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Abstract

Structure-preserving algorithms and algorithms with uniform error bound have constituted

two interesting classes of numerical methods. In this paper, we blend these two kinds of methods

for solving nonlinear Hamiltonian systems with highly oscillatory solution, and the blended

algorithms inherit and respect the advantage of each method. Two kinds of algorithms are

presented to preserve the symplecticity and energy of the Hamiltonian systems, respectively.

Moreover, the proposed algorithms are shown to have uniform error bound for the highly

oscillatory structure. A numerical experiment is carried out to support the theoretical results

established in this paper by showing the performance of the blended algorithms.
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preserving algorithms, uniform error bound, long-time conservation

MSC: 65L05, 65L20, 65L70, 65P10.

1 Introduction

It is known that nonlinear Hamiltonian systems are ubiquitous in science and engineering applica-
tions. In numerical simulation of evolutionary problems, one of the most difficult problems is to deal
with highly oscillatory problems, since they cannot be solved efficiently using conventional methods.
The crucial point is that standard methods need a very small stepsize and hence a long runtime to
reach an acceptable accuracy [16]. In this paper we are concerned with efficient algorithms for the
following damped second-order differential equation

ẍ(t) = 1
ε B̃ẋ(t) + F (x(t)), x(0) = x0, ẋ(0) = ẋ0, t ∈ [0, T ], (1)

where x(t) ∈ Rd, B̃ is a d×d skew symmetric matrix, and F (x) = −∇xU(x) is the negative gradient
of a real-valued function U(x) whose second derivatives are continuous. In this work, we focus on
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the case where 0 < ε ≪ 1. This implies that the solution of this dynamic is highly oscillatory. For
the dimension d, it is required that d ≥ 2 since B̃ is a zero matrix once d = 1, and then the system
(1) reduces to a second-order ODE ẍ(t) = F (x(t)) without highly oscillatory solutions. Denote by
v = ẋ and then the energy of this dynamic is given by

E(x, v) =
1

2
|v|2 + U(x), (2)

which is exactly conserved along the solutions, i.e.

E(x(t), v(t)) = E(x(0), v(0)) for any t ∈ [0, T ].

We note further that with p = v − 1
2ε B̃x, the equation (1) can be transformed into a Hamiltonian

system with the non-separable Hamiltonian

H(x, p) =
1

2

∣

∣

∣

∣

p+
1

2ε
B̃x

∣

∣

∣

∣

2

+ U(x). (3)

Hamiltonian systems with highly oscillatory solutions frequently occur in physics and engineer-
ing such as charged-particle dynamics, Vlasov equations, classical and quantum mechanics, and
molecular dynamics. Their numerical computation contains numerous enduring challenges. In the
recent few decades, geometric numerical integration also called as structure-preserving algorithm
for differential equations has received more and more attention. This kind of algorithms is designed
to respect the structural invariants and geometry of the considered system. This idea has been used
by many researchers to derive different structure-preserving algorithms (see, e.g. [6, 9, 16, 28]). For
the Hamiltonian system (3), there are two remarkable features: the symplecticity of its flow and
the conservation of the Hamiltonian. Consequently, for a numerical algorithm, these two features
should be respected as much as possible in the spirit of geometric numerical integration.

One typical example of system (1) is Vlasov equations or charged-particle dynamics in a strong
and uniform magnetic field, which has been studied by many researchers. In practice, the numerical
methods used to treat this system can be summarized in the following three categories.

a) The primitive numerical methods usually depend on the knowledge of certain other charac-
teristics of the solution besides high-frequency oscillation and structure preservation such as the
Boris method [1] as well as its further researches [11, 22]. This method does not perform well for
highly oscillatory systems and cannot preserve any structure of the system.

b) Some recent methods are devoted to the structure preservation such as the volume-preserving
algorithms [18], symplectic methods [17, 24], symmetric methods [12] and energy-preserving meth-
ods [2, 20, 21, 23]. In [13], the long-time near-conservation property of a variational integrator was
analyzed under the condition 0 < ε ≪ 1. Very recently, some integrators with large stepsize and
their long term behaviour were studied in [14] for charged-particle dynamics. All of these methods
can preserve or nearly preserve some structure of the considered system. However, these methods
mentioned above do not pay attention to the high-frequency oscillation, and then the convergence
of these methods is not uniformly accurate for ε. Their error constant usually increases when ε
decreases.

c) Accuracy is often an important consideration for highly oscillatory systems over long-time
intervals. Some new methods with uniform accuracy for ε have been proposed and analysed recently.
The authors in [15] improved asymptotic behaviour of the Boris method and derived a filtered Boris
algorithm under a maximal ordering scaling. Some multiscale schemes have been proposed such
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as the asymptotic preserving schemes [7, 8] and the uniformly accurate schemes [3, 4]. Although
these powerful numerical methods have very good performance in accuracy, structure (nearly)
preservation usually cannot be achieved.

Based on the above points, a natural question to ask is whether one can design a numerical
method for (1) such that it has uniform error bound for ε and can exactly preserve some structure
simultaneously. A kind of energy-preserving method without convergent analysis was given in [25].
It will be shown in this paper that this method has a uniform error bound which has not been
studied in [25]. Very recently, the authors in [27] presented some splitting methods with first-order
uniform error bound in x and energy or volume preservation. However, only first-order methods
are proposed there and higher-order ones with energy or other structure preservation have not
been investigated. A numerical method combining high-order uniform error bound and structure
preservation has more challenges and importance.

In this paper, we will derive two kinds of algorithms to preserve the symplecticity and energy,
respectively. For symplectic algorithms, their near energy conservation over long times will be
analysed. Moreover, all the structure-preserving algorithms will be shown to have second-order
uniform error bound for 0 < ε ≪ 1 in x. Meanwhile, an algorithm with first-order uniform error
bound in both x and v will be proposed. The remainder of this paper is organised as follows. In
Section 2, we formulate two kinds of algorithms. The main results of these algorithms are given in
Section 3 and a numerical experiment is carried out there to numerically show the performance of
the algorithms. The proofs of the main results are presented in Sections 4-6 one by one. The last
section includes some concluding remarks.

2 Numerical algorithms

Before deriving effective algorithms for the system (1), we first present the implicit expression of
its exact solution as follows.

Theorem 2.1 (See [15].) The exact solution of system (1) can be expressed as

x(tn + h) = x(tn) + hϕ1(hΩ)v(tn) + h2
∫ 1

0
(1− τ)ϕ1((1 − τ)hΩ)F (x(tn + hτ))dτ,

v(tn + h) = ϕ0(hΩ)v(tn) + h
∫ 1

0 ϕ0((1 − τ)hΩ)F (x(tn + hτ))dτ,
(4)

where Ω = 1
ε B̃, h is a stepsize, tn = nh and the ϕ-functions are defined by (see [19])

ϕ0(z) = ez, ϕk(z) =

∫ 1

0

e(1−σ)z σk−1

(k − 1)!
dσ, k = 1, 2, . . . .

In what follows, we present two kinds of algorithms which will correspond to symplectic algo-
rithms and energy-preserving algorithms, respectively.

Algorithm 2.2 By denoting the numerical solution xn ≈ x(tn), vn ≈ v(tn) with n = 0, 1, . . . , an
s-stage adaptive exponential algorithm applied with stepsize h is defined by:

Xi = xn + cihϕ1(cihΩ)vn + h2
s
∑

j=1

αij(hΩ)F (Xj), i = 1, 2, . . . , s,

xn+1 = xn + hϕ1(hΩ)vn + h2
s
∑

i=1

βi(hΩ)F (Xi),

vn+1 = ϕ0(hΩ)vn + h
s
∑

i=1

γi(hΩ)F (Xi),

(5)
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where αij(hΩ), βi(hΩ), γi(hΩ) are bounded functions of hΩ. As some practical examples, we present
five explicit algorithms.

For constant F ≡ F0 ∈ R3, the variation-of-constants formula (4) reads

x(tn + h) = x(tn) + hϕ1(hΩ)v(tn) + h2ϕ2(hΩ)F0,
v(tn + h) = ϕ0(hΩ)v(tn) + hϕ1(hΩ)F0.

Based on this, we consider the following algorithm

xn+1 = xn + hϕ1(hΩ)vn + h2ϕ2(hΩ)F (xn),

vn+1 = ϕ0(hΩ)vn + hϕ1(hΩ)F (xn).

which means that in (5)

s = 1, c1 = 0, α11 = 0, β1 = ϕ2(hΩ), γ1 = ϕ1(hΩ).

