Skip to main content
Log in

On Generalized Gauss–Radau Projections and Optimal Error Estimates of Upwind-Biased DG Methods for the Linear Advection Equation on Special Simplex Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Generalized Gauss–Radau (GGR) projections are global projection operators that are widely used for the error analysis of discontinuous Galerkin (DG) methods with generalized numerical fluxes. In previous work, GGR projections were constructed for Cartesian meshes and analyzed through an algebraic approach. In this paper, we first present an alternative energy approach for analyzing the one-dimensional GGR projection, which does not require assembling and explicitly solving a global system over the entire computational domain as that in the algebraic approach. We then generalize this energy argument to construct a global projection operator on special simplex meshes in multidimensions satisfying the so-called flow condition. With this projection, optimal error estimates are proved for upwind-biased DG methods for the linear advection equation on these meshes, which generalizes the error analysis for the purely upwind case by Cockburn et al. (SIAM J Numer Anal 46(3):1250–1265, 2008) in a time-dependent setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availibility Statement

Datasets generated during the current study are available from the corresponding author upon reasonable request.

Notes

  1. Since \({\left| \left| \left| \cdot \right| \right| \right| }\) is already a seminorm, it suffices to show \(|v(1)| = 0\) implies \(v\equiv 0\), \(\forall v \in P_{k-1}^\perp (\hat{I})\). Indeed, note that \(P_{k-1}^\perp (\hat{I}) = \left\{ al_k(x)|a\in \mathbb {R}\right\} \), where \(l_k(x)\) is the kth-order Legendre polynomial on \(\hat{I}\). For \(v = a l_k(x)\), since \(l_k(1) \ne 0\), one can see that \(v(1) = 0\) implies \(a = 0\) and hence \(v \equiv 0\).

  2. In the papers by Cockburn et al., the estimate of \(\Vert u - \Pi _1 u \Vert _{L^2(K)}\) is proved. The estimate of the trace \(\Vert u - \Pi _1 u \Vert _{L^2\left( e_K^+\right) }\) can be obtained after applying the inverse trace inequality.

References

  1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bona, J., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin-methods for the generalized Korteweg-de Vries equation. Math. Comput. 82(283), 1401–1432 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brandts, J., Korotov, S., Křížek, M.: On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55(10), 2227–2233 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comput. 71(238), 455–478 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, Y., Chou, C.-S., Li, F., Xing, Y.: \({L}^2\) stable discontinuous Galerkin methods for one-dimensional two-way wave equations. Math. Comput. 86(303), 121–155 (2017)

    Article  MATH  Google Scholar 

  6. Cheng, Y., Meng, X., Zhang, Q.: Application of generalized Gauss-Radau projections for the local discontinuous Galerkin method for linear convection-diffusion equations. Math. Comput. 86(305), 1233–1267 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, Y., Zhang, Q.: Local analysis of the local discontinuous Galerkin method with generalized alternating numerical flux for one-dimensional singularly perturbed problem. J. Sci. Comput. 72(2), 792–819 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland (1978)

  9. Cockburn, B., Dong, B., Guzmán, J.: Optimal convergence of the original DG method for the transport-reaction equation on special meshes. SIAM J. Numer. Anal. 46(3), 1250–1265 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cockburn, B., Dong, B., Guzmán, J.: A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems. Math. Comput. 77(264), 1887–1916 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Dong, B., Guzmán, J., Qian, J.: Optimal convergence of the original DG method on special meshes for variable transport velocity. SIAM J. Numer. Anal. 48(1), 133–146 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Gopalakrishnan, J., Sayas, F.-J.: A projection-based error analysis of HDG methods. Math. Comput. 79(271), 1351–1367 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cockburn, B., Kanschat, G., Perugia, I., Schötzau, D.: Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids. SIAM J. Numer. Anal. 39(1), 264–285 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cockburn, B., Karniadakis, G.E., Shu, C.-W.: Discontinuous Galerkin methods: Theory, Computation and Applications, vol. 11. Springer Science & Business Media (2012)

