Skip to main content
Log in

Superconvergence Analysis of Curlcurl-Conforming Elements on Rectangular Meshes

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In our recent work (Hu et al. in SIAM J Sci Comput 42(6):A3859–A3877, 2020), we observed numerically some superconvergence phenomena of the curlcurl-conforming finite elements on rectangular domains. In this paper, we provide a theoretical justification for our numerical observation and establish a superconvergence theory for the curlcurl-conforming elements on rectangular meshes. For the elements with parameters r (\(r=k-1\), k, \(k+1\)) and k (\(k\ge 2\)), we show that the first (second) component of the numerical solution \(\varvec{u}_h\) converges with rate \(r+1\) at r vertical (horizontal) Gaussian lines in each element when \(r=k-1,k\) with \(k\ge 3\), \(\nabla \times \varvec{u}_h\) converges with rate \(k+1\) at \(k^2\) Lobatto points in each element when \(k\ge 3\), and the first (second) component of \(\nabla \times \nabla \times \varvec{u}_h\) converges with rate k at \((k-1)\) horizontal (vertical) Gaussian lines when \(k\ge 2\). They are all one-order higher than the related optimal rates. More numerical experiments are provided to confirm our theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Data Availability

The code used in this work will be made available upon a reasonable request.

References

  1. Babuška, I., Strouboulis, T., Upadhyay, C.S., Gangaraj, S.K.: Computer-based proof of the existence of superconvergence points in the finite element method: superconvergence of the derivatives in finite element solutions of Laplace’s, Poisson’s, and the elasticity equations. Numer. Methods Part. Differ. Equ. 12, 347–392 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Bhal, S.K., Danumjaya, P.: A fourth-order orthogonal spline collocation solution to 1D-Helmholtz equation with discontinuity. J. Anal. 27(2), 377–390 (2019)

    MathSciNet  MATH  Google Scholar 

  3. Bramble, J., Schatz, A.: High order local accuracy by averaging in the finite element method. Math. Comput. 31, 94–111 (1997)

    MATH  Google Scholar 

  4. Brenner, S.C., Cui, J., Sung, L.: Multigrid methods based on Hodge decomposition for a quad-curl problem. Comput. Methods Appl. Math. 19(2), 215–232 (2019)

    MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C., Sun, J., Sung, L.: Hodge decomposition methods for a quad-curl problem on planar domains. J. Sci. Comput. 73, 495–513 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Cakoni, F., Haddar, H.: A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Probl. Imaging 1(3), 443–456 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Cao, W., Jia, L., Zhang, Z.: A \({C}^1\)-conforming Petrov-Galerkin method for convection-diffusion equations and superconvergence analysis over rectangular meshes. SIAM J. Numer. Anal. 60(1), 274–311 (2022)

    MathSciNet  Google Scholar 

  8. Cao, W., Shu, C.W., Yang, Y., Zhang, Z.: Superconvergence of discontinuous Galerkin methods for two-dimensional hyperbolic equations. SIAM J. Numer. Anal. 53(4), 1651–1671 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Cao, W., Zhang, Z., Zou, Q.: Superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 52(5), 2555–2573 (2013)

    MathSciNet  MATH  Google Scholar 

  10. Chacón, L., Simakov, A.N., Zocco, A.: Steady-state properties of driven magnetic reconnection in 2D electron magnetohydrodynamics. Phys. Rev. Lett. 99(23), 235001 (2007)

    Google Scholar 

  11. Chen, C.: Structure Theory of Superconvergence of Finite Elements. Hunan science and Technology Press (2001). (in Chinese)

    Google Scholar 

  12. Chen, C., Hu, S.: The highest order superconvergence for bi-\(k\) degree rectangular elements at nodes: a proof of 2\(k\)-conjecture. Math. Comput. 82, 1337–1355 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Chen, G., Cui, J., Xu, L.: A hybridizable discontinuous Galerkin method for the quad-curl problem. J. Sci. Comput. 87, 1–23 (2021)

    MathSciNet  Google Scholar 

  14. Chen, G., Qiu, W., Xu, L.: Analysis of an interior penalty DG method for the quad-curl problem. IMA J. Numer. Anal. 41(4), 2990–3023 (2021)

    MathSciNet  MATH  Google Scholar 

  15. Han, J.: Shifted inverse iteration based multigrid methods for the quad-curl eigenvalue problem. Appl. Math. Comput. 367, 124770 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Hong, Q., Hu, J., Shu, S., Xu, J.: A discontinuous Galerkin method for the fourth-order curl problem. J. Comput. Math. 30, 565–578 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Hu, K., Zhang, Q., Zhang, Z.: Simple curl-curl-conforming finite elements in two dimensions. SIAM J. Sci. Comput. 42(6), A3859–A3877 (2020). arXiv:2004.12507v2

    MathSciNet  MATH  Google Scholar 

  18. Hu, K., Zhang, Q., Zhang, Z.: A family of finite element stokes complexes in three dimensions. SIAM J. Numer. Anal. 60(1), 222–243 (2022)