This method is referred to M1. This method can be verified to be non-symmetric. We modify it to
be a symmetric method by considering

s = 2, c1 = 0, c2 = 1, α11 = α12 = α22 = 0,

β1 = ϕ2(hΩ), β2 = 0, γ1 = ϕ2(hΩ)
ϕ1(−hΩ) , γ2 = 2ehΩϕ2(−hΩ)

ϕ1(hΩ) ,

and denote this method as M2.
It is noted that the next three methods are formulated based on the conditions (18) of symplecticity

given blew. The coefficients are obtained by considering the s-stage adaptive exponential algorithm
(5) with the coefficients for i = 1, . . . , s, j = 1, . . . , i,

αij = aij(ci − cj)ϕ1((ci − cj)hΩ), βi = bi(1− ci)ϕ1((1− ci)hΩ), γi = bie
(1−ci)hΩ, (6)

where c = (c1, . . . , cs), b = (b1, . . . , bs) and A = (aij)s×s are coefficients of an s-stage diagonal
implicit RK method. It can be checked easily that if this RK method is chosen as a symplectic
method, then the corresponding coefficients (6) satisfy the conditions (18). We omit the details of
calculations for brevity. We first consider

s = 1, c1 =
1

2
, b1 = 1.

The adaptive exponential algorithm whose coefficients are given by this choice and (6) is denoted
by SM1. For s = 2, choosing

c1 = 0, c2 = 1, a21 = 1
2 , β1 = 1

2 , b2 = 1

yields another method, which is called as SM2. If we consider

c1 = 1
4 , c2 = 3

4 , a21 = 1
2 , b1 = b2 = 1

2 ,

then the corresponding method is referred to SM3.

The following algorithm is devoted to the energy-preserving methods which are designed based
on the variation-of-constants formula (4) and the idea of continuous-stage methods.
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Algorithm 2.3 An s-degree continuous-stage adaptive exponential algorithm applied with stepsize
h is defined by

Xτ = xn + hCτ (hΩ)vn + h2

∫ 1

0

Aτσ(hΩ)F (Xσ)dσ, 0 ≤ τ ≤ 1,

xn+1 = xn + hϕ1(hΩ)vn + h2

∫ 1

0

B̄τ (hΩ)F (Xτ )dτ,

vn+1 = ϕ0(hΩ)vn + h

∫ 1

0

Bτ (hΩ)F (Xτ )dτ,

(7)

where Xτ is a polynomial of degree s with respect to τ satisfying X0 = xn, X1 = xn+1. Cτ , B̄τ , Bτ

and Aτ,σ are polynomials which depend on hΩ. The Cτ (hΩ) satisfies Cci(hΩ) = ciϕ1(cihΩ), where
ci for i = 1, . . . , s+ 1 are the fitting nodes, and one of them is required to be one.

As an illustrative example, we consider s = 1, c1 = 0, c2 = 1 and choose

Cτ = (1− τ)I + τϕ1(hΩ), Aτσ = τϕ2(hΩ), B̄τ = ϕ2(hΩ), Bτ = ϕ1(hΩ).

This obtained algorithm can be rewritten as

xn+1 = xn + hϕ1(hΩ)vn + h2ϕ2(hΩ)
∫ 1

0 F
(

xn + σ(xn+1 − xn)
)

dσ,

vn+1 = ϕ0(hΩ)vn + hϕ1(hΩ)
∫ 1

0
F
(

xn + σ(xn+1 − xn)
)

dσ,
(8)

which is denoted by EM1.

Remark 2.4 It is noted that EM1 has been given in [25] and it was shown to be energy-preserving.
However, its convergence has not been studied there. In this paper, we will analyse the convergence
of each algorithm. It will be shown that M1 has a first-order uniform error bound in both x and v
and the others are of order two and have a uniform convergence in x for 0 < ε ≪ 1. In contrast,
many classical methods such as Euler methods, Runge-Kutta (-Nyström) methods often show non-
uniform error bounds in both x and v, where the error constant is usually proportional to 1/εk for
some k > 0.

Remark 2.5 It is remarked that the following integrators for solving (1) has been given in [15]

xn+1 = xn + hϕ1(hΩ)vn + 1
2h

2Ψ(hΩ)Fn,
vn+1 = ϕ0(hΩ)vn + 1

2h
(

Ψ0(hΩ)Fn +Ψ1(hΩ)Fn+1

)

,

where Fn = F (xn) and Ψ,Ψ0,Ψ1 are matrix-valued and bounded functions of hΩ satisfying Ψ(0) =
Ψ0(0) = Ψ1(0) = 1. However, only convergence is researched there and the structure preservation
such as symplecticity or energy conservation has not been discussed.

3 Main results and a numerical test

3.1 Main results

The main results of this paper are given by the following four theorems. The first three theorems
are about structure preservations and the last one concerns uniform error bound.
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Theorem 3.1 (Symplecticity of SM1-SM3.) Consider the methods SM1-SM3 where pn+1 =
vn+1− 1

2ε B̃xn+1. In this case, for the non-separable Hamiltonian (3), the map (xn, pn) → (xn+1, pn+1)
determined by these methods is symplectic.

Theorem 3.2 (Energy preservation of EM1 [25].) The method EM1 preserves the energy (2)
exactly, i.e. E(xn+1, vn+1) = E(xn, vn), n = 0, 1, . . . .

Theorem 3.3 (Long time energy conservation of M2 and SM1-SM3.) Consider the fol-
lowing assumptions.

• It is assumed that the initial values x0 and v0 := ẋ0 are bounded such that the energy E is
bounded independently of ε along the solution.

• Suppose that the considered numerical solution stays in a compact set.

• A lower bound on the stepsize h/ε ≥ c0 > 0 is required.

• Assume that the numerical non-resonance condition is true

| sin(h
2
(k · Ω̃))| ≥ c

√
h for k ∈ Z

l\M with |k| ≤ N

for some N ≥ 2 and c > 0. The notations used here are referred to the last part of Section 5.

For the methods M2 and SM1-SM3, it holds that

|E(xn, vn)− E(x0, v0)| ≤ Ch (9)

for 0 ≤ nh ≤ h−N+1. The constant C is independent of n, h, ε, but depends on N, T and the
constants in the assumptions.

Remark 3.4 It is noted that M1 does not have the above energy conservation property. The reason
is that it is not a symmetric method. It will be seen from the proof given in Section 5 that symmetry
plays an important role in the analysis.

Theorem 3.5 (Convergence.) For the methods M1-M2 and the energy-preserving method EM1,
under the condition that h ≤ C1ε, the global errors are bounded by

M1: |xn − x(tn)|+ |vn − v(tn)| . h, (10a)

M2 and EM1: |xn − x(tn)| . h2, |vn − v(tn)| . h2/ε, (10b)

where 0 < nh ≤ T . Here we denote A . B for A ≤ CB with a generic constant C > 0 independent
of h or n or ε but depends on T and C1.

For the symplectic methods SM1-SM3, under the conditions of Theorem 3.3, the global errors
are

SM1-SM3: |xn − x(tn)| . h2, |vn − v(tn)| . h2/ε, (11)

where the error constants are independent of n, h, ε, but depend on T and the constants in the
assumptions of Theorem 3.3.
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Methods Symplecticity Symmetry Energy property Convergence

M1 No No No
|xn − x(tn)| . h
|vn − v(tn)| . h

M2 No Yes Near conservation
|xn − x(tn)| . h2

|vn − v(tn)| . h2/ε

SM1 Yes Yes Near conservation
|xn − x(tn)| . h2

|vn − v(tn)| . h2/ε

SM2 Yes Yes Near conservation
|xn − x(tn)| . h2

|vn − v(tn)| . h2/ε

SM3 Yes Yes Near conservation
|xn − x(tn)| . h2

|vn − v(tn)| . h2/ε

EM1 No Yes Exact conservation
|xn − x(tn)| . h2

|vn − v(tn)| . h2/ε

Table 1: Properties of the obtained methods.

For the six methods presented in this paper, concerning the symmetry [16], it is easy to check
that all of them except M1 are symmetric. Their properties are summarized in Table 1. The main
observation of the paper is that M1 has a first uniform (in ε) error bound in both x and v and
symmetric or symplectic or energy-preserving methods show second-order uniform error bound in
x. Moreover, SM1 can preserve the energy exactly and symplectic or symmetric methods have a
good near conservations of energy over long times. All of these observations will be numerically
illustrated by a test given blew.

3.2 A numerical test

As an illustrative numerical experiment, we consider the charged particle system of [11] with an
additional factor 1/ε and a constant magnetic field. The system can be expressed by (1) with d = 3,

where the potential U(x) = x3
1 − x3

2 + x4
1/5 + x4

2 + x4
3 and B̃ =





0 0.2 0.2
−0.2 0 1
−0.2 −1 0



 . The initial

values are chosen as x(0) = (0.6, 1,−1)⊺ and v(0) = (−1, 0.5, 0.6)⊺.