  15. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dong, B.: Optimally convergent hdg method for third-order Korteweg-de Vries type equations. J. Sci. Comput. 73(2), 712–735 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fu, G., Shu, C.-W.: Optimal energy-conserving discontinuous Galerkin methods for linear symmetric hyperbolic systems. J. Comput. Phys. 394(1), 329–363 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fu, P., Cheng, Y., Li, F., Xu, Y.: Discontinuous Galerkin methods with optimal \({L}^{2}\) accuracy for one dimensional linear PDEs with high order spatial derivatives. J. Sci. Comput. 78(2), 816–863 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, J., Zhang, D., Meng, X., Wu, B.: Analysis of discontinuous Galerkin methods with upwind-biased fluxes for one dimensional linear hyperbolic equations with degenerate variable coefficients. J. Sci. Comput. 78(3), 1305–1328 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Li, J., Zhang, D., Meng, X., Wu, B.: Analysis of local discontinuous Galerkin methods with generalized numerical fluxes for linearized KdV equations. Math. Comput. 89(325), 2085–2111 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, J., Zhang, D., Meng, X., Wu, B., Zhang, Q.: Discontinuous Galerkin methods for nonlinear scalar conservation laws: Generalized local Lax-Friedrichs numerical fluxes. SIAM J. Numer. Anal. 58(1), 1–20 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu, M., Wu, B., Meng, X.: Optimal error estimates of the discontinuous Galerkin method with upwind-biased fluxes for 2d linear variable coefficients hyperbolic equations. J. Sci. Comput. 83(1), 1–19 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, Y., Shu, C.-W., Zhang, M.: Optimal error estimates of the semidiscrete central discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 56(1), 520–541 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Liu, Y., Shu, C.-W., Zhang, M.: Optimal error estimates of the semidiscrete discontinuous Galerkin methods for two dimensional hyperbolic equations on Cartesian meshes using \({P}^k\) elements. ESAIM Math. Modell. Numer. Anal., 54, 705–726 (2020)

  25. Liu, Y., Shu, C.-W., Zhang, M.: Sub-optimal convergence of discontinuous Galerkin methods with central fluxes for linear hyperbolic equations with even degree polynomial approximations. J. Comput. Math. 39(4), 518–537 (2021)

    MathSciNet  MATH  Google Scholar 

  26. Meng, X., Shu, C.-W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85(299), 1225–1261 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peterson, T.E.: A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28(1), 133–140 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Reed, W.H., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical report, Los Alamos Scientific Lab., N. Mex. (USA) (1973)

  29. Schöberl, J.: NETGEN an advancing front 2D/3D-mesh generator based on abstract rules. Comput. Vis. Sci. 1(1), 41–52 (1997)

    Article  MATH  Google Scholar 

  30. Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability. Numer. Solutions Partial Different. Eqn., 201 (2009)

  31. Sun, J., Shu, C.-W., Xing, Y.: Discontinuous Galerkin methods for stochastic Maxwell equations with multiplicative noise. ESAIM Math. Modell. Numer. Anal. (2022). https://doi.org/10.1051/m2an/2022084

  32. Sun, J., Shu, C.-W., Xing, Y.: Multi-symplectic discontinuous Galerkin methods for the stochastic Maxwell equations with additive noise. J. Comput. Phys. 461, 111199 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sun, Z., Shu, C.-W.: Stability of the fourth order Runge-Kutta method for time-dependent partial differential equations. Ann. Math. Sci. Appl. 2(2), 255–284 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sun, Z., Shu, C.-W.: Strong stability of explicit Runge-Kutta time discretizations. SIAM J. Numer. Anal. 57(3), 1158–1182 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sun, Z., Shu, C.-W.: Error analysis of Runge–Kutta discontinuous Galerkin methods for linear time-dependent partial differential equations. arXiv preprint arXiv:2001.00971 (2020)

  36. Sun, Z., Xing, Y.: Optimal error estimates of discontinuous Galerkin methods with generalized fluxes for wave equations on unstructured meshes. Math. Comput. 90(330), 1741–1772 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, H., Zhang, Q., Shu, C.-W.: Implicit-explicit local discontinuous Galerkin methods with generalized alternating numerical fluxes for convection-diffusion problems. J. Sci. Comput. 81(3), 2080–2114 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xu, Y., Shu, C.-W., Zhang, Q.: Error estimate of the fourth-order Runge-Kutta discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 58(5), 2885–2914 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Xu, Y., Zhang, Q., Shu, C.-W., Wang, H.: The \({L} ^2\)-norm stability analysis of Runge-Kutta discontinuous Galerkin methods for linear hyperbolic equations. SIAM J. Numer. Anal. 57(4), 1574–1601 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xu, Y., Zhao, D., Zhang, Q.: Local error estimates for Runge-Kutta discontinuous Galerkin methods with upwind-biased numerical fluxes for a linear hyperbolic equation in one-dimension with discontinuous initial data. J. Sci. Comput. 91(1), 1–30 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, H., Wu, B., Meng, X.: A local discontinuous Galerkin method with generalized alternating fluxes for 2D nonlinear Schrödinger equations. Commun. Appl. Math. Comput. 4(1), 84–107 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zhang, H., Wu, B., Meng, X.: Analysis of the local discontinuous galerkin method with generalized fluxes for one-dimensional nonlinear convection-diffusion systems. Science China Math. 65 (2022). https://doi.org/10.1007/s11425-022-2035-y

  43. Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates of the third order explicit Runge-Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48(3), 1038–1063 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhao, D., Zhang, Q.: Local discontinuous Galerkin methods with generalized alternating numerical fluxes for two-dimensional linear Sobolev equation. J. Sci. Comput. 78(3), 1660–1690 (2019)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

The work of Z. Sun is partially supported by the NSF grant DMS-2208391. The work of Y. Xing is partially supported by the NSF grant DMS-1753581.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Sun.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of Z. Sun is partially supported by the NSF grant DMS-2208391. The work of Y. Xing is partially supported by the NSF grant DMS-1753581.