    MathSciNet  Google Scholar 

  19. Huang, X.: Nonconforming finite element stokes complexes in three dimensions. arXiv preprint arXiv:2007.14068 (2020)

  20. Huang, Y., Li, J., Lin, Q.: Superconvergence analysis for time-dependent Maxwell’s equations in metamaterials. Numer. Methods Part. Differ. Equ. 28(6), 1794–1816 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Huang, Y., Li, J., Wu, C.: Averaging for superconvergence: verification and application of 2D edge elements to Maxwell’s equations in metamaterials. Comput. Methods Appl. Mech. Eng. 255, 121–132 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Huang, Y., Li, J., Wu, C., Yang, W.: Superconvergence analysis for linear tetrahedral edge elements. J. Sci. Comput. 62(1), 122–145 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Huang, Y., Li, J., Yang, W., Sun, S.: Superconvergence of mixed finite element approximations to 3-D Maxwell’s equations in metamaterials. J. Comput. Phys. 230(22), 8275–8289 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Li, J., Huang, Y.: Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials. Springer, Berlin (2013)

    MATH  Google Scholar 

  25. Lin, Q., Yan, N.: Construction and Analysis of High Efficient Finite Elements. Hebei University Press (1996). (in Chinese)

    Google Scholar 

  26. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)

    MathSciNet  MATH  Google Scholar 

  27. Monk, P.: Superconvergence of finite element approximations to Maxwell’s equations. Numer. Methods Part. Differ. Equ. 10(6), 793–812 (1994)

    MathSciNet  MATH  Google Scholar 

  28. Monk, P., Sun, J.: Finite element methods for Maxwell’s transmission eigenvalues. SIAM J. Sci. Comput. 34(3), B247–B264 (2012)

    MathSciNet  MATH  Google Scholar 

  29. Nédélec, J.C.: Mixed finite elements in \(\mathbb{R} ^{3}\). Numer. Math. 35, 315–341 (1980)

    MathSciNet  MATH  Google Scholar 

  30. Nédélec, J.C.: A new family of mixed finite elements in \(\mathbb{R} ^{3}\). Numer. Math. 50, 57–81 (1986)

    MathSciNet  MATH  Google Scholar 

  31. Park, S.K., Gao, X.: Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z. Angew. Math. Phys. 59(5), 904–917 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Sun, J.: A mixed FEM for the quad-curl eigenvalue problem. Numer. Math. 132, 185–200 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Sun, J., Zhang, Q., Zhang, Z.: A curl-conforming weak Galerkin method for the quad-curl problem. BIT Numer. Math. 59(4), 1093–1114 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Sun, M., Li, J., Wang, P., Zhang, Z.: Superconvergence analysis of high-order rectangular edge elements for time-harmonic Maxwell’s equations. J. Sci. Comput. 75(1), 510–535 (2018)

    MathSciNet  MATH  Google Scholar 

  35. Wahlbin, L.: Superconvergence In Galerkin Finite Element Methods, vol. 1605. Springer-Verlag (1995)

  36. Wang, C., Sun, Z., Cui, J.: A new error analysis of a mixed finite element method for the quad-curl problem. Appl. Math. Comput. 349, 23–38 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Wang, L., Li, H., Zhang, Z.: H(\(\text{ curl}^2\))-conforming spectral element method for quad-curl problems. Comput. Methods Appl. Math. 21(3), 661–681 (2021)

    MathSciNet  MATH  Google Scholar 

  38. Wang, L., Shan, W., Li, H., Zhang, Z.: H(\(\text{ curl}^2\))-conforming quadrilateral spectral element method for quad-curl problems. Math. Models Methods Appl. Sci. 31(10), 1951–1986 (2021)

    MathSciNet  MATH  Google Scholar 

  39. Wang, L., Zhang, Q., Sun, J., Zhang, Z.: A priori and a posterior error estimations of quad-curl eigenvalue problems in 2D. arXiv:2007.01330 (2020)

  40. Wang, L., Zhang, Q., Zhang, Z.: Superconvergence analysis and PPR recovery of arbitrary order edge elements for Maxwell’s equations. J. Sci. Comput. 78, 1207–1230 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Zhang, Q., Wang, L., Zhang, Z.: H(\(\text{ curl}^2\))-conforming finite elements in 2 dimensions and applications to the quad-curl problem. SIAM J. Sci. Comput. 41(3), A1527–A1547 (2019)

    MATH  Google Scholar 

  42. Zhang, Q., Zhang, Z.: A family of curl-curl conforming finite elements on tetrahedral meshes. CSIAM Trans. Appl. Math. 1(4), 639–663 (2020)

    Google Scholar 

  43. Zhang, S.: Mixed schemes for quad-curl equations. ESAIM Math. Modell. Numer. Anal. 52, 147–161 (2018)

    MathSciNet  MATH  Google Scholar 

  44. Zhang, S.: Regular decomposition and a framework of order reduced methods for fourth order problems. Numer. Math. 138, 241–271 (2018)

  45. Zhang, Z.: Finite element superconvergence approximation for one-dimensional singularity perturbed problems. Numer. Methods Part. Differ. Equ. 18(3), 374–395 (2002)

    MATH  Google Scholar 

  46. Zheng, B., Hu, Q., Xu, J.: A nonconforming finite element method for fourth order curl equations in \(\mathbb{R} ^3\). Math. Comput. 80(276), 1871–1886 (2011)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Waixiang Cao for the helpful discussions.

Funding

The work is supported in part by the National Natural Science Foundation of China (NSAF U1930402, NSFC 12131005, NSFC 11871092, and NSFC 12101036) and Fundamental Research Funds for the Central Universities FRF-TP-22-096A1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, Q. & Zhang, Z. Superconvergence Analysis of Curlcurl-Conforming Elements on Rectangular Meshes. J Sci Comput 95, 62 (2023). https://doi.org/10.1007/s10915-023-02182-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02182-w

Keywords

Mathematics Subject Classification

Navigation