3.2.1 Energy conservation

We take ε = 0.05, 0.005 and apply our six methods as well as the symplectic Euler method (denoted
by SE) to this problem on [0, 100000] with h = ε. The standard fixed point iteration is used for
EM1 and we set 10−16 as the error tolerance and 10 as the maximum number of iterations. The
relative errors ERR := (E(xn, vn) − E(x0, v0))/E(x0, v0) of the energy are displayed in Figs. 1-3.
We do not show the figure if the error is too large. According to these results, we have the following
observations. M2 and SM1-SM3 (Figs. 1-2) have near energy conservation over long times, EM1
preserves the energy very well (Fig. 3) but SE and M1 show a bad energy conservation (Fig. 1).
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M1: energy conservation with ε = 0.05
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M2: energy conservation with ε = 0.05
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M1: energy conservation with ε = 0.005
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M2: energy conservation with ε = 0.005

Figure 1: The relative energy errors (ERR) against t for SE and M1-M2.

3.2.2 Convergence

For displaying the results of convergence, the problem is solved on [0, 1] with h = 1/2i for i =

6, . . . , 12. The global errors errx := |xn−x(tn)|
|x(tn)|

, errv := |vn−v(tn)|
|v(tn)|

for different ε are shown in Figs.

4-6, respectively. It is noted that we use the result of standard ODE45 method in MATLAB with an
absolute and relative tolerance equal to 10−12 as the true solution. It follows from these results that
M1 has a uniform first-order convergence in both x and v as stated by (10a). The other methods
only have a uniform second-order error bounds in x as given in Theorem 3.5.

3.2.3 Efficiency

In order to illustrate the efficiency of the proposed methods, we solve this system till T = 10. The
efficiency of each method (the error err2 versus the CPU time) is displayed in Fig. 7. This test
is conducted by MATLAB on a laptop ThinkPad (CPU: Intel (R) Core (TM) i7-10510U CPU @
2.30 GHz, Memory: 8 GB, Os: Microsoft Windows 10 with 64bit). It can be observed that the
computational cost of the new methods is cheap compared with the symplectic Euler method (Fig.
7).

3.2.4 Resonance instability

Finally, we show the resonance instability of the proposed methods. This is done by fixing ǫ = 1/210

and showing the errors at T = 1 against h/ǫ in Fig. 8. It can be observed that M1 gives a very
good result but other methods have a good behavior for values of h/ǫ except integral multiples of
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SM3: energy conservation with ε = 0.005

Figure 2: The relative energy errors (ERR) against t for symplectic SM1-SM3.
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EM1: energy conservation with ε = 0.05
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EM1: energy conservation with ε = 0.005

Figure 3: The relative energy errors (ERR) against t for energy-preserving EM1.

π. SM3 shows a not uniform result close to 4π, other methods M2, SM1, SM2 and EM1 close to
even multiples of π. This means that SM3 appears more robust near stepsize resonances and other
methods behave very similar away from stepsize resonances.

In the following three sections, we will prove Theorems 3.1, 3.3-3.5, respectively. In each proof,
we will firstly consider d = 3 for brevity and then show that how to extend the analysis to other d
with some necessary modifications.
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Figure 4: The errors in x (errx) and v (errv) against h for SE and M1-M2 (the slope of the dotted
line for SE and M1 is one and for M2 is two).

4 Proof of symplecticity (Theorem 3.1)

• Transformed system and methods.

Due to the skew-symmetric matrix B̃, it is clear that there exists a unitary matrix P and a
diagonal matrix Λ such that B̃ = PΛPH, where Λ = diag(−||B̃||i, 0, ||B̃||i). With the linear change
of variable

x̃(t) = PHx(t), ṽ(t) = PHv(t), (12)

the system (1) can be rewritten as

d
dt

(

x̃
ṽ

)

=

(

0 I

0 Ω̃i

)(

x̃
ṽ

)

+

(

0

F̃ (x̃)

)

,

(

x̃0

ṽ0

)

=

(

PHx0

PHẋ0

)

, (13)

where Ω̃ = diag(−ω̃, 0, ω̃), ω̃ = ||B̃||
ε , and F̃ (x̃) = PHF (P x̃) = −∇x̃U(P x̃). In this paper, we denote

the vector x by x = (x−1, x0, x1)⊺ and the same notation is used for all the vectors in R3 or C3.
According to (12) and the property of the unitary matrix P , one has that

x̃−1 = (x̃1), ṽ−1 = (ṽ1), x̃0, ṽ0 ∈ R. (14)

The energy of this transformed system (13) is given by

E(x, v) =
1

2
|P ṽ|2 + U(P x̃) =

1

2
|ṽ|2 + U(P x̃) := Ẽ(x̃, ṽ).

10
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Figure 5: The errors in x (errx) and v (errv) against h for symplectic SM1-SM3 (the slope of the
dotted line is two).
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Figure 6: The errors in x (errx) and v (errv) against h for energy-preserving EM1 (the slope of the
dotted line is two).

For this transformed system, we can modify the schemes of SM1-SM3 accordingly. For example,
the scheme (5) has a transformed form for (13)

X̃i = x̃n + cihϕ1(cihΩ̃i)ṽn + h2
s
∑

j=1

αij(hΩ̃i)F̃ (X̃j), i = 1, 2, . . . , s,

x̃n+1 = x̃n + hϕ1(hΩ̃i)ṽn + h2
s
∑

i=1

βi(hΩ̃i)F̃ (X̃i),

ṽn+1 = ϕ0(hΩ̃i)ṽn + h
s
∑

i=1

γi(hΩ̃i)F̃ (X̃i).

(15)
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Figure 7: The uniform errors (err2) against CPU time.

h/ǫ

-6

-4

-2

0

lo
g

1
0
(G

E
)

The global errors of x for M1

π 2π 3π 4π
h/ǫ

-6

-4

-2

0

lo
g

1
0
(G

E
)

The global errors of x for M2

π 2π 3π 4π
h/ǫ

-6

-4

-2

0

lo
g

1
0
(G

E
)

The global errors of x for SM1

π 2π 3π 4π

h/ǫ

-6

-4

-2

0

lo
g

1
0
(G

E
)

The global errors of x for SM2

π 2π 3π 4π
h/ǫ

-6

-4

-2

0

lo
g

1
0
(G

E
)

The global errors of x for SM3

π 2π 3π 4π
h/ǫ

-6

-4

-2

0
lo

g
1
0
(G

E
)

The global errors of x for EM1

π 2π 3π 4π

Figure 8: The global errors (GE) of x against h/ε.

Denote the transformed method (15) by

X̃J
i = x̃J

n + cihϕ1(cihΩ̃
J i)ṽJn + h2

s
∑

j=1

αij(hΩ̃
J i)F̃ J

j , i = 1, 2, . . . , s,

x̃J
n+1 = x̃J

n + hϕ1(hΩ̃
J i)ṽJn + h2

s
∑

i=1

βi(hΩ̃
J i)F̃ J

i ,

ṽJn+1 = ehΩ̃
J iṽJn + h

s
∑

i=1

γi(hΩ̃
J i)F̃ J

i ,

(16)

where the superscript index J for J = −1, 0, 1 denotes the (J + 2)th entry of a vector or a matrix
and F̃ J

i denotes the (J + 2)th entry of F̃ (X̃i). With the notation of differential 2-form, we need to

12



prove that (see [16])
1

∑

J=−1

dxJ
n+1 ∧ dpJn+1 =

1
∑

J=−1

dxJ
n ∧ dpJn.

We compute

1
∑

J=−1

dxJ
n+1 ∧ dpJn+1 =

1
∑

J=−1

dx̄J
n+1 ∧ dpJn+1 =

1
∑

J=−1

d(P̄ ¯̃xn+1)
J ∧ d(P p̃n+1)

J

=
1
∑

J=−1

( 1
∑

i=−1

(P̄J+2,i+2d¯̃x
i
n+1)

)

∧
( 1

∑

k=−1

(PJ+2,k+2dp̃
k
n+1)

)

=
1
∑

J=−1

1
∑

i=−1

1
∑

k=−1

P̄J+2,i+2PJ+2,k+2(d¯̃x
i
n+1 ∧ dp̃kn+1)

=
1
∑

i=−1

d¯̃xi
n+1 ∧ dp̃in+1 =

1
∑

J=−1

d¯̃xJ
n+1 ∧ dp̃Jn+1,

where PHP = I is used here. Similarly, one has
1
∑

J=−1

dxJ
n ∧ dpJn =

1
∑

J=−1

d¯̃xJ
n ∧ dp̃Jn. Thus we only

need to prove
1
∑

J=−1

d¯̃xJ
n+1 ∧ dp̃Jn+1 =

1
∑

J=−1

d¯̃xJ
n ∧ dp̃Jn, i.e.