Appendices

Appendix A: Proof of Lemma 2.8

Before starting, we first state the following proposition, which can be deduced from Proposition 2.5 through symmetry.

Proposition A.1

Proposition 2.5 holds after replacing (2.34b) with \( Z^+_{j-1/2} = z\).

The rest of the section is dedicated to the proof of Lemma 2.8.

Proof of Lemma 2.8

By default, we have \(1\le j \le N\) within the proof. From Propositions 2.5 and A.1, it can be seen that the following local projection is well-defined a

$$\begin{aligned} {\left( \Pi u,v\right) }_{I_j} =&\; {\left( u,v\right) }_{I_j}, \quad{} & {} \forall v \in \mathcal {P}_{k-1}(I_j),\quad \forall j = 1, \cdots , N,\end{aligned}$$
(A.1a)
$$\begin{aligned} (\Pi u)^-_{j+\frac{1}{2}} =&\; u^-_{j+\frac{1}{2}}, \quad{} & {} \text {if }\theta _j>\frac{1}{2},\end{aligned}$$
(A.1b)
$$\begin{aligned} (\Pi u)^+_{j-\frac{1}{2}} =&\; u^+_{j-\frac{1}{2}}, \quad{} & {} \text {if }\theta _j<\frac{1}{2}. \end{aligned}$$
(A.1c)

Indeed, it can be equivalently written as

$$\begin{aligned} \Pi u = \left\{ \begin{array}{ll} \Pi _1 u, &{}\text {if }\theta _j>\frac{1}{2},\\ \Pi _0 u, &{}\text {if }\theta _j<\frac{1}{2}. \end{array}\right. \end{aligned}$$
(A.2)

Here \(\Pi _1\) and \(\Pi _0\) correspond to (2.48) with \(\theta \equiv 1\) and \(\theta \equiv 0\), respectively. All three projections, \(\Pi _1\), \(\Pi _0\) and \(\Pi \), satisfy (2.49) with \(C_\theta = C\) independent of \(\mu ^*\) and \(\mu _*\).

We denote by \(\delta = (\Pi _\theta - \Pi ) u\). Subtracting (A.1) from (2.48), one can see that the difference \(\delta \) satisfies the following equations.

$$\begin{aligned} {\left( \delta ,v\right) }_{I_j} =&\; 0, \quad{} & {} v \in \mathcal {P}_{k-1}(I_j),\quad \forall j = 1, \cdots , N,\end{aligned}$$
(A.3a)
$$\begin{aligned} \{\delta \}^{(\theta _j)}_{j+\frac{1}{2}} =&\; {\bar{\eta }}_{j+\frac{1}{2}}, \quad{} & {} \text {if }\theta _j>\frac{1}{2},\end{aligned}$$
(A.3b)
$$\begin{aligned} \{\delta \}^{(\theta _j)}_{j-\frac{1}{2}} =&\; {\bar{\zeta }}_{j-\frac{1}{2}}, \quad{} & {} \text {if }\theta _j<\frac{1}{2}. \end{aligned}$$
(A.3c)

Here \({\bar{\eta }}_{j+1/2} = \{u - \Pi _1 u\}^{(\theta _j)}_{j+1/2}\) and \({\bar{\zeta }}_{j-1/2} = \{u - \Pi _0 u\}^{(\theta _j)}_{j-1/2}\). Using the same argument as that in the proof of Lemma 2.1, it suffices to show the solution to (A.3) satisfies

$$\begin{aligned} \Vert \delta \Vert _{L^2\left( \mathcal {T}_h\right) } + h^\frac{1}{2}\Vert \delta \Vert _{L^2\left( \mathcal {E}_h^+\right) } \le \hat{C}_\theta h^\frac{1}{2}\left( \Vert {\bar{\eta }} \Vert _{L^2\left( \mathcal {E}_h^+\right) } +\Vert {\bar{\zeta }} \Vert _{L^2\left( \mathcal {E}_h^+\right) } \right) \end{aligned}$$
(A.4)

with

$$\begin{aligned} \hat{C}_\theta = C\left( 1+\left( \mu ^*+1/2\right) \mu _*^{-1}\right) \left( 1+\left( \mu ^*+1/2\right) \mu _*^{-1/2}\right) \end{aligned}$$
(A.5)

to complete the proof. We now proceed to prove (A.4).

