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Abstract We use trivariate spline functions for the numerical solution of the Dirich-
let problem of the 3D elliptic Monge-Ampére equation. Mainly we use the spline
collocation method introduced in [SIAM J. Numerical Analysis, 2405-2434,2022] to
numerically solve iterative Poisson equations and use an averaged algorithm to ensure
the convergence of the iterations. We shall also establish the rate of convergence under
a sufficient condition and provide some numerical evidence to show the numerical
rates. Then we present many computational results to demonstrate that this approach
works very well. In particular, we tested many known convex solutions as well as
nonconvex solutions over convex and nonconvex domains and compared them with
several existing numerical methods to show the efficiency and effectiveness of our
approach.
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1 Introduction

We are interested in numerically solving the Monge-Ampére equation with Dirichlet
boundary condition:

det(𝐷2𝑢(x)) = 𝑓 (x), in Ω ⊂ R3 (1)
𝑢(x) = 𝑔(x), on 𝜕Ω, (2)
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where x = (𝑥, 𝑦, 𝑧) has 3 independent variables in a bounded domain Ω ⊂ R3 and
𝐷2𝑢 is the Hessian of the function 𝑢, more precisely,

det(𝐷2𝑢) = 𝑢𝑥𝑥𝑢𝑦𝑦𝑢𝑧𝑧 + 2𝑢𝑥𝑦𝑢𝑦𝑧𝑢𝑥𝑧 − 𝑢𝑥𝑥 (𝑢𝑦𝑧)2 − 𝑢𝑦𝑦 (𝑢𝑥𝑧)2 − 𝑢𝑧𝑧 (𝑢𝑥𝑦)2. (3)

This is a first step toward to solve the fully nonlinear Monge-Ampére equation

det(𝐷2𝑢(x)) = 𝑓 (x)/𝑔(∇𝑢(x)), x in Ω ⊂ R3 (4)
∇𝑢(x) |𝜕Ω = 𝜕𝑊, (5)

where the boundary condition is called the oblique boundary condition. Such a partial
differential equation arises from the optimal transportation problem (cf. e.g. [25] and
[53]). More specifically, given a density function 𝑓 (x) on the domain Ω and another
density function 𝑔(w) on a separate domain𝑊 , the goal is to find the optimal plan 𝑇
which transports 𝑓 overΩ to 𝑔 over𝑊 under the cost functional 𝑐(x,w) = 1

2
‖x−w‖2,

with
∫
Ω
𝑓 (x)𝑑x =

∫
𝑊
𝑔(w)𝑑w. It is Y. Brenier who discovered a characterization of

the optimal transportation problem.

Theorem 1 (Brenier, 1988[11]) Suppose that the transport cost is the quadratic
Euclidean distance, 𝑐(𝑥, 𝑦) = 1

2 ‖𝑥 − 𝑦‖
2 and suppose that 𝑊 is a convex domain.

Then there exists a convex function 𝑢 : Ω ↦→ R satisfying the Monge-Ampere equation
(4), unique up to a constant, such that the gradient map 𝑚 = ∇𝑢 is the unique optimal
transport map satisfying the oblique boundary condition ∇𝑢 |𝜕Ω = 𝜕𝑊 .

Although it is hard to determine the oblique boundary condition mentioned above,
once we specify a map from the boundary ofΩ to the boundary of𝑊 , the problem (4)
becomes aNeumann boundary problem of theMonge-Ampére equation . In particular,
if 𝑢 is 𝐶2 function whose gradient ∇𝑢 transforms Ω onto𝑊 , we can move the density
𝑓 (x) at x ∈ Ω to the location ∇𝑢(x) ∈ 𝑊 to become the density 𝑔(∇𝑢(x)). Such a
problem is called the free movement problem which will be addressed at the end of
this paper.
Instead of considering theNeumann or oblique boundary value problem, this paper