1
∑

J=−1

d¯̃xJ
n+1 ∧ dṽJn+1 − 1

2

1
∑

J=−1

d¯̃xJ
n+1 ∧ d(Ω̃J ix̃J

n+1)

=
1
∑

J=−1

d¯̃xJ
n ∧ dṽJn − 1

2

1
∑

J=−1

d¯̃xJ
n ∧ d(Ω̃J ix̃J

n).

(17)

• Symplecticity of the transformed methods.

In this part, we will prove that the result (17) is true if the following conditions are satisfied

γj(K)−Kβj(K) = djI, dj ∈ C,

γj(K)[ϕ̄1(K)− cjϕ̄1(cjK)] = βj(K)[e−K +Kϕ̄1(K)− cjKϕ̄1(cjK)],

β̄i(K)γj(K)− 1

2
Kβ̄i(K)βj(K)− ᾱji(K)[γj(K)−Kβj(K)]

= βj(K)γ̄i(K) +
1

2
Kβj(K)β̄i(K)− αij(K)[γ̄i(K) +Kβ̄i(K)],

(18)

where i, j = 1, 2, . . . , s, and K = hΩ̃i. Here ϕ̄1 denotes the conjugate of ϕ1 and the same notation
is used for other functions.

In view of the definition of differential 2-form (see [16]), it can be proved that d¯̃xJ
n ∧ dṽJn =

dx̃J
n ∧ d¯̃vJn and d¯̃xJ

n ∧ dx̃J
n ∈ iR. In the light of the scheme (16) and the fact that any exterior

13



product ∧ appearing here is real, it is obtained that

d¯̃xJ
n+1 ∧ dṽJn+1 −

1

2
d¯̃xJ

n+1 ∧ d(Ω̃J ix̃J
n+1) = d¯̃xJ

n ∧ dṽJn − 1

2
d¯̃xJ

n ∧ d(Ω̃J ix̃J
n)

+h
s

∑

j=1

[γj(K
J)−KJβj(K

J)]d¯̃xJ
n ∧ dF̃ J

j + [heK
J

ϕ̄1(K
J)− 1

2
h2Ω̃J iϕ̄1(K

J )ϕ1(K
J)]d¯̃vJn ∧ dṽJn

+h2
s

∑

j=1

[ϕ̄1(K
J)γj(K

J)− βj(K
J)e−KJ − hΩ̃J iϕ̄1(K

J)βj(K
J)]d¯̃vJn ∧ dF̃ J

j

+h3
s

∑

i,j=1

[β̄i(K
J)γj(K

J)− 1

2
hΩ̃J iβ̄i(K

J)βj(K
J)]d ¯̃F J

i ∧ dF̃ J
j ,

(19)

where the fact that eK
J − hΩ̃J iϕ1(K

J) = I is used here.
On the other hand, from the first s equalities of (16), it follows that

dx̃J
n = dX̃J

i − cihϕ1(ciK
J)dṽJn − h2

s
∑

j=1

αij(K
J)dF̃ J

j , i = 1, 2, . . . , s.

We then obtain

d¯̃xJ
n ∧ dF̃ J

j = d ¯̃XJ
j ∧ dF̃ J

j − cjhϕ̄1(cjK
J)d¯̃vJn ∧ dF̃ J

j − h2
s

∑

i=1

ᾱji(K
J)d ¯̃F J

i ∧ dF̃ J
j , j = 1, 2, . . . , s.

Inserting this into (19) and summing over all J yields

1
∑

J=−1

d¯̃xJ
n+1 ∧ dṽJn+1 −

1

2

1
∑

J=−1

d¯̃xJ
n+1 ∧ d(Ω̃J ix̃J

n+1) =

1
∑

J=−1

d¯̃xJ
n ∧ dṽJn − 1

2

1
∑

J=−1

d¯̃xJ
n ∧ d(Ω̃J ix̃J

n)

+h
s

∑

j=1

1
∑

J=−1

[γj(K
J)−KJβj(K

J)]d ¯̃XJ
j ∧ dF̃ J

j (20a)

+h

1
∑

J=−1

[eK
J

ϕ̄1(K
J )− 1

2
KJ ϕ̄1(K

J)ϕ1(K
J)]d¯̃vJn ∧ dṽJn (20b)

+h2
s

∑

j=1

1
∑

J=−1

[

ϕ̄1(K
J)γj(K

J)− βj(K
J)e−KJ −KJ ϕ̄1(K

J)βj(K
J) (20c)

− cjϕ̄1(cjK
J)[γj(K

J)−KJβj(K
J )]

]

d¯̃vJn ∧ dF̃ J
j (20d)

+h3
s

∑

i,j=1

1
∑

J=−1

[

β̄i(K
J)γj(K

J)− 1

2
hΩ̃J iβ̄i(K

J)βj(K
J) (20e)

− ᾱji(K
J)[γj(K

J)−KJβj(K
J)]

]

d ¯̃F J
i ∧ dF̃ J

j . (20f)

◦ Prove that (20a) = 0.
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Based on the first s conditions of (18), F̃ (x̃) = −∇x̃U(P x̃) and (17), it can be verified that

d ¯̃XJ
j ∧ dF̃ J

j = dXJ
j ∧ dF J

j . Thus, one has

1
∑

J=−1

[γj(K
J)−KJβj(K

J )]d ¯̃XJ
j ∧ dF̃ J

j

= dj
1
∑

J=−1

d ¯̃XJ
j ∧ dF̃ J

j = dj
1
∑

J=−1

dXJ
j ∧ dF J

j = −dj
1
∑

J=−1

dF J
j ∧ dXJ

j

= −dj
1
∑

J=−1

(
∂FJ

j (Xj)

∂xI dXI
j ) ∧ dXJ

j = −dj
1
∑

J,I=−1

(−∂2U(Px)
∂xJ∂xI )dXI

j ∧ dXJ
j = 0.

◦ Prove that (20b) = 0.
Using the property of ṽn, we have

d¯̃v−1
n ∧ dṽ−1

n = −d¯̃v1n ∧ dṽ1n, d¯̃v0n ∧ dṽ0n = 0,

and

eK
1

ϕ̄1(K
1)− 1

2
K1ϕ̄1(K

1)ϕ1(K
1) = eK

−1

ϕ̄1(K
−1)− 1

2
K−1ϕ̄1(K

−1)ϕ1(K
−1).

Therefore, it follows that

1
∑

J=−1

[eK
J

ϕ̄1(K
J)− 1

2
KJ ϕ̄1(K

J)ϕ1(K
J)]d¯̃vJn ∧ dṽJn = 0.

◦ Prove that (20c)-(20f)= 0.
In the light of all the identities after the previous s ones in (18), the last two terms (20c)-(20f)

vanish.
The results stated above leads to (17). Then, it can be verified straightforwardly that the

coefficients of SM1-SM3 satisfy (18). Therefore, these methods are symplectic.
• Extension of the proof to other d.
For a general d ≥ 2, since B̃ is skew-symmetric, there exists a unitary matrix P and a diagonal

matrix Λ such that B̃ = PΛPH, where

Λ =

{

diag(−ω̃li, . . . ,−ω̃1i, 0, ω̃1i, . . . , ω̃li), d = 2l+ 1,

diag(−ω̃li, . . . ,−ω̃1i, ω̃1i, . . . , ω̃li), d = 2l.
(21)

For both cases, the above proof can be extended without any difficulty.

5 Proof of long-time energy conservation (Theorem 3.3 )

In this section, we will show the long time near-conservation of energy along SM2 algorithm. We
first derive modulated Fourier expansion (see, e.g. [10, 13, 15, 26]) with sufficient many terms for
SM2. Then one almost-invariant of the expansion is studied and based on which the long-time near
conservation is confirmed. The proof of other methods can be given by modifying the operators
L(hD), L̂(hD) (24) and following the way given below.

• Reformulation of SM2.
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Using symmetry, the algorithm SM2 can be expressed in a two-step form
{

xn+1 − 2xn + xn−1 = h(ϕ1(hΩ)− ϕ1(−hΩ))vn + 1
2h

2(ϕ1(hΩ) + ϕ1(−hΩ))Fn,
xn+1 − xn−1 = h(ϕ1(hΩ) + ϕ1(−hΩ))vn + 1

2h
2(ϕ1(hΩ)− ϕ1(−hΩ))Fn,

(22)

with Fn := F (xn), which yields that

α(hΩ)xn+1−2xn+xn−1

h2 = β(hΩ)Ωxn+1−xn−1

2h + γ(hΩ)Fn,

where α(ξ) = ξ
ϕ1(ξ)−ϕ1(−ξ) , β(ξ) = 2

ϕ1(ξ)+ϕ1(−ξ) , γ(ξ) = ξ 2ϕ1(ξ)ϕ1(−ξ)
ϕ2

1(ξ)−ϕ2
1(−ξ)

.