To facilitate the discussion, we introduce the index sets

$$\begin{aligned}&J^{-,+} = \left\{ j: \theta _j<\frac{1}{2}<\theta _{j+1}\right\} ,\quad&J^{+,-} = \left\{ j: \theta _j>\frac{1}{2}>\theta _{j+1}\right\} ;\end{aligned}$$
(A.6a)
$$\begin{aligned}&J^{-,-} = \left\{ j: \theta _j<\frac{1}{2}, \theta _{j+1}<\frac{1}{2}\right\} ,\quad&J^{+,+} = \left\{ j: \theta _j>\frac{1}{2}, \theta _{j+1}>\frac{1}{2}\right\} , \end{aligned}$$
(A.6b)

and \(\mathcal {E}_h^{-,+}\), \(\mathcal {E}_h^{+,-}\), \(\mathcal {E}_h^{-,-}\) and \(\mathcal {E}_h^{+,+}\) for corresponding sets of \(\{x_{j+1/2}\}\). It can be seen that we are imposing one condition on \(\mathcal {E}_h^{-,-}\) and \(\mathcal {E}_h^{+,+}\), two conditions on \(\mathcal {E}_h^{+,-}\), and no condition on \(\mathcal {E}_h^{-,+}\), for each mesh point.

Step 1: Estimate of \(\Vert \delta \Vert _{L^2\left( \mathcal {E}_h^{+,-}\right) }\). Note that for \(x_{j+\frac{1}{2}}\in \mathcal {E}_h^{+,-}\), we have

$$\begin{aligned} \theta _j \delta _{j+\frac{1}{2}}^- + \tilde{ \theta }_{j} \delta _{j+\frac{1}{2}}^+ = {\bar{\eta }}_{j+\frac{1}{2}},\end{aligned}$$
(A.7a)
$$\begin{aligned} \theta _{j+1} \delta _{j+\frac{1}{2}}^- + \tilde{\theta }_{j+1} \delta _{j+\frac{1}{2}}^+ = {\bar{\zeta }}_{j+\frac{1}{2}}. \end{aligned}$$
(A.7b)

Since \(\theta \ne \tilde{\theta }\), we can solve the equation system (A.7) to get

$$\begin{aligned} \delta ^-_{j+\frac{1}{2}} = \frac{\tilde{\theta }_{j+1} {\bar{\eta }}_{j+\frac{1}{2}}- \tilde{\theta }_j {\bar{\zeta }}_{j+\frac{1}{2}} }{\tilde{\theta }_{j+1} -\tilde{\theta }_j}\quad \text {and} \quad \delta ^+_{j+\frac{1}{2}} = \frac{{\theta }_{j+1} {\bar{\eta }}_{j+\frac{1}{2}}- {\theta }_j {\bar{\zeta }}_{j+\frac{1}{2}} }{{\theta }_{j+1} -{\theta }_j}. \end{aligned}$$
(A.8)

Recall our assumption \(0<\mu _* \le \left| \theta _j -1/2 \right| \le \mu ^* <+\infty \) and let us define

$$\begin{aligned} \kappa = \left( \mu ^*+\frac{1}{2}\right) \mu _*^{-1}. \end{aligned}$$
(A.9)

Then it can be estimated that

$$\begin{aligned} \Vert \delta \Vert _{L^2\left( \mathcal {E}_h^{+,-}\right) } \le C\kappa \left( \Vert {\bar{\eta }} \Vert _{L^2\left( \mathcal {E}_h^{+,-}\right) } +\Vert {\bar{\zeta }} \Vert _{L^2\left( \mathcal {E}_h^{+,-}\right) } \right) . \end{aligned}$$
(A.10)

Step 2: Estimate of \(\Vert \delta \Vert _{L^2\left( \mathcal {E}_h^{-,+}\right) }\) and \(\Vert \left[ \delta \right] \Vert _{L^2(\mathcal {E}_h^{+,+}\cup \mathcal {E}_h^{-,-})}\). From (A.3a), it can be seen that

