∑

K∈Th

∫

K

(v − Ihv) · ∇p dx = −
∑

K∈Th

∫

K

(I −Π0)(I −Π2)v · ∇p dx

= 0,

where we have used the last property of Π0. This gives (4.6).

Using (4.8), the L2-stability of Π0 and the inverse inequality, we obtain

‖∇j
h(v −Π1v) ‖L2 ≤‖∇j

h(v −Π2v) ‖L2 + ‖∇j
hΠ0(v −Π2v) ‖L2

≤Chs−j‖∇sv ‖L2 + Ch−j‖ v −Π2v ‖L2

≤Chs−j‖∇sv ‖L2.

This implies (4.7) and completes the proof. �

We are ready to prove the following discrete B-B inequality.

Theorem 4.3. There exists β independent of ι and h, such that

(4.9) sup
v∈Vh

bι,h(v, p)

‖∇v ‖ι,h
≥ β‖p‖ι for all p ∈ Ph.

Proof. Using (2.3), for any p ∈ Ph ⊂ P , there exists v0 ∈ V such that

bι(v0, p) = ‖p‖2ι and ‖∇v0‖ι ≤ C‖p‖ι.

First, we consider the case ι/h ≤ γ with γ to be determined later on. By (4.7), we obtain

‖∇Ihv0 ‖ι,h ≤ ‖∇v0‖ι + ‖∇(v0 − Ihv0) ‖ι,h ≤ C‖∇v0‖ι,

and

‖∇h div(v0 − Ihv0) ‖L2 ≤ C‖∇2v0 ‖L2 ≤ C‖∇p ‖L2.

Combining the above inequality and using the inverse inequality for any p ∈ Ph, we obtain

ι2|(∇h div(v0 − Ihv0),∇p)| ≤ Cι2‖∇p ‖2L2 ≤ C∗(ι/h)
2‖ p ‖2L2 ≤ γ2C∗‖p‖2ι .

Fix γ such that γ2C∗ < 1, we obtain

bι,h(Ihv0, p) = bι(v0, p)− ι2(∇h div(v0 − Ihv0),∇p) ≥ (1− γ2C∗)‖p‖2ι .

This gives

(4.10) sup
v∈Vh

bι,h(v, p)

‖∇v ‖ι,h
≥ bι,h(Ihv0, p)

‖∇Ihv0 ‖ι,h
≥ 1− γ2C∗

C
‖p‖ι.

Next, if ι/h > γ, then we use (3.6) and obtain

‖∇(v0 −Πhv0) ‖L2 ≤ Ch‖∇2v0 ‖L2 , and ‖∇2
h(v0 −Πhv0) ‖L2 ≤ C‖∇2v0 ‖L2 .

Therefore,

‖∇(v0 −Πhv0) ‖ι,h ≤ C(h+ ι)‖∇2v0 ‖L2 ≤ C(1 + h/ι)‖∇v0‖ι ≤ C(1 + 1/γ)‖∇v0‖ι.

Hence,

‖∇Πhv0 ‖ι,h ≤ ‖∇v0‖ι + ‖∇(v0 −Πhv0) ‖ι,h ≤ C(2 + 1/γ)‖∇v0‖ι,
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which together with (4.4) gives

(4.11) sup
v∈Vh

bι,h(v, p)

‖∇v ‖ι,h
≥ bι,h(Πhv0, p)

‖∇Πhv0 ‖ι,h
=

bι,h(v0, p)

‖∇Πhv0 ‖ι,h
=

‖p‖2ι
‖∇Πhv0 ‖ι,h

≥ γ

C(1 + 2γ)
‖p‖ι.

A combination of (4.10) and (4.11) shows that (4.9) holds true with β independent of ι and h. �

The well-posedness of the mixed approximation problem (4.2) follows from the ellipticity of aι,h and

the discrete B-B inequality of bι,h. We are ready to derive the error estimate.

4.2. Error estimates. To carry out the error estimate, we define the bilinear form A as

A(v, q;w, z): = aι,h(v,w) + bι,h(w, q) + bι,h(v, z)− λ−1cι(q, z)

for all v,w ∈ Vh and q, z ∈ Ph.

We prove the following inf-sup inequality for A with the aid of the discrete B-B inequality (4.9).

Lemma 4.4. There exists α depending on µ and β such that

(4.12) inf
(v,q)∈Vh×Ph

sup
(w,z)∈Vh×Ph

A(v, q;w, z)

|||(w, z)|||ι,h|||(v, q)|||ι,h
≥ α,

where |||(w, z)|||ι,h: = ‖∇w ‖ι,h + ‖z‖ι + λ−1/2‖z‖ι and β has appeared in (4.9).

Proof. Noting that aι,h is elliptic over Vh (4.3) and the discrete B-B inequality for bι,h holds (4.9), we

obtain (4.12) by [Bra96, Theorem 2]. �

We are ready to prove error estimates.