For the transformed system (13), it becomes

α̃(hΩ̃) x̃n+1−2x̃n+x̃n−1

h2 = β̃(hΩ̃)iΩ̃ x̃n+1−x̃n−1

2h + γ̃(hΩ̃)F̃n, (23)

where the coefficient functions are given by α̃(ξ) = 1
sinc2( ξ

2
)
, β̃(ξ) = 1

sinc(ξ) , γ̃(ξ) = ξ csc(ξ) with

sinc(ξ) = sin(ξ)/ξ.
Define the operators

L(hD) = 1
2h sinc(hΩ̃)

(ehD − e−hD), L̂(hD) = α̃(hΩ̃) e
hD−2+e−hD

h2 − β̃(hΩ̃)iΩ̃ ehD−e−hD

2h , (24)

where D is the differential operator. The Taylor expansions of the operator L(hD) are

L(hD) =Ω̃ csc(hΩ̃)(hD) +
1

6
Ω̃ csc(hΩ̃)(hD)3 + · · · ,

L(hD + ihω̃) =idiag
(

ω̃,
sin(hω̃)

h
, ω̃

)

+ diag
(

ω̃ cot(hω̃),
cos(hω̃)

h
, ω̃ cot(hω̃)

)

(hD) + · · · ,

L(hD − ihω̃) =− idiag
(

ω̃,
sin(hω̃)

h
, ω̃

)

+ diag
(

ω̃ cot(hω̃),
cos(hω̃)

h
, ω̃ cot(hω̃)

)

(hD) + · · · ,

L(hD + ikhω̃) =i sin(khω̃)Ω̃ csc(hΩ̃) + cos(khω̃)Ω̃ csc(hΩ̃) + · · · , where |k| > 1.

The operator L̂(hD) can be expressed in its Taylor expansion as

L̂(hD) =− Ω̃2 csc(hΩ̃)(ihD)− 1

4
Ω̃2 csc2

(1

2
hΩ̃

)

(ihD)2 + · · · ,

L̂(hD + ihω̃) =diag
(

− 2ω̃2,
2(cos(hω̃)− 1)

h2
, 0
)

+ diag
(

ω̃2(2 cot(hω̃) + csc(hω̃)),
2 sin(hω̃)

h2
, ω̃2 csc(hΩ̃)

)

(ihD) + · · · ,

L̂(hD − ihω̃) =diag
(

0,
2(cos(hω̃)− 1)

h2
,−2ω̃2

)

− diag
(

ω̃2 csc(hΩ̃),
2 sin(hω̃)

h2
, ω̃2(2 cot(hω̃) + csc(hω̃))

)

(ihD) + · · · ,

L̂(hD + ikhω̃) =2 sin
(1

2
hkω̃

)

Ω̃2 csc
(1

2
hΩ̃

)

csc(hΩ̃) sin
(1

2
h(Ω̃− kω̃I)

)

− sin
(1

2
h(Ω̃− 2kω̃)

)

Ω̃2 csc
(1

2
hΩ̃

)

csc(hΩ̃)(ihD) + · · · , where |k| > 1.

• Modulated Fourier expansion.
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We first present the modulated Fourier expansion of the numerical result x̃n and ṽn for solving
the transformed system (13).

We will look for smooth coefficient functions ζ̃k and η̃k such that for t = nh, the functions

x̃h(t) =
∑

|k|<N

eikω̃tζ̃k(t) + R̃h,N(t), ṽh(t) =
∑

|k|<N

eikω̃tη̃k(t) + S̃h,N (t) (25)

yield a small defect R̃, S̃ when they are inserted into the numerical scheme (23).

◦ Construction of the coefficients functions.
Inserting the first expansion of (25) into the two-step form (23), expanding the nonlinear function

into its Taylor series and comparing the coefficients of eikω̃t, we obtain

L̂(hD)ζ̃0 = γ̃(hΩ̃)
(

F̃ (ζ̃0) +
∑

s(α)=0

1

m!
F̃ (m)(ζ̃0)(ζ̃)α

)

,

L̂(hD + ihkω̃)ζ̃k = γ̃(hΩ̃)
∑

s(α)=k

1

m!
F̃ (m)(ζ̃0)(ζ̃)α, |k| > 0,

(26)

where the sum ranges over m ≥ 0, s(α) =
m
∑

j=1

αj with α = (α1, . . . , αm) and 0 < |αi| < N , and (ζ̃)α

is an abbreviation for (ζ̃α1
, . . . , ζ̃αm

). This formula gives the modulation system for the coefficients
ζ̃k of the modulated Fourier expansion. Choosing the dominating terms and considering the Taylor
expansion of L̂ given above, the following ansatz of ζ̃k can be obtained:

˙̃
ζ±1
0 = −h2ω̃A(hω̃)

8i sin2( 1
2
hω̃)

(

G±10(·) + · · ·
)

,
¨̃
ζ00 = G00(·) + · · · ,

ζ̃−1
1 = h3ω̃A(hω̃)

−16 sin2( 1
2
hΩ̃) sin(hω̃)

(

F−10
1 (·) + · · ·

)

, ζ̃01 = h2

−4 sin2(hω̃/2)

(

F00
1 (·) + · · ·

)

,

˙̃ζ11 = h2ω̃A(hω̃)

8i sin2( 1
2
hω̃)

(

F10
1 (·) + · · ·

)

, ˙̃ζ−1
−1 = h2ω̃A(hω̃)

−8i sin2( 1
2
hω̃)

(

F−10
−1 (·) + · · ·

)

,

ζ̃0−1 = h2

−4 sin2(hω̃/2)

(

F00
−1(·) + · · ·

)

, ζ̃1−1 = h3ω̃A(hω̃)

−16 sin2( 1
2
hΩ̃) sin(hΩ̃)

(

F10
−1(·) + · · ·

)

,

ζ̃k = h3Ω̃A(hΩ̃)

16 sin( 1
2
hΩ̃) sin( 1

2
h(Ω̃−kω̃I)) sin( 1

2
hkω̃I)

(

F0
k (·) + · · ·

)

for |k| > 1,

(27)
where the dots stand for power series in

√
h and A(hω̃) = 2 sinc2(12hω̃). In this paper we truncate

the ansatz after the O(hN+1) terms. On the basis of the second formula of (22), one has

ṽn = 1
h(ϕ1(ihΩ̃)+ϕ1(−ihΩ̃))

(x̃n+1 − x̃n−1)− 1
2h

2 ϕ1(ihΩ̃)−ϕ1(−ihΩ̃)

h(ϕ1(ihΩ̃)+ϕ1(−ihΩ̃))
F̃ (x̃n)

= 1
2h sinc(hΩ̃)

(x̃n+1 − x̃n−1)− 1
2 ih tan(

h
2 Ω̃)F̃ (x̃n).

(28)

Inserting (25) into (28), expanding the nonlinear function into its Taylor series and comparing the
coefficients of eikω̃t, one arrives

η̃0 = L(hD)ζ̃0 −
1

2
ih tan(

h

2
Ω̃)

(

F̃ (ζ̃0) +
∑

s(α)=0

1

m!
F̃ (m)(ζ̃0)(ζ̃)α

)

,

η̃k = L(hD + ihkω̃)ζ̃k − 1

2
ih tan(

h

2
Ω̃)

∑

s(α)=k

1

m!
F̃ (m)(ζ̃0)(ζ̃)α, |k| > 0.

(29)
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This formula gives the modulation system for the coefficients η̃k of the modulated Fourier expansion
by the Taylor expansion of L and by choosing the dominating terms.

◦ Initial values.
For the first-order and second-order differential equations appeared in (27), initial values are

needed and we derive them as follows.
According to the conditions x̃h(0) = x̃0 and ṽh(0) = ṽ0, we have

x̃0
0 = ζ̃00 (0) +O(ω̃−1), x̃±1

0 = ζ̃±1
0 (0) +O(ω̃−1),

ṽ00 = η̃00(0) +O(ω̃−1) =
˙̃
ζ00 (0) +O(ω̃−1),

ṽ10 = η̃10(0) + η̃11(0) +O(ω̃−1) =
˙̃
ζ10 (0) + iω̃ζ̃11 (0) +O(ω̃−1),

ṽ−1
0 = η̃−1

0 (0) + η̃−1
−1(0) +O(ω̃−1) =

˙̃
ζ−1
0 (0)− iω̃ζ̃−1

−1 (0) +O(ω̃−1).