$$\begin{aligned} \begin{aligned} 0 =&\sum _{j:\theta _j>\frac{1}{2}}{\left( \delta ,\delta _x\right) }_{I_j} - \sum _{j:\theta _j<\frac{1}{2}}{\left( \delta ,\delta _x\right) }_{I_j} \\ =&\frac{1}{2}\sum _{j:\theta _j>\frac{1}{2}}\left( \left| \delta ^-_{j+\frac{1}{2}}\right| ^2 - \left| \delta ^+_{j-\frac{1}{2}}\right| ^2\right) - \frac{1}{2}\sum _{j:\theta _j<\frac{1}{2}}\left( \left| \delta ^-_{j+\frac{1}{2}}\right| ^2 - \left| \delta ^+_{j-\frac{1}{2}}\right| ^2\right) \\ =&\frac{1}{2}\sum _{j\in J^{+,+}}\left( \left| \delta ^-_{j+\frac{1}{2}}\right| ^2 - \left| \delta ^+_{j+\frac{1}{2}}\right| ^2\right) - \frac{1}{2}\sum _{j\in J^{-,-}}\left( \left| \delta ^-_{j+\frac{1}{2}}\right| ^2 - \left| \delta ^+_{j+\frac{1}{2}}\right| ^2\right) \\&- \frac{1}{2}\sum _{j\in J^{-,+}}\left( \left| \delta ^-_{j+\frac{1}{2}}\right| ^2 + \left| \delta ^+_{j+\frac{1}{2}}\right| ^2\right) + \frac{1}{2}\sum _{j\in J^{+,-}}\left( \left| \delta ^-_{j+\frac{1}{2}}\right| ^2 + \left| \delta ^+_{j+\frac{1}{2}}\right| ^2\right) \\ =&- \sum _{j\in J^{+,+}}\{\delta \}^{(1/2)}_{j+\frac{1}{2}} \left[ \delta \right] _{j+\frac{1}{2}}+ \sum _{j\in J^{-,-}}\{\delta \}_{j+\frac{1}{2}}^{(1/2)} \left[ \delta \right] _{j+\frac{1}{2}} - \Vert \delta \Vert _{L^2\left( \mathcal {E}_h^{-,+}\right) }^2+\Vert \delta \Vert _{L^2\left( \mathcal {E}_h^{+,-}\right) }^2. \end{aligned} \end{aligned}$$
(A.11)

Here we have used the identity \(|\delta ^+|^2 - |\delta ^-|^2 =2 \{\delta \}^{(1/2)}\left[ \delta \right] \). With (A.3b) and (A.3c), it can be shown that

$$\begin{aligned} \sum _{j\in J^{+,+}}\{\delta \}^{(\theta _j)}_{j+\frac{1}{2}} \left[ \delta \right] _{j+\frac{1}{2}}- \sum _{j\in J^{-,-}}\{\delta \}^{(\theta _j)}_{j+\frac{1}{2}} \left[ \delta \right] _{j+\frac{1}{2}} = \sum _{j\in J^{+,+}}{\bar{\eta }}_{j+\frac{1}{2}} \left[ \delta \right] _{j+\frac{1}{2}}- \sum _{j\in J^{-,-}}{\bar{\zeta }}_{j+\frac{1}{2}} \left[ \delta \right] _{j+\frac{1}{2}}.\nonumber \\ \end{aligned}$$
(A.12)

Note that \(\{\delta \}_{j+\frac{1}{2}}^{(\theta _j)} = \{\delta \}_{j+\frac{1}{2}}^{(1/2)} - (\theta _j-1/2)\left[ \delta \right] _{j+\frac{1}{2}}\). Combining (A.11) and (A.12) yields

$$\begin{aligned}{} & {} \sum _{j\in J^{+,+}\cup J^{-,-}}\left| \theta _j - \frac{1}{2}\right| \left[ \delta \right] _{j+\frac{1}{2}}^2 + \Vert \delta \Vert _{L^2\left( \mathcal {E}_h^{-,+}\right) }^2-\Vert \delta \Vert _{L^2\left( \mathcal {E}_h^{+,-}\right) }^2\nonumber \\{} & {} \quad = \sum _{j\in J^{-,-}}{\bar{\zeta }}_{j+\frac{1}{2}} \left[ \delta \right] _{j+\frac{1}{2}} - \sum _{j\in J^{+,+}}{\bar{\eta }}_{j+\frac{1}{2}} \left[ \delta \right] _{j+\frac{1}{2}}. \end{aligned}$$
(A.13)

Using the assumption \(\left| \theta _j -1/2\right| \ge \mu _*\) and the Cauchy–Schwartz inequality on the right side, we can obtain

$$\begin{aligned} \begin{aligned}&\mu _*\Vert \left[ \delta \right] \Vert _{L^2\left( \mathcal {E}_h^{+,+}\cup \mathcal {E}_h^{-,-}\right) }^2 + \Vert \delta \Vert _{L^2\left( \mathcal {E}_h^{-,+}\right) }^2-\Vert \delta \Vert _{L^2\left( \mathcal {E}_h^{+,-}\right) }^2\\ \le \;&\Vert {\bar{\eta }} \Vert _{L^2\left( \mathcal {E}_h^{+,+}\right) }\Vert \left[ \delta \right] \Vert _{L^2\left( \mathcal {E}_h^{+,+}\right) } + \Vert {\bar{\zeta }} \Vert _{L^2\left( \mathcal {E}_h^{-,-}\right) }\Vert \left[ \delta \right] \Vert _{L^2\left( \mathcal {E}_h^{-,-}\right) }. \end{aligned} \end{aligned}$$
(A.14)

