Skip to main content
Log in

A Robust Discrete Scheme based on Staggered Grids for Poroelastic-Elastic Coupled Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper aims to explore a robust and efficient discrete scheme for poroelastic-elastic coupled problems. Based on staggered grids, a discrete scheme using finite difference methods is constructed in a form similar to domain decomposition. On this basis, another discrete scheme with a uniform form over the entire domain is derived. These two discrete schemes serve different purposes and are shown to be equivalent. The stability is easily derived by establishing a discrete variational formulation. To prove the convergence, appropriate discrete interpolations are introduced. It is proved that the discrete scheme has second-order superconvergence. Then, combined with the inf-sup condition, the first-order uniform convergence is obtained. This means the discrete scheme has great potential to overcome Poisson locking and pressure oscillations. Some numerical experiments are also carried out, and the results show the robustness and efficiency of the discrete scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

References

  1. Anaya, V., De, W., Zoa, G.-V., Bryan, M., David, R.-B.: Rotation-based mixed formulations for an elasticity-poroelasticity interface problem. SIAM J. Scientif. Comput. 42(1), B225–B249 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška, I., Suri, M.: Locking effects in the finite element approximation of elasticity problems. Numerische Mathematik 62(1), 439–463 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Suri, M.: On locking and robustness in the finite element method. SIAM J. Numer. Anal. 29(5), 1261–1293 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biot, M.-A.: Consolidation settlement under a rectangular load distribution. J. Appl. Phys. 12(5), 426–430 (1941)

    Article  MATH  Google Scholar 

  5. Biot, M.-A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

    Article  MATH  Google Scholar 

  6. Ewing, R.E., Iliev, O.P., Lazarov, R.D., Naumovich, A.: On convergence of certain finite volume difference discretizations for 1D poroelasticity interface problems. Numer. Methods Partial. Diff. Eq.: Int. J. 23(3), 652–671 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Girault, V., Pencheva, G.V., Wheeler, M.F.: Domain decomposition for linear elasticity with DG jumps and mortars. Computer Methods Appl. Mech. Eng. 198(21–26), 1751–1765 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Girault, V, Wheeler, M F., Almani, T, Dana, S: A priori error estimates for a discretized poro-elastic–elastic system solved by a fixed-stress algorithm. Oil Gas Sci. Technol.–Revue d’IFP Energies nouvelles 74, 24 (2019)

  9. Haga, J.B., Osnes, H., Langtangen, H.P.: On the causes of pressure oscillations in low-permeable and low-compressible porous media. Int. J. Numer. Anal. Methods Geomech. 36(12), 1507–1522 (2012)

    Article  Google Scholar 

  10. Lebedev, V.I.: Difference analogues of orthogonal decompositions, basic differential operators and some boundary problems of mathematical physics. I. USSR Comput. Math. Math. Phys. 4(3), 69–92 (1964)

    Article  MATH  Google Scholar 

  11. Mikelić, Andro W., Mary, F.: On the interface law between a deformable porous medium containing a viscous fluid and an elastic body. Math. Models Methods Appl. Sci. 22, 1250031 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Monk, P., Süli, E.: A convergence analysis of Yee’s scheme on nonuniform grids. SIAM J. Numer. Anal. 31(2), 393–412 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Oyarzúa, R., Ruiz-Baier, R.: Locking-free finite element methods for poroelasticity. SIAM J. Numer. Anal. 54(5), 2951–2973 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Phillips, P.J., Wheeler, M.F.: A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity. Comput. Geosci. 12(4), 417–435 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rui, H., Li, X.: Stability and superconvergence of MAC scheme for Stokes equations on nonuniform grids. SIAM J. Numer. Anal. 55(3), 1135–1158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rui, H., Liu, W.: A two-grid block-centered finite difference method for Darcy-Forchheimer flow in porous media. SIAM J. Numer. Anal. 53(4), 1941–1962 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rui, H., Pan, H.: A block-centered finite difference method for the Darcy-Forchheimer model. SIAM J. Numer. Anal. 50(5), 2612–2631 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rui, H., Sun, M.: A locking-free finite difference method on staggered grids for linear elasticity problems. Computers Math. Appl. 76(6), 1301–1320 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rui, H., Sun, Y.: A MAC scheme for coupled stokes-darcy equations on non-uniform grids. J. Scientif. Comput. 82(3), 1–29 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Serepilli, M.: Classical and higher order interface conditions in poroelasticity. Annals Solid Struct. Mech. 11(1), 1–10 (2019)

    Article  Google Scholar 

  21. Welch, J Eddie, Harlow, Francis Harvey, Shannon, John P, Daly, Bart J: The MAC method-a computing technique for solving viscous, incompressible, transient fluid-flow problems involving free surfaces. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), (1965)

  22. Wheeler, M.-F.: A multipoint flux mixed finite element method. SIAM J. Numer. Anal. 44(5), 2082–2106 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propagation 14(3), 302–307 (1966)

    Article  MATH  Google Scholar 

  24. Yi, S.-Y.: A study of two modes of locking in poroelasticity. SIAM J. Numer. Anal. 55(4), 1915–1936 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work is supported by the National Natural Science Foundation of China Grant No.12131014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongxing Rui.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Rui, H. A Robust Discrete Scheme based on Staggered Grids for Poroelastic-Elastic Coupled Problems. J Sci Comput 95, 25 (2023). https://doi.org/10.1007/s10915-023-02149-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02149-x

Keywords

Mathematics Subject Classification

Navigation