(30)

Thus the initial values ζ̃00 (0) = O(1) and
˙̃
ζ00 (0) = O(1) can be derived by considering the first and

third formulae, respectively. According to the second equation of (30), one gets the initial value

ζ̃±1
0 (0) = O(1). It follows from the fourth formula that ζ̃11 (0) =

1
iω̃

(

ṽ10 − ˙̃ζ10 (0) +O(h)
)

= O(ω̃−1),

and likewise one has ζ̃−1
−1 (0) = O(ω̃−1).

◦ Bounds of the coefficient functions.
With the ansatz (27), we achieve the bounds

˙̃
ζ±1
0 = O(h),

¨̃
ζ00 = O(1),

˙̃
ζ11 = O(h),

˙̃
ζ−1
−1 = O(h),

ζ̃−1
1 = O(h

5
2 ), ζ̃01 = O(h2), ζ̃0−1 = O(h2), ζ̃1−1 = O(h

5
2 ).

According to the initial values stated above, the bounds

ζ̃±1
0 = O(1), ζ̃00 = O(1), ζ̃11 = O(h), ζ̃−1

−1 = O(h),

are obtained. Moreover, we have the following results for coefficient functions η̃

η̃00 =
˙̃
ζ00 +O(h), η̃±1

0 = hω̃
sin(hω̃)

˙̃
ζ±1
0 +O(h),

η̃0±1 = iω̃ sinc(hω̃)ζ̃±1
0 +O(h), η̃±1

1 = iω̃ζ̃±1
1 +O(h), η̃±1

−1 = −iω̃ζ̃±1
−1 +O(h).

(31)

A further result is true

ζ̃k = O(h|k|+1), η̃k = O(h|k|) for |k| > 1.

◦ Defect.
Define

δ1(t+ h) =x̃h(t+ h)− x̃h(t)− hϕ1(ihΩ̃)ṽh(t)−
1

2
h2ϕ1(ihΩ̃)F̃ (x̃h(t)),

δ2(t+ h) =ṽh(t+ h)− eihΩ̃ṽh(t)−
1

2
hϕ0(ihΩ̃)F̃ (x̃h(t))−

1

2
hF̃ (x̃h(t+ h))

for t = nh. Considering the two-step formulation, it is clear that δ1(t + h) + δ1(t − h) = O(h4).
According to the choice for the initial values, we obtain δ1(0) = O(hN+2). Therefore, one has
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δ1(t) = O(hN+2) + O(thN+1). Using this result and (28), we have δ2 = O(hN ). Then let R̃n =
x̃n− x̃h(t) and S̃n = ṽn− ṽh(t). With the scheme of SM2, the error recursion is obtained as follows:

(

R̃n+1

S̃n+1

)

=

(

I hϕ1(ihΩ̃)

0 eihΩ̃

)(

R̃n

S̃n

)

+
1

2
h

(

hϕ1ΓnR̃n

ϕ0ΓnR̃n + Γn+1R̃n+1

)

+

(

δ1
δ2

)

,

where Γn :=
∫ 1

0
F̃x(x̃n + τR̃n)dτ . Solving this recursion and the application of a discrete Gronwall

inequality gives
R̃h,N(t) = O(t2hN ), S̃h,N (t) = O(t2hN/ε).

Using the relationships shown in (??), the numerical solution of SM2 admits the following
modulated Fourier expansion

xn =
∑

|k|<N

eikω̃tζk(t) +O(t2hN ), vn =
∑

|k|<N

eikω̃tηk(t) +O(t2hN/ε),

where ζk = P ζ̃k and ηk = P η̃k. Moreover, we have ζ−k = ζk and η−k = ηk.
• An almost-invariant.

Denote
~̃
ζ =

(

ζ̃−N+1, · · · , ζ̃−1, ζ̃0, ζ̃1, · · · , ζ̃N−1

)

.

An almost-invariant of the modulated Fourier expansion (25) is given as follows.
According to the above analysis, it is deduced that

γ̃−1(hΩ̃)L̂(hD)x̃h = F̃ (x̃h) +O(hN ),

where we use the denotations x̃h =
∑

|k|<N

x̃h,k with x̃h,k = eikω̃tζ̃k. Multiplication of this result with

P yields
P γ̃−1(hΩ̃)L̂(hD)PHP x̃h = P γ̃−1(hΩ̃)L̂(hD)PHxh

= PF̃ (x̃h) +O(hN+2) = F (xh) +O(hN ),

where xh =
∑

|k|<N

xh,k with xh,k = eikω̃tζk. Rewrite the equation in terms of xh,k and then one has

P γ̃−1(hΩ̃)L̂(hD)PHxh,k = −∇x−k
U(~x) +O(hN ),

where U(~x) is defined as

U(~x) = U(xh,0) +
∑

s(α)=0

1

m!
U (m)(xh,0)(xh)α

with ~x =
(

xh,−N+1, · · · , xh,−1, xh,0, xh,1, · · · , xh,N−1

)

. Multiplying this equation with
(

ẋh,−k

)⊺

and
summing up yields

∑

|k|<N

(

ẋh,−k

)⊺

P γ̃−1(hΩ̃)L̂(hD)PHxh,k +
d

dt
U(~x) = O(hN ).
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Denoting ~ζ =
(

ζ−N+1, · · · , ζ−1, ζ0, ζ1, · · · , ζN−1

)

and switching to the quantities ζk, we obtain

O(hN ) =
∑

|k|<N

(

ζ̇−k − ikω̃ζ−k

)⊺

P γ̃−1(hΩ̃)L̂(hD + ihkω̃)PHζk +
d

dt
U(~ζ)

=
∑

|k|<N

(

ζ̇k − ikω̃ζk
)⊺

P γ̃−1(hΩ̃)L̂(hD + ihkω̃)PHζk +
d

dt
U(~ζ)

=
∑

|k|<N

( ˙̃
ζk − ikω̃ζ̃k

)⊺

PHP γ̃−1(hΩ̃)L̂(hD + ihkω̃)PHP ζ̃k +
d

dt
U(~ζ)

=
∑

|k|<N

( ˙̃
ζk − ikω̃ζ̃k

)⊺

γ̃−1(hΩ̃)L̂(hD + ihkω̃)ζ̃k +
d

dt
U(~ζ).

(32)

In what follows, we show that the right-hand side of (32) is the total derivative of an expression
that depends only on ζ̃k and derivatives thereof. Consider k = 0 and then it follows that

L̂(hD)ζ̃0 = ihM1
˙̃
ζ0 + h2M2

¨̃
ζ0 + ih3M3

¨̃
ζ0 + · · · , where Mk ∈ R

3×3 for k = 1, 2, . . . .

By the formulae given on p. 508 of [16], we know that Re
( ˙̃
ζ0
)⊺L̂(hD)ζ̃0 is a total derivative. For

k 6= 0, in the light of

L̂(hD + ihkω̃)ζ̃k = N0ζ̃k + ihN1
˙̃
ζk + h2N2

¨̃
ζk + ih3N3

¨̃
ζk + · · · , where Nk ∈ R

3×3 for k = 0, 1, . . . ,

it is easy to check that Re
( ˙̃
ζk
)⊺

γ̃−1(hΩ̃)L̂(hD + ihkω̃)ζ̃k and Re
(

ikω̃ζ̃k
)⊺

γ̃−1(hΩ̃)L̂(hD + ihkω̃)ζ̃k

are both total derivatives. Therefore, there exists a function E such that d
dtE [

~̃
ζ](t) = O(hN ). It

follows from an integration that

E [~̃ζ](t) = E [~̃ζ](0) +O(thN ). (33)

On the basis of the previous analysis, the construction of E is derived as follows

E [~̃ζ](tn) =
1

2
(
˙̃
ζ0)⊺

2 sinc(12hΩ̃)

ϕ1(ihΩ̃)ϕ1(−ihΩ̃) + ϕ1(−ihΩ̃)ϕ1(ihΩ̃)

˙̃ζ0

+
1

2

ω̃

h
hω̃

2 sinc2(12hω̃)

ϕ1(ihω̃)ϕ1(−ihω̃) + ϕ1(−ihω̃)ϕ1(ihω̃)

(

∣

∣

∣ζ̃11

∣

∣

∣

2

+
∣

∣

∣ζ̃−1
−1

∣

∣

∣

2
)

+ U(~ζ) +O(h2)

=
1

2

∣

∣

∣

˙̃
ζ00

∣

∣

∣

2

+
1

2
ω̃2

(

∣

∣

∣ζ̃11

∣

∣

∣

2

+
∣

∣

∣ζ̃−1
−1

∣

∣

∣

2
)

+ U(PHζ̃0) +O(h).

• Long-time near-conservation.