Using the inequality \(ab \le \left( a^2 + b^2\right) /2\) on the right side, we can simplify the inequality as

$$\begin{aligned}&\frac{\mu _*}{2}\Vert \left[ \delta \right] \Vert _{L^2\left( \mathcal {E}_h^{+,+}\cup \mathcal {E}_h^{-,-}\right) }^2 + \Vert \delta \Vert _{L^2\left( \mathcal {E}_h^{-,+}\right) }^2 \nonumber \\&\quad \le (2\mu _*)^{-1}\left( \Vert {\bar{\eta }} \Vert _{L^2\left( \mathcal {E}_h^{+,+}\right) }^2 + \Vert {\bar{\zeta }} \Vert _{L^2\left( \mathcal {E}_h^{-,-}\right) }^2\right) + \Vert \delta \Vert _{L^2\left( \mathcal {E}_h^{+,-}\right) }^2. \end{aligned}$$
(A.15)

Taking the square root and using the inequality \((|a|+|b|)/\sqrt{2}\le \sqrt{a^2+b^2}\le |a|+|b|\) yield

$$\begin{aligned}&{\mu _*^{\frac{1}{2}}}\Vert \left[ \delta \right] \Vert _{L^2\left( \mathcal {E}_h^{+,+}\cup \mathcal {E}_h^{-,-}\right) } + \Vert \delta \Vert _{L^2\left( \mathcal {E}_h^{-,+}\right) } \le \nonumber \\ {}&C{\mu _*^{-\frac{1}{2}}}\left( \Vert {\bar{\eta }} \Vert _{L^2\left( \mathcal {E}_h^{+,+}\right) } + \Vert {\bar{\zeta }} \Vert _{L^2\left( \mathcal {E}_h^{-,-}\right) }\right) + C\Vert \delta \Vert _{L^2\left( \mathcal {E}_h^{+,-}\right) }. \end{aligned}$$
(A.16)

Note that \((\mu _*)^{-\frac{1}{2}}\le 1/2 + 1/(2\mu _*)\le C\left( 1+\kappa \right) \). Combining with (A.10), it can be shown that

$$\begin{aligned} \begin{aligned}&{\mu _*^\frac{1}{2}}\Vert \left[ \delta \right] \Vert _{L^2\left( \mathcal {E}_h^{+,+}\cup \mathcal {E}_h^{-,-}\right) } + \Vert \delta \Vert _{L^2\left( \mathcal {E}_h^{-,+}\right) } \\ \le \;&C(1+\kappa )\left( \Vert {\bar{\eta }} \Vert _{L^2\left( \mathcal {E}_h^{+,+}\cup \mathcal {E}_h^{+,-}\right) } +\Vert {\bar{\zeta }} \Vert _{L^2\left( \mathcal {E}_h^{-,-}\cup \mathcal {E}_h^{+,-}\right) } \right) \\ \le \;&C(1+\kappa )\left( \Vert {\bar{\eta }} \Vert _{L^2\left( \mathcal {E}_h^+\right) } +\Vert {\bar{\zeta }} \Vert _{L^2\left( \mathcal {E}_h^+\right) } \right) . \end{aligned} \end{aligned}$$
(A.17)

Step 3: Estimate of \(\Vert \delta \Vert _{L^2\left( \mathcal {E}_h^+\right) }\). From (A.3b) and (A.3c), we have

$$\begin{aligned} \delta ^-_{j+\frac{1}{2}} = {\bar{\eta }}_{j+\frac{1}{2}} - \tilde{\theta }_j\left[ \delta \right] _{j+\frac{1}{2}}, \quad \forall j\in \mathcal {E}_h^{+,+}. \end{aligned}$$
(A.18a)
$$\begin{aligned} \delta ^+_{j+\frac{1}{2}} = {\bar{\zeta }}_{j+\frac{1}{2}} + \theta _j\left[ \delta \right] _{j+\frac{1}{2}}, \quad \forall j\in \mathcal {E}_h^{-,-}. \end{aligned}$$
(A.18b)

With the triangle inequality, the estimate (A.17), and the fact \(|\theta _j|, |\tilde{\theta }_j|\le \mu ^* + 1/2 = \kappa \mu _*\), it can be seen that

$$\begin{aligned} \Vert \delta \Vert _{L^2\left( \mathcal {E}_h^{+,+}\cup \mathcal {E}_h^{-,-}\right) } \le \left( 1+ C(1+\kappa )\kappa \mu _*^\frac{1}{2}\right) \left( \Vert {\bar{\eta }} \Vert _{L^2\left( \mathcal {E}_h^+\right) } +\Vert {\bar{\zeta }} \Vert _{L^2\left( \mathcal {E}_h^+\right) } \right) . \end{aligned}$$
(A.19)