will focus on the Monge-Ampére equation with a Dirichlet boundary condition. Note
that this PDE has been studied for many years. In addition to the mathematical com-
munity, the Monge-Ampére equation has also been broadly studied in many applied
fields such as elasticity, geometric optics, and image processing. See [14] and [46].
Today such free-form optics are important in illumination applications. For example,
they are used in the automotive industry for the construction of headlights that use the
full light emitted by the lamp to illuminate the road but at the same time do not glare
oncoming traffic [57]. There are multiple ways to solve this inverse reflector problem;
brute-force approaches, methods of supporting ellipsoids, simultaneous multiple sur-
faces approach, and Monge-Ampére approaches. Also, the Monge-Ampére equation
finds applications in finance, seismic wave propagation, geostrophic flows, in differ-
ential geometry as explained in [17]. In this paper, we shall explain a spline based
collocation method to solve the nonlinear PDE (1).
Let us begin recalling some existence, uniqueness, and regularity property of the

Monge-Ampére equation (1). When 𝑓 , 𝑔 are sufficiently smooth, the solution of (1) is
very smooth explained in the following
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Theorem 2 (Theorem 1 in [19]) Suppose that a bounded domain Ω ∈ R𝑛 is strictly
convex, where 𝑛 ≥ 2. For any strictly positive right-hand side 𝑓 ∈ 𝐶∞ (Ω) with the
boundary condition 𝑔 which has an extension 𝑔 ∈ 𝐶∞ (Ω), there exists a unique
strictly convex solution 𝑢 is in 𝐶∞ (Ω) satisfying (1).

There are several weaker versions of the existence results with regularity properties
in the literature. For example,

Theorem 3 (Figalli, 2017 [28]) Let Ω be a uniformly convex domain, 𝑘 ≥ 2, 𝛼 ∈
(0, 1), and assume that 𝜕Ω is of class 𝐶𝑘+2,𝛼. Let 𝑓 ∈ 𝐶𝑘,𝛼 (Ω̄) with 𝑓 ≥ 𝑐0 > 0.
Then for any 𝑔 ∈ 𝐶𝑘+2,𝛼 (𝜕Ω), there exists a unique solution 𝑢 ∈ 𝐶𝑘+2,𝛼 (Ω̄) to the
Dirichlet problem (1).

In [4], Awanou introduced another weaker version of the existence theorem:

Theorem 4 (Awanou, 2013[4]) Let Ω be a uniformly convex domain in R𝑛 with
boundary in 𝐶3. Suppose 𝑔 ∈ 𝐶3 (Ω̄), inf 𝑓 > 0, and 𝑓 ∈ 𝐶𝛼 (Ω̄) for some 𝛼 ∈ (0, 1).
Then (1) has a convex solution 𝑢 which satisfies the a priori estimate

‖𝑢‖𝐶2,𝛼 (Ω̄) ≤ 𝐶,

where 𝐶 depends only on 𝑛 ≥ 2, 𝛼, inf 𝑓 ,Ω, ‖ 𝑓 ‖𝐶𝛼 (Ω̄) and ‖𝑔‖𝐶3 .

In general, there are at least three different notions of solutions which have been
studied in the literature besides the classic solution: one is calledAleksandrov solution,
another one is viscosity solution, and the next one is Brainer’s solution, according
to the monograph by Villani, 2003, see page 129 in [53]. The theory for the Monge-
Ampére equation is deep (cf. [20], [25], [53] and [54]). In particular, the regularity
of the solution has been extensively studied (cf. e.g. [18], [55], [22]). In a landmark
paper [18], Cafferelli showed that the solution of the Monge-Ampére equation has
an interior regularity over Ω′ ⊂ Ω, i.e. 𝑢 ∈ 𝐻2, 𝑝 (Ω′) for any open set Ω′ inside Ω.
Furthermore, the solution has 𝐻2 regularity over the entire domain, as established in
[55]:

Theorem 5 (Wang, 1996[55]) LetΩ be a strictly convex domain inR𝑛. If 𝜕Ω and 𝑔 in
the equation (2) are 𝐶3 smooth, and 𝑓 (𝑥) ∈ 𝐶1,1 (Ω̄), then the solution 𝑢 ∈ 𝐶2+𝛼 (Ω̄).