Considering the result of E and the relationship (48) between ζ̃ and η̃, we obtain

E [~̃ζ](tn) =
1

2

∣

∣

∣

˙̃ζ00

∣

∣

∣

2

+
1

2
ω̃2

(

∣

∣

∣
ζ̃11

∣

∣

∣

2

+
∣

∣

∣
ζ̃−1
−1

∣

∣

∣

2
)

+ U(PHζ̃0) +O(h)

=
1

2

∣

∣η̃00
∣

∣

2
+

1

2

( ∣

∣η̃11
∣

∣

2
+
∣

∣η̃−1
−1

∣

∣

2 )
+ U(PHζ̃0) +O(h).

(34)
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We are now in a position to show the long-time conservations of SM2.
In terms of the bounds of the coefficient functions, one arrives at

E(xn, vn) = Ẽ(x̃n, ṽn) =
1

2

( ∣

∣η̃00
∣

∣

2
+
∣

∣η̃11
∣

∣

2
+
∣

∣η̃−1
−1

∣

∣

2 )
+ U(PHζ̃0) +O(h). (35)

A comparison between (34) and (35) gives E [~̃ζ](tn) = E(xn, vn) + O(h). Based on (33) and this
result, the statement (9) is easily obtained by considering nhN ≤ 1 and

E(xn, vn) = E [~̃ζ](tn) +O(h) = E [~̃ζ](tn−1) +O(hN+1) +O(h)

= E [~̃ζ](tn−2) + 2O(hN+1) +O(h) = · · ·
= E [~̃ζ](t0) + nO(hN+1) +O(h) = E(x0, v0) +O(h).

• Extension of the proof to other d.
According to the scheme (21) of Λ, the operators L(hD) and L̂(hD) as well as their properties

can be changed accordingly. The modulated Fourier expansions are modified as

x̃h(t) =
∑

k∈N∗

ei(k·Ω̃)tζ̃k(t) + R̃h,N (t), ṽh(t) =
∑

k∈N∗

ei(k·Ω̃)tη̃k(t) + S̃h,N (t),

where k = (k1, . . . , kl), Ω̃ = (ω̃1, . . . , ω̃l), k · Ω̃ = k1ω̃1+ · · ·+klω̃l. The set N ∗ is defined as follows.
For the resonance module M = {k ∈ Zl : k · Ω̃ = 0}, we let K be a set of representatives of the
equivalence classes in Zl\M which are chosen such that for each k ∈ K the sum |k| is minimal in
the equivalence class [k] = k +M, and that with k ∈ K, also −k ∈ K. We denote, for the positive
integer N , N = {k ∈ K : |k| ≤ N}, N ∗ = N\{(0, . . . , 0)}. Then the almost-invariant can be
modified accordingly and the long-time near conservation can be proved.

6 Proof of convergence (Theorem 3.5)

In this section, we discuss the convergence of the algorithms. The proof will be firstly given for
M1-M2 and EM1 by using the averaging technique and then presented for SM1-SM3 by using
modulated Fourier expansion.

6.1 Proof for M1-M2 and EM1

The proof will be given for EM1 and it can be adapted to M1-M2 easily.
• Re-scaled system and methods.

In order to establish the uniform error bounds, the strategy developed in [5, 27] will be used in
the proof. This means that the time re-scaling τ := t/ε is considered and q̇(τ) = εẋ(t), ẇ(τ) = εv̇(t),
where the notations q(τ) := x(t), w(τ) := v(t) are used. Then the convergent analysis will be given
for the following long-time problem

q̇(τ) = εw(τ), ẇ(τ) = B̃w(τ) + εF (q(τ)), τ ∈ [0,
T

ε
],

q(0) = q0 := x0, w(0) = w0 := v0,
(36)
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where q̇ (resp. ẇ) is referred to the derivative of q (resp. w) with respect to τ . The solution of this
system satisfies ‖q‖L∞(0,T/ε) + ‖w‖L∞(0,T/ε) . 1 and for solving (36), the method EM1 becomes

qn+1 =qn + ε∆τϕ1(∆τB̃)wn +
∆τ2ε2

2
ϕ2(∆τB̃)

∫ 1

0

F
(

ρqn + (1− ρ)qn+1

)

dρ,

wn+1 =e∆τB̃wn +∆τεϕ1(∆τB̃)

∫ 1

0

F
(

ρqn + (1− ρ)qn+1

)

dρ, 0 ≤ n <
T

ε∆τ
.

(37)

where ∆τ is the time step ∆τ = τn+1 − τn and qn ≈ q(τn), wn ≈ w(τn) is the numerical solution.
• Local truncation errors.

Based on (37), the local truncation errors ξqn and ξwn for 0 ≤ n < T
ε∆τ are defined as

q(τn+1) =q(τn) + ∆τεϕ1(∆τB̃)w(τn)

+
∆τ2ε2

2
ϕ2(∆τB̃)

∫ 1

0

F (ρq(τn) + (1− ρ)q(τn+1)) dρ+ ξqn,

w(τn+1) =e∆τB̃w(τn) + ∆τεϕ1(∆τB̃)

∫ 1

0

F (ρq(τn) + (1− ρ)q(τn+1)) dρ+ ξwn .

(38)

By this result and the variation-of-constants formula of (36), we compute

ξwn =ε∆τ

∫ 1

0

e(1−σ)∆τB̃F (q(τn +∆τσ))dσ

− ε∆τϕ1(∆τB̃)

∫ 1

0

F
(

q(τn) + σ(q(τn+1)− q(τn))
)

dσ

=ε

1
∑

j=0

∆τ j+1ϕj+1(hB̃)F̂ (j)(τn)− ε∆τϕ1(∆τB̃)F (q(τn))

− ε2∆τ2ϕ1(∆τB̃)

∫ 1

0

[σ
∂F

∂q
(q(τn))w(τn)]dσ +O(ε2∆τ3)

=ε∆τ2ϕ2(∆τB̃)F̂ (1)(τn)−
1

2
ε2∆τ2ϕ1(∆τB̃)

∂F

∂q
(q(τn))w(τn) +O(ε2∆τ3),

where F̂ (ξ) = F (q(ξ)) and F̂ (j) denotes the jth derivative of F̂ with respect to τ . By this definition,
it follows that

F̂ (1)(τn) =
∂F

∂q
(q(τn))

dq

dτ
(τn) =

∂F

∂q
(q(τn))εw(τn).

Consequently, the local error becomes

ξwn = ε2∆τ2
(

ϕ2(∆τB̃)− 1

2
ϕ1(∆τB̃)

)∂F

∂q
(q(τn))w(τn) +O(ε2∆τ3) = O(ε2∆τ3), (39)

where the result ϕ2(∆τB̃)− 1
2ϕ1(∆τB̃) = O(∆τ) is used here. Similarly, we obtain

ξqn = O(ε3∆τ3). (40)

Remark 6.1 It is noted that for M1, the local truncation errors are

ξwn = O(ε2∆τ2), ξqn = O(ε2∆τ2). (41)
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• Error bound.

In this part, we will first prove the boundedness of EM1: there exists a generic constant ∆τ0 > 0
independent of ε and n, such that for 0 < ∆τ ≤ ∆τ0, the following inequalities are true:

|qn| ≤ ‖q‖L∞(0,T/ε) + 1, |wn| ≤ ‖w‖L∞(0,T/ε) + 1, 0 ≤ n ≤ T

ε∆τ
. (42)

For n = 0, (42) is obviously true. Then we assume (42) is true up to some 0 ≤ m < T
ε∆τ , and we

shall show that (42) holds for m+ 1.
Define the error of the scheme

eqn := q(τn)− qn, ewn := w(τn)− wn, 0 ≤ n <
T

ε∆τ
.

For n ≤ m, subtracting (38) from the scheme (37) leads to

eqn+1 = eqn +∆τεϕ1(∆τB̃)ewn + ηqn + ξqn, ewn+1 = e∆τB̃ewn + ηwn + ξwn , 0 ≤ n ≤ m, (43)

where we use the following notations

ηqn =
∆τ2ε2

2
ϕ2(∆τB̃)

∫ 1

0

[F (ρq(τn) + (1− ρ)q(τn+1))− F (ρqn + (1− ρ)qn+1)] dρ,

ηwn =∆τεϕ1(∆τB̃)

∫ 1

0

[F (ρq(τn) + (1− ρ)q(τn+1))− F (ρqn + (1− ρ)qn+1)] dρ.

From the induction assumption of the boundedness, it follows that

|ηqn| . ∆τ2ε2
(

|eqn|+ |eqn+1|
)

, |ηwn | . ∆τε
(

|eqn|+ |eqn+1|
)

, 0 ≤ n < m. (44)

Taking the absolute value (Euclidean norm) on both sides of (43) and using (44), we have

|eqn+1|+ |ewn+1| − |eqn| − |ewn | .∆τε
(

|ewn |+ |eqn|+ |eqn+1|
)

+ |ξqn|+ |ξwn |, 0 ≤ n ≤ m.