Theorem 4.5. There exists C independent of ι, λ and h such that

(4.13) |||(u− uh, p− ph)|||ι,h ≤ C(hr + ιhr−1)(‖u ‖Hr+1 + ‖ p ‖Hr),

and

(4.14) |||(u − uh, p− ph)|||ι,h ≤ Ch1/2‖ f ‖L2.

Proof. Let v = uh − uI and q = ph − pI with uI ∈ Vh and pI ∈ Ph, for any w ∈ Vh and z ∈ Ph,

A(v, q;w, z) = A(uh, ph;w, z)−A(u, p;w, z) +A(u − uI , p− pI ;w, z)

= (f ,w)−A(u, p;w, z) +A(u − uI , p− pI ;w, z)

= A(u− uI , p− pI ;w, z)− ι2
∑

e∈Eh

∫

e

(∂nσn) · [[∂nw]] dσ(x).

The boundedness of A yields

|A(u − uI , p− pI ;w, z)| ≤ max(1, 2µ)|||(u− uI , p− pI)|||ι,h|||(w, z)|||ι,h.

Let uI = Πhu be the interpolation of u and pI be the r − 1 order Lagrangian interpolation of p,

respectively. The standard interpolation error estimates in (3.6) gives

|||(u − uI , p− pI)|||ι,h ≤ C(hr + ιhr−1)(‖u ‖Hr+1 + ‖ p ‖Hr).

Note that ∫

e

[[∂nw]]q dσ(x) = 0 for all q ∈ Pr−2(e).

A standard estimate for the consistency error functional with trace inequality (4.1) gives

ι2

∣∣∣∣∣
∑

e∈Eh

∫

e

(∂nσn) · [[∂nw]] dσ(x)

∣∣∣∣∣ ≤ Cι2hr−1(‖u ‖Hr+1 + ‖ p ‖Hr)‖∇2
hw ‖L2

≤ Cιhr−1(‖u ‖Hr+1 + ‖ p ‖Hr)‖∇w ‖ι,h.
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A combination of the above three inequalities, the discrete inf-sup condition (4.12) and the triangle

inequalities gives (4.13).

Next, let uI = Ihu and let pI be the Clément interpolation [Clé75] of p, respectively. The interpolation

error (4.7) and the error estimates for the Clément interpolation give

|||(u − uI , p− pI)|||ι,h ≤ Ch1/2
(
‖u ‖H3/2 + ‖ p ‖H1/2 + ι(‖u ‖H5/2 + ‖ p ‖H3/2)

)
≤ Ch1/2‖ f ‖L2 ,

where we have used (2.29) and (2.30) in the last step.

Using the trace inequality (4.1), we bound the consistency error functional as

ι2

∣∣∣∣∣
∑

e∈Eh

∫

e

(∂nσn) · [[∂nw]] dσ(x)

∣∣∣∣∣ ≤ Cι2h1/2(‖u ‖H2 + ‖ p ‖H1)1/2(‖u ‖H3 + ‖ p ‖H2)1/2‖∇2
hw ‖L2

≤ Ch1/2‖ f ‖L2‖∇w ‖ι,h,

where we have used (2.28) in the last step.

Combining these inequalities, the discrete inf-sup condition (4.12) and the triangle inequalities gives (4.14).

�

Corollary 4.6. There exists C independent of ι, λ and h such that

(4.15) |||(u0 − uh, p0 − ph)|||ι,h ≤ C(ι1/2 + h1/2)‖ f ‖L2,

where u0 is the solution of (2.8), and p0 = λdivu0.

Proof. A combination of Theorem 2.9, Theorem 4.5, and the triangle inequality gives (4.15). �

5. Numerical Examples

In this part, we report the numerical performance for the proposed element of the lowest-order, i.e.,

r = 2. We test the accuracy and robustness of the element pair for the nearly incompressible materials.

All examples are carried out on the nonuniform mesh. We are interested in the case when the Poisson’s

ratio ν is close to 0.5 and we report the relative errors ‖∇(u−uh) ‖ι,h/‖∇u‖ι and the rates of convergence.

We let Ω = (0, 1)2, and set Young’s modulus E = 1. The Lamé constants are determined by

λ =
Eν

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
.

We set ν = 0.3 for the ordinary cases, hence λ = 0.5769, and µ = 0.3846, and we set ν = 0.4999 for the

nearly incompressible materials, hence λ = 1.6664e3, and µ = 0.3334.

5.1. The first example. We test the performance of the element pair by solving a completely incom-

pressible problem, which means divu = 0. Let u = (u1, u2) with

u1 = − sin3(πx) sin(2πy) sin(πy), u2 = sin(2πx) sin(πx) sin3(πy).

Therefore divu = 0, and f is independent of λ.