Therefore, with (A.10), (A.17), and (A.19), we have

$$\begin{aligned} \Vert \delta \Vert _{L^2\left( \mathcal {E}_h^+\right) }\le & {} \left( 1+ C(1+\kappa )\left( 1+\kappa \mu _*^\frac{1}{2}\right) \right) \left( \Vert {\bar{\eta }} \Vert _{L^2\left( \mathcal {E}_h^+\right) } +\Vert {\bar{\zeta }} \Vert _{L^2\left( \mathcal {E}_h^+\right) } \right) \nonumber \\\le & {} \hat{C}_\theta \left( \Vert {\bar{\eta }} \Vert _{L^2\left( \mathcal {E}_h^+\right) } +\Vert {\bar{\zeta }} \Vert _{L^2\left( \mathcal {E}_h^+\right) } \right) . \end{aligned}$$
(A.20)

Step 4: Estimate of \(\Vert \delta \Vert _{L^2\left( \mathcal {T}_h\right) }\). We can deduce from Propositions 2.5 and A.1 that

$$\begin{aligned} \Vert \delta \Vert _{L^2\left( I_j\right) }\le C h_j^{\frac{1}{2}}\left| \delta ^-_{j+\frac{1}{2}}\right| , \quad \forall j: \theta _j >\frac{1}{2}.\end{aligned}$$
(A.21a)
$$\begin{aligned} \Vert \delta \Vert _{L^2\left( I_j\right) }\le C h_j^{\frac{1}{2}}\left| \delta ^+_{j-\frac{1}{2}}\right| , \quad \forall j: \theta _j <\frac{1}{2}. \end{aligned}$$
(A.21b)

Taking the square and summing over all mesh cells yield

$$\begin{aligned} \Vert \delta \Vert _{L^2\left( \mathcal {T}_h\right) }^2 = \sum _{j = 1}^N \Vert \delta \Vert _{L^2\left( I_j\right) }^2 \le C h \Vert \delta \Vert _{L^2\left( \mathcal {E}_h^+\right) }^2. \end{aligned}$$
(A.22)

Apply the estimate in (A.20) and take the square root. One can obtain

$$\begin{aligned} \Vert \delta \Vert _{L^2\left( \mathcal {T}_h\right) } \le \hat{C}_\theta h^\frac{1}{2}\left( \Vert {\bar{\eta }} \Vert _{L^2\left( \mathcal {E}_h^+\right) } +\Vert {\bar{\zeta }} \Vert _{L^2\left( \mathcal {E}_h^+\right) } \right) . \end{aligned}$$
(A.23)

Finally, the estimate (A.4) can be obtained by combining (A.20) and (A.23).

Appendix B: Proof of Lemma 3.2

Proof

Two-dimensional case: It is known that the shape-regularity condition (3.2) is equivalent to the following minimal angle condition in 2D (also known as the Zlámal’s condition [8, Exercise 3.1.3]):

$$\begin{aligned} \text {There exists a constant } \alpha _0 > 0, \text { such that } \alpha _K \ge \alpha _0 \text { for all } K \in \mathcal {T}_h, \end{aligned}$$
(B.1)

where \(\alpha _K\) is the minimum angle of K.

Fig. 4
figure 4

Triangular elements for the proof of Lemma 3.2 in 2D

Now we consider the triangular elements \(K = \triangle ABC\) in Fig. 4. Let \(e_K^+ = {AB}\) be the outflow edge. Suppose \(\pmb {\beta }\) starts at C. Due to the flow condition (3.3a), we must have the extension of \(\pmb {\beta }\) intersect the line segment AB at some point E. Furthermore, we set O to be the foot of the altitude from C to AB. Then we will have either \(|OA|\ge |OE|\) or \(|OB|\ge |OE|\). Without loss of generality, we assume \(|OA|\ge |OE|\), which implies \(\angle OCE\le \angle OCA\). As a result, we have

$$\begin{aligned} \pmb {\beta }\cdot {\pmb {n}_{e_K^+}} = |\pmb {\beta }|\cos \angle OCE \ge |\pmb {\beta }|\cos \angle OCA =|\pmb {\beta }|\sin \angle OAC \ge |\pmb {\beta }|\sin \alpha _0>0. \end{aligned}$$
(B.2)

Here we have used the Zlámal’s condition (B.1). Hence the transversality condition (3.4) holds with \(\gamma = \sin \alpha _0\).