Summing them up for 0 ≤ n ≤ m gives

|eqm+1|+ |ewm+1| . ∆τε
m
∑

n=0

(

|ewn |+ |eqn|+ |eqn+1|
)

+
m
∑

n=0

(|ξqn|+ |ξwn |) .

In the light of the truncation errors in (39) and the fact that m∆τε . 1, one has

|eqm+1|+ |ewm+1| . ∆τε

m
∑

n=0

(

|ewn |+ |eqn|+ |eqn+1|
)

+ ε∆τ2,

and then by Gronwall’s inequality arrives at

|eqm+1|+ |ewm+1| . ε∆τ2, 0 ≤ m <
T

ε∆τ
. (45)

Meanwhile, concerning

|qm+1| ≤ |q(τm+1)|+ |eqm+1|, |wm+1| ≤ |w(τm+1)|+ |ewm+1|,
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there exists a generic constant ∆τ0 > 0 independent of ε and m, such that for 0 < ∆τ ≤ ∆τ0, (42)
holds for m+ 1. This completes the induction.

Now we rewrite (43) as

eqn+1 = eqn +∆τϕ1(∆τB̃)(εewn ) + ηqn + ξqn, (εewn+1) = e∆τB̃(εewn ) + εηwn + εξwn .

Following the same way as stated above, it is arrived that

|eqm+1|+ |εewm+1| . ε2∆τ2, 0 ≤ m <
T

ε∆τ
. (46)

Remark 6.2 We note that for M1, the global error given in (45) becomes

|eqm+1|+ |ewm+1| . ε∆τ, 0 ≤ m <
T

ε∆τ
,

which proves the result (10a) of M1.

• Proof of the results for the methods applied to (1).
By considering the grids in the t variable and τ variable, it is obtained that h = ε∆τ . This shows

that for the original system (1) and the re-scaled system (36), x(tn) = q(τn) and v(tn) = w(τn).
Moreover, by comparing (8) with (37), we know that the numerical solution xn, vn of (8) is identical
to qn, wn of (37). Therefore, the result (46) yields the uniform error bound in x given in (10b) and
also shows the non-uniform error in v of (10b).

6.2 Proof for SM1-SM3

For SM1-SM3, the above proof cannot be applied since their local truncation errors will lose a
factor of ε in (39) and (40). This motivates us to consider modulated Fourier expansions (see, e.g.
[10, 13, 15, 16, 25]) for analysis in this part. The proof will be briefly shown for SM2 and it can be
modified for the other two methods easily.

• Decomposition of the numerical solution. Now we turn back to the SM2 given in (23)
and consider its modulated Fourier expansion (25). In order to derive the convergence, we need to
explicitly present the results of ζ̃k and η̃k with |k| ≤ 1. In the light of (26) and the properties of
L̂(hD), we obtain

˙̃
ζ±1
0 = −h2ω̃A(hω̃)

8i sin2( 1
2
hω̃)

(

F̃ (ζ̃0) + F̃ ′′(ζ̃0)(ζ̃1, ζ̃−1)
)

±1
,

¨̃
ζ00 =

(

F̃ (ζ̃0) + F̃ ′′(ζ̃0)(ζ̃1, ζ̃−1)
)

0
,

ζ̃−1
1 = h3ω̃A(hω̃)

−16 sin2( 1
2
hΩ̃) sin(hω̃)

(

F̃ ′(ζ̃0)ζ̃1
)

−1
, ζ̃01 = h2

−4 sin2(hω̃/2)

(

F̃ ′(ζ̃0)ζ̃
1
)

0
,

˙̃ζ11 = h2ω̃A(hω̃)

8i sin2( 1
2
hω̃)

(

F̃ ′(ζ̃0)ζ̃1
)

1
, ˙̃ζ−1

−1 = h2ω̃A(hω̃)

−8i sin2( 1
2
hω̃)

(

F̃ ′(ζ̃0)ζ̃−1

)

−1
,

ζ̃0−1 = h2

−4 sin2(hω̃/2)

(

F̃ ′(ζ̃0)ζ̃−1

)

0
, ζ̃1−1 = h3ω̃A(hω̃)

−16 sin2( 1
2
hΩ̃) sin(hΩ̃)

(

F̃ ′(ζ̃0)ζ̃−1

)

1
.

(47)

Then the following results

η̃00 = ˙̃ζ00 +O(h), η̃±1
0 = hω̃

sin(hω̃)
˙̃ζ±1
0 +O(h),

η̃0±1 = iω̃ sinc(hω̃)ζ̃0±1 +O(h), η̃±1
1 = iω̃ζ̃±1

1 +O
(

h
∣

∣

∣i tan(h2 Ω̃)
∣

∣

∣

)

,

η̃±1
−1 = −iω̃ζ̃±1

−1 +O
(

h
∣

∣

∣i tan(h2 Ω̃)
∣

∣

∣

)

(48)
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are easily arrived by considering (29) as well as the property of L(hD).
• Decomposition of the exact solution. Following the result given in [15], the exact solution

of (13) admits the following expansion

x̃(t) =
∑

|k|≤1

eikω̃tµ̃k(t) + d̃x̃(t), ṽ(t) =
∑

|k|≤1

eikω̃tν̃k(t) + d̃ṽ(t), (49)

where the defects are bounded by d̃x̃(t) = O(ω̃−2), d̃ṽ(t) = O(ω̃−2/ε). The functions µ̃k are given
by

˙̃µ±1
0 = 1

∓iω̃

(

F̃±1(µ̃
0) + F̃ ′′

±1(µ̃
0)(µ̃1, µ̃−1)

)

, ¨̃µ0
0 = F̃0(µ̃

0) + F̃ ′′
0 (µ̃

0)(µ̃1, µ̃−1),

µ̃−1
1 = 1

−2ω̃2 F̃
′
−1(µ̃

0)µ̃1, µ̃0
1 = 1

−ω̃2 F̃
′
0(µ̃

0)µ̃1,
˙̃µ1
1 = 1

iω̃ F̃
′
1(µ̃

0)µ̃1, ˙̃µ−1
−1 = 1

−iω̃ F̃
′
−1(µ̃

0)µ̃−1,

µ̃0
−1 = 1

−ω̃2 F̃
′
0(µ̃

0)µ̃−1, µ̃1
−1 = 1

−2ω̃2 F̃
′
1(µ̃

0)µ̃−1,

(50)

and the functions ν̃k are

ν̃0 = ˙̃µ0, ν̃±1 = ±iω̃µ̃±1 + ˙̃µ±1 = ±iω̃µ̃±1 +O(ω̃−1). (51)

The initial values are the same as those of the numerical solutions.
• Proof of the convergence.

Looking closely to the equations (50) and (47), which determine the modulated Fourier expansion
coefficients, it is obtained that x̃∗(t)− x̃h(t) = O(h2). Similarly, with (51) and (48), one has ṽ∗(t)−
ṽh(t) = O(h2). According to the above results and the defects of modulated Fourier expansions, we
have the following diagram:

Exact solution (x̃(nh), ṽ(nh))

��

Numerical solution (x̃n, ṽn)

��
Modulated Fourier expansion (x̃∗, ṽ∗)

(O(h2),O(h2/ε))

OO

(O(h2),O(h2))// Modulated Fourier expansion (x̃h, ṽh)oo

(O(h2),O(h2/ε))

OO

The error bounds
x̃(nh)− x̃n = O(h2), ṽ(nh)− ṽn = O(h2/ε)

are immediately obtained on the basis of this diagram. This obviously yields

x(nh)− xn = O(h2), v(nh)− vn = O(h2/ε)

and the proof is complete.

7 Conclusions

Structure-preserving algorithms constitute an interesting and important class of numerical meth-
ods. Furthermore, algorithms with uniformly errors of highly oscillatory systems have received a
great deal of attention. In this paper, we have formulated and analysed some structure-preserving
algorithms with uniform error bound for solving nonlinear highly oscillatory Hamiltonian systems.
Two kinds of algorithms with uniform error bound were given to preserve the symplecticity and
energy, respectively. All the theoretical results were supported by a numerical experiment and were
proved in detail.
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Last but not least, it is noted that all the algorithms and analysis are also suitable to the non-
highly oscillatory system (1) with ε = 1. Meanwhile, there are some issues brought by this paper
which can be researched further. For the system (1) with a matrix B̃(x) depending on x, how
to modify the methods and extend the analysis to get higher order uniformly accurate structure-
preserving algorithms? This point will be considered in future. Another issue for future exploration
is the extension and application of the methods presented in this paper to the Vlasov equations
under strong magnetic field [3, 4].
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