In view of Table 2, the optimal rates of convergence are observed with the completely incompressible

media, which is consistent with the error bound (4.13).
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Table 2. Relative errors and convergence rates for the 1st example

ι\h 1/8 1/16 1/32 1/64

ν = 0.3, λ = 0.5769, µ = 0.3846

1e+00 2.592e-01 1.333e-01 6.519e-02 3.246e-02

rate 0.96 1.03 1.01

1e-06 4.252e-02 1.159e-02 2.784e-03 6.918e-04

rate 1.88 2.06 2.01

ν = 0.4999, λ = 1.6664e3, µ = 0.3334

1e+00 2.592e-01 1.333e-01 6.519e-02 3.246e-02

rate 0.96 1.03 1.01

1e-06 4.252e-02 1.159e-02 2.784e-03 6.918e-04

rate 1.88 2.06 2.01

5.2. The second example. This example is motivated by [Wih06], which admits a singular solution.

The exact solution u = (u1, u2) expressed in the polar coordinates as

u1 = uρ(ρ, θ) cos θ − uθ(ρ, θ) sin θ, u2 = uρ(ρ, θ) sin θ + uθ(ρ, θ) cos θ,

where

uρ =
1

2µ
ρα

(
−(α+ 1) cos((α + 1)θ) + (C2 − (α+ 1))C1 cos((α− 1)θ)

)
,

uθ =
1

2µ
ρα

(
(α+ 1) sin((α + 1)θ) + (C2 + α− 1)C1 sin((α− 1)θ)

)
,

and α = 1.5, ω = 3π/4,

C1 = −cos((α+ 1)ω)

cos((α− 1)ω)
and C2 =

2(λ+ 2µ)

λ+ µ
.

It may be verified that u ∈ [H5/2−ε(Ω)]2 for a small number ε > 0. A direct calculation gives that

f ≡ 0, while it is nearly incompressible because

divu = −3(1 +
√
2)

λ+ µ
ρ1/2 cos(θ/2).

Table 3. Relative errors and convergence rates for the 2nd example

ι\h 1/8 1/16 1/32 1/64

ν = 0.3, λ = 0.5769, µ = 0.3846

1e+00 1.062e-01 7.554e-02 5.355e-02 3.792e-02

rate 0.49 0.50 0.50

1e-06 2.809e-03 1.001e-03 3.549e-04 1.257e-04

rate 1.49 1.50 1.50

ν = 0.4999, λ = 1.6664e3, µ = 0.3334

1e+00 1.149e-01 8.200e-02 5.824e-02 4.135e-02

rate 0.49 0.49 0.49

1e-06 4.399e-03 1.567e-03 5.558e-04 1.968e-04

rate 1.49 1.50 1.50

It follows from Table 3 that the rates of convergence are sub-optimal. It is reasonable because the

solution u is singular, which is similar to the results in [Wih06]. The element pair is robust for the nearly

incompressible materials.
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5.3. The third example. In the last example, we test a problem with strong boundary layer effects.

Such effects have been frequently observed in the stain elasticity model [EGH+02,LMS17,LM19,LMW21].

It is shown that the numerical solution converges to the solution of (2.8) when ι≪ h.

When ι→ 0, the boundary value problem (1.1) reduces to (2.8). Let u0 = (u01, u
0
2) with

u01 = − sin2(πx) sin(2πy), u02 = sin(2πx) sin2(πy)

be the solution of problem (2.8). The source term f is computed from (2.8). A direct calculation gives

that divu0 = 0, and f is independent of λ. The exact solution u for (1.1) is unknown, while it has strong

boundary layer effects. In this case, we take ι≪ h, and report the relative error ‖∇(u0−uh) ‖ι,h/‖∇u0‖ι.

Table 4. Relative errors and convergence rates for the 3rd example

ι\h 1/8 1/16 1/32 1/64

ν = 0.3, λ = 0.5769, µ = 0.3846

1e-04 1.311e-01 8.966e-02 6.299e-02 4.476e-02

rate 0.55 0.51 0.49

1e-06 1.311e-01 8.960e-02 6.283e-02 4.432e-02

rate 0.55 0.51 0.50

ν = 0.4999, λ = 1.6664e3, µ = 0.3334

1e-04 1.312e-01 8.968e-02 6.300e-02 4.476e-02

rate 0.55 0.51 0.49

1e-06 1.312e-01 8.963e-02 6.284e-02 4.432e-02

rate 0.55 0.51 0.50

It follows from Table 4 that the rate of convergence for the element pair changes to 1/2 because of the

boundary layer effects, which is consistent with the theoretical result. The element is still robust when

the solution has strong boundary layer effects in the nearly incompressible limit.
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82 (2010), 1282–1307.

[FN14] X. B. Feng and M. Neilan, Convergence of a fourth-order singular perturbation of the n-dimensional radially

symmetric Monge–Ampère equation, Appl. Anal. 93 (2014), 1626–1646.

[For77] M. Fortin, An analysis of the convergence of mixed finite element methods, RAIRO Anal. Numér. 11 (1977),

341–354.

[Gal11] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State

Problems, Springer Science+Business Media, LLC, 2011.

[GLN12] J. Guzmán, D. Leykekhman, and M. Neilan, A family of non-conforming elements and the analysis of

Nitsche’s method for a singularly perturbed fourth order problem, Calcolo 49 (2012), 95–125.

[Her65] L. R. Hermann, Elasticity equations for incompressible and nearly incompressible materials by a variational

theorem, AIAA, J. 3 (1965), 1896–1900.
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