Due to these regularity results, we can use𝐶2 smooth trivariate splines to approximate
the solution 𝑢 under the conditions 𝑓 ∈ 𝐶1,1 (Ω̄), 𝑔 ∈ 𝐶3 (𝜕Ω) and Ω being a strictly
convex domain. In our computation, we are able to solve the Monge-Ampére equation
over domains with uniform positive reach (cf. [31]) which include strictly convex
domains as a special case. Additionally, we can use our method to experiment with
the solution (1) even when 𝑓 is not in 𝐶1,1 (Ω̄).
The numerical solution of the Monge-Ampere equation (MAE) is an active area

of research, with many researchers developing different numerical methods and an-
alyzing their theoretical convergence. As mentioned in [12], the MAE poses several
challenges for numerical solutions. The first challenge is that the equation is fully
nonlinear, which means that geometric solutions or viscosity solutions must be used
as weak solutions. The second challenge is the convex constraint, as the equation
might not have a unique solution without it.
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The popular finite elementmethod is not directly applicable because of the involve-
ment of the Hessian of the solution. This restricts the use of the Finite ElementMethod
(FEM) or general Galerkin projection methods, discontinuous Galerkin method or
continuous Galerkin method. However, there are several remedy approaches based on
the finite element method such as a mixed finite element method, vanishing moment
method, etc. See [3], [5], [9] and [27].
Besides of finite element type methods, there are many finite difference methods,

as seen in [12], [7], [44], [13], [43]. Moreover, many interesting approaches are based
on the classic finite difference method as demonstrated in [15], [45], [13]. However,
these methods have a weakness: they do not have analytic form of solution over the
entire domain. In addition, we can find time marching methods in [6], [4], and least
squares relaxation methods in [23], [24], [17].
Let us be more precise on the numerical methods mentioned above. The least

square notion of the solution was proposed and studied in [23], [24], and [17]. Espe-
cially, this least square approach using a relaxation algorithm of the Gauss-Seidel-type
iterations to decouple differential operators in [17]. The approximation relies onmixed
low order finite element methods with regularization techniques. Several 3D examples
were demonstrated to show the performance of this method. In this paper, we will
compare the numerical results from our method to those to in [17] to show that our
method produces more accurate results. These comparisons will be presented in the
last section.
In [6], a time marching approach is used to solve the Monge-Ampére equation .

Given a > 0, the researcher considered the sequence of iterates

− aΔ𝑢𝑘+1 = −aΔ𝑢𝑘 + det𝐷2𝑢𝑘 − 𝑓 , 𝑢𝑘+1 = 𝑔 on 𝜕Ω. (6)

He used the discrete version of Newton’s method in the vanishing moment methodol-
ogy. And he showed the convergence of the iterative method for solving the nonlinear
system.We shall also compare his numerical results with our results in the last section
to show that our proposed method is also more accurate.
In [13], the researchers introduced the meshless Generalized Finite Difference

Method (GFDM) in both 2D and 3D settings. They tested several examples using the
Cascadic iterative algorithm over convex and non-convex domains. We will compare
our proposed method with the results from the Cascadic iterative algorithm in the last
section to demonstrate that our method is also better.
We now describe our numerical method to solve (1) by using trivariate spline

functions over a tetrahedralization of Ω. See [40], [8], [51], [39] for theoretical
properties and numerical implementation of bivariate/triavariate spline functions. In
addition, there are several dissertations written to explain how to implement and
how to use multivariate splines for the numerical solution of Helmholtz equations,
Maxwell equations and 3D surface reconstruction. See [2], [47] and [56]. There are
several reasons why we use trivariate splines for the numerical solution of the Monge-
Ampére equation . One is that we can use trivariate splines with smoothness 𝑟 ≥ 2 to
approximate the solution 𝑢 of the Monge-Ampére equation over an arbitrary convex
polyhedral domain. Due to the𝐶2 smoothness of spline function, we can calculate the
Hessian of the solution, so that we simply use the collocation method instead of the
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weak formulations in [3], [5], etc.. Many researchers adopted the iterative algorithm
called the fixed point algorithm introduced in [12]:

Δ𝑢𝑘+1 = ((Δ𝑢𝑘 )𝑛 + 𝑎( 𝑓 − det𝐷2𝑢𝑘 ))
1
𝑛 (7)

along with the prescribed Dirichlet boundary conditions with 𝑎 = 2 and 𝑛 = 2. The
researchers in [12] explained that this is a fixed point method as the true solution 𝑢
satisfies (7) trivially.
In [6], this iterative algorithm is generalized to the 3D setting with 𝑛 ≥ 3 for

various 𝑎 > 0. In particular, the researcher in [6] explained that the iteration (7)

is well-defined for 𝑎 ≤ 𝑛𝑛 as det(𝐷2𝑢𝑘 ) ≤ 1
𝑛2

(Δ𝑢)𝑛. Numerical results in [6] are
demonstrated in the framework of the spline element method with 𝑎 = 2 for the 2D
case and 𝑎 = 9 for the 3D case.
In this paper, we shall use the following iterative method:

Δ𝑢𝑘+1 = ((Δ𝑢𝑘 )𝑛 + 𝑛𝑛 ( 𝑓 − det𝐷2𝑢𝑘 ))
1
𝑛 (8)

to handle the nonlinearity of the Monge-Ampére equation where 𝑛 = 3.
However, another requirement of the solution of the Monge-Ampére equation is

that 𝑢must be convex in order for the equation to be elliptic.Without this constraint, the
equation does not have a unique solution. (For example, taking boundary data 𝑔 = 0, if
𝑢 is a solution, then −𝑢 is also a solution in R2.) Many numerical methods mentioned
above failed to enforce this convexity constraint. The convexity of 𝑢 is equivalent
to the positive definiteness of the Hessian matrix 𝐷2𝑢. In terms of the eigenvalues
_1 ≥ _2 ≥ _3 of 𝐷2𝑢, we will ensure that three eigenvalues _1 (𝑘) ≥ _2 (𝑘) ≥ _3 (𝑘)
of the 𝑘th iteration 𝑢𝑘 in a spline space satisfy _1 (𝑘) + _2 (𝑘) + _3 (𝑘) ≥ 0 as well as
_1 (𝑘)_2 (𝑘)_3 (𝑘) > 0, although they are not enough to ensure the convexity of 𝑘th
spline solution 𝑢𝑘 .
This paper is organized as follows. In Section 2, we first explain trivariate splines,

domains with uniformly positive reach, and the spline collocation method for the
Poisson equation which is the same as the one discussed in [39]. In Section 3,
we introduce the spline collocation method for the Monge-Ampére equation and
its average algorithm, and establish three different versions of convergence results.
Finally, in the last section 4, we present numerical results for several 3D examples
of smooth and convex solutions, as well as nonsmooth convex solution over convex
and nonconvex bounded domains to demonstrate the effectiveness of our proposed
method. We compare our results with those of several existing numerical methods
to show the accuracy and efficiency of our method. Finally, we shall present some
examples for the free movement in 2D and 3D settings to show how the density from
one place is moved to another place. This will demonstrate further that our proposed
method is versatile enough.
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2 Preliminaries