Three-dimensional case: In 3D, it is proven in [3] that the shape-regularity condition (3.2) is equivalent to the following minimal angle condition.

$$\begin{aligned} \begin{aligned}&\text {There exists a constant } \alpha _0 > 0, \text { such that for any simplex }K \in \mathcal {T}_h, \text { any dihedral}\\&\text {angle } \alpha , \text { and any solid angle }\alpha \text { of }K,\text { we have } \alpha \ge \alpha _0. \end{aligned} \end{aligned}$$
(B.3)
Fig. 5
figure 5

Tetrahedral elements for the proof of Lemma 3.2 in 3D

Now let us consider the tetrahedrons \(K = ABCD\) in Fig. 5. We assume \(e_K^+ = \triangle ABC\) to be the outflow face. Suppose \(\pmb {\beta }\) starts at D. Due to the flow condition (3.3a), to ensure a unique outflow face, we need that the extension of \(\pmb {\beta }\) intersect \(\triangle ABC\) within the triangle at some point E. Furthermore, we set O to be the foot of the altitude from D to \(\triangle ABC\). We connect OE and extend it until it intersects the edge of \(\triangle ABC\) at some point F (so that \(|OF|\ge |OE|\)). Then we must have

$$\begin{aligned} \cos \angle ODE \ge \cos \angle ODF = \sin \angle OFD. \end{aligned}$$
(B.4)

Without loss of generality, we assume that F is on the edge AB. Note we have either \(|OA| \ge |OF|\) or \(|OB| \ge |OF|\). We only consider the case \(|OA|\ge |OF|\) and the other case can be proved similarly. When \(|OA|\ge |OF|\), we have

$$\begin{aligned} \sin \angle OFD \ge \sin \angle OAD = \frac{|OD|}{|DA|}. \end{aligned}$$
(B.5)

Then we set G to be the foot of the altitude from D to AB on \(\triangle ABD\). In can be seen that

$$\begin{aligned} \frac{|OD|}{|DA|} = \frac{|OD|}{|DG|}\cdot \frac{|DG|}{|DA|} = \sin \angle OGD \cdot \sin \angle GAD \ge \sin ^2 \alpha _0. \end{aligned}$$
(B.6)

Here we have used the fact that \(\angle OGD\) is the dihedral angle between the plane ABC and the plane ABD and \(\angle GAD\) is a solid angle in \(\triangle ABD\), which are both greater than or equal to \(\alpha _0\) according to the minimal angle condition (B.3). Combining (B.4), (B.5), and (B.6), we get

$$\begin{aligned} \pmb {\beta }\cdot {\pmb {n}_{e_K^+}} = |\pmb {\beta }| \cos \angle ODE \ge |\pmb {\beta }| \sin ^2 \alpha _0>0. \end{aligned}$$
(B.7)

Hence the transversality condition (3.4) holds with \(\gamma = \sin ^2 \alpha _0\).

Appendix C: Dimension Count in the Proof of Lemma 3.4

Proposition C.1

The finite-dimensional linear system determined by (3.23) is square.

Proof

On each mesh cell \(K\in \mathcal {T}_h\), the degrees of freedom of the unknown \(\delta \) is \(\dim (\mathcal {P}_{k}(K))\), the number of equations associated with (3.23a) is \(\dim (\mathcal {P}_{k-1}(K))\), and the number of equations associated with (3.23b) is \(\dim (\mathcal {P}_{k}(e_{K}^+))\). Since

$$\begin{aligned} \dim \left( \mathcal {P}_{k}(K)\right)= & {} \left( {\begin{array}{c}k+d\\ d\end{array}}\right) , \end{aligned}$$
(C.8a)
$$\begin{aligned} \dim \left( \mathcal {P}_{k-1}(K)\right) = \left( {\begin{array}{c}k-1+d\\ d\end{array}}\right) , \ \end{aligned}$$
(C.8b)
$$\begin{aligned} \dim \left( \mathcal {P}_{k}\left( e_{K}^+\right) \right)= & {} \left( {\begin{array}{c}k+d-1\\ d-1\end{array}}\right) , \end{aligned}$$
(C.8c)

and

$$\begin{aligned} \left( {\begin{array}{c}k+d\\ d\end{array}}\right) = \left( {\begin{array}{c}k-1+d\\ d\end{array}}\right) + \left( {\begin{array}{c}k+d-1\\ d-1\end{array}}\right) , \end{aligned}$$
(C.9)

we know that \(\dim (\mathcal {P}_{k}(K)) = \dim (\mathcal {P}_{k-1}(K)) + \dim (\mathcal {P}_{k}(e_{K}^+))\) — the degrees of freedom equals to the number of equations on each mesh cell. As a result, the global system (3.23) is square with \(|\mathcal {T}_h|\left( {\begin{array}{c}k+d\\ d\end{array}}\right) \) unknowns, where \(|\mathcal {T}_h|\) is the number of mesh cells.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Xing, Y. On Generalized Gauss–Radau Projections and Optimal Error Estimates of Upwind-Biased DG Methods for the Linear Advection Equation on Special Simplex Meshes. J Sci Comput 95, 40 (2023). https://doi.org/10.1007/s10915-023-02166-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02166-w

Keywords

Mathematics Subject Classification

Navigation