2.1 Trivariate Splines

Let us quickly summarize the essentials of trivariate splines in this section. Given a
tetrahedron𝑇 , wewrite |𝑇 | for the length of its longest edge, and 𝜌𝑇 for the radius of the
largest inscribed ball in 𝑇 . For any polygonal domain Ω ⊂ R3, let 4 := {𝑇1, · · · , 𝑇𝑛}
be a tetrahedralization of Ω which is a collection of tetrahedra and V be the set of
vertices of 4. We called a tetrahedralization as a quasi-uniform tetrahedralization if
all tetrahera 𝑇 in 4 have comparable sizes in the sense that

|𝑇 |
𝜌𝑇

≤ 𝐶 < ∞, all tetrahera 𝑇 ∈ 4,

where 𝜌𝑇 is the inradius of 𝑇 . Let |4| be the length of the longest edge in 4.
Next for a tetrahedron 𝑇 = (v1, v2, v3, v4) ∈ 4, we define the barycentric coordi-

nates (𝑏1, 𝑏2, 𝑏3, 𝑏4) of a point (𝑥, 𝑦, 𝑧) ∈ Ω as the solution to the following system
of equations

𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 = 1
𝑏1𝑣1,𝑥 + 𝑏2𝑣2,𝑥 + 𝑏3𝑣3,𝑥 + 𝑏4𝑣4,𝑥 = 𝑥
𝑏1𝑣1,𝑦 + 𝑏2𝑣2,𝑦 + 𝑏3𝑣3,𝑦 + 𝑏4𝑣4,𝑦 = 𝑦
𝑏1𝑣1,𝑧 + 𝑏2𝑣2,𝑧 + 𝑏3𝑣3,𝑧 + 𝑏4𝑣4,𝑧 = 𝑧,

where the vertices v𝑖 = (𝑣𝑖,𝑥 , 𝑣𝑖,𝑦 , 𝑣𝑖,𝑧) for 𝑖 = 1, 2, 3, 4. 𝑏1, · · · , 𝑏4 are nonnegative
if (𝑥, 𝑦, 𝑧) ∈ 𝑇. Next we use the barycentric coordinates to define the Bernstein
polynomials of degree 𝐷:

𝐵𝑇𝑖, 𝑗,𝑘,ℓ (𝑥, 𝑦, 𝑧) :=
𝐷!

𝑖! 𝑗!𝑘!ℓ!
𝑏𝑖1𝑏

𝑗

2𝑏
𝑘
3 𝑏
ℓ
4, 𝑖 + 𝑗 + 𝑘 + ℓ = 𝐷,

which form a basis for the space P𝐷 of polynomials of total degree 𝐷. Therefore, we
can represent all 𝑠 ∈ P𝐷 in B-form:

𝑠 |𝑇 =
∑︁

𝑖+ 𝑗+𝑘+ℓ=𝐷
𝑐𝑇𝑖 𝑗𝑘ℓ𝐵

𝑇
𝑖 𝑗𝑘ℓ ,∀𝑇 ∈ 4,

where the B-coefficients 𝑐𝑇
𝑖, 𝑗,𝑘,ℓ

are uniquely determined by 𝑠. Let c = {𝑐𝑇
𝑖 𝑗𝑘ℓ

, 𝑖 + 𝑗 +
𝑘 + ℓ = 𝐷,𝑇 ∈ 4} be the coefficient vector associated with spline function 𝑠.
Moreover, for given 𝑇 = (v1, v2, v3, v4) ∈ 4, we define the associated set of

domain points to be

D𝐷,𝑇 := { 𝑖v1 + 𝑗v2 + 𝑘v3 + ℓv4
𝐷

}𝑖+ 𝑗+𝑘=𝐷 . (9)

Let D𝐷,4 = ∪𝑇 ∈4D𝐷,𝑇 be the domain points of tetrahedral 4 and degree 𝐷.
We use the discontinuous spline space 𝑆−1

𝐷
(4) := {𝑠 |𝑇 ∈ P𝐷 , 𝑇 ∈ 4} as a base.

Then we add the smoothness conditions to define the space S𝑟
𝐷
:= 𝐶𝑟 (Ω) ∩ 𝑆−1

𝐷
(4).

The smoothness conditions are explained in [40]. Indeed, see Theorem 15.31 in [40].
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We use 𝐶𝑟 smooth spline functions in 𝐻2 (Ω) with 𝑟 ≥ 1 and the degree 𝐷 of splines
sufficiently large satisfying 𝐷 ≥ 3𝑟 + 2 in R2 and 𝐷 ≥ 6𝑟 + 3 in R3. And we get the
following Lemma in [40]

Lemma 1 For all 𝑢 ∈ 𝑊𝑚+1, 𝑝 (Ω) for some 0 ≤ 𝑚 ≤ 𝐷 and 1 ≤ 𝑝 ≤ ∞, there exists
a quasi-interpolatory spline 𝑠𝑢 ∈ S𝑟

𝐷
(4) such that

‖𝐷𝛼 (𝑢 − 𝑠𝑢)‖𝐿𝑝 (Ω) ≤ 𝐶 |4|𝑚+1−|𝛼 | |𝑢 |𝑚+1, 𝑝,Ω,

for all 0 ≤ |𝛼 | ≤ 𝑚, where | · |𝑚+1, 𝑝,Ω is a semi-norm, 𝐶 is a positive constant
independent of 𝑢 and |4| but is dependent on the geometry of 4.

In addition, we shall use Markov inequality(cf. [40]):

‖∇𝑠‖∞,Ω ≤ 𝐶

|4| ‖𝑠‖∞,Ω, ∀𝑠 ∈ S𝑟𝐷 (4) (10)

for a positive constant 𝐶 independent of 𝑠 and the size |4| of tetrahedralization 4.

2.2 Domains with Uniformly Positive Reach

Let us recall a concept on domains of interest explained in [31].

Definition 1 Let 𝐾 ⊆ R𝑛 be a non-empty set. Let 𝑟𝐾 be the supremum of the number
𝑟 such that every points in

𝑃 = {𝑥 ∈ R𝑛 : dist(𝑥, 𝐾) < 𝑟}

has a unique projection in 𝐾. The set 𝐾 is said to have a positive reach if 𝑟𝐾 > 0.

A domain with 𝐶2 boundary has a positive reach. Sets of positive reach are much
more general than convex sets. Let 𝐵(0, 𝜖) be the closed ball centering at 0 with radius
𝜖 > 0, and let 𝐾𝑐 stand for the complement of the set 𝐾 ∈ R𝑛. For any 𝜖 > 0, the set

𝐸𝜖 (𝐾) := (𝐾𝑐 + 𝐵(0, 𝜖))𝑐 ⊆ 𝐾

is called an 𝜖-erosion of 𝐾. Next we recall the following definition from [31].

Definition 2 A set 𝐾 ⊆ R𝑛 is said to have a uniformly positive reach 𝑟0 if there exists
some 𝜖0 > 0 such that for all 𝜖 ∈ [0, 𝜖0], 𝐸𝜖 (𝐾) has a positive reach at least 𝑟0.

Many examples of domains with positive reach can be found in [31]. And we have the
following property about these domains

Lemma 2 If Ω ⊂ R𝑛 is of positive reach 𝑟0, then for any 0 < 𝜖 < 𝑟0, the boundary
of Ω𝜖 := Ω + 𝐵(0, 𝜖) containing Ω is of 𝐶1,1. Furthermore, Ω𝜖 has a positive reach
≥ 𝑟0 − 𝜖 .

In [31], Gao and Lai proved the following regularity theorem
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Theorem 6 Let Ω be a bounded domain. Suppose the closure of Ω is of uniformly
positive reach 𝑟Ω. For any 𝑓 ∈ 𝐿2 (Ω), let 𝑢 ∈ 𝐻10 (Ω) be the unique weak solution of
the Dirichlet problem: {

−Δ𝑢 = 𝑓 𝑖𝑛 Ω

𝑢 = 0 𝑜𝑛 𝜕Ω

Then 𝑢 ∈ 𝐻2 (Ω) in the sense that
𝑛∑︁

𝑖, 𝑗=1

∫
Ω

( 𝜕2𝑢

𝜕𝑥𝑖𝜕𝑥 𝑗
)2 ≤ 𝐶0

∫
Ω

𝑓 2𝑑𝑥

for a positive constant 𝐶0 depending only on 𝑟Ω.

2.3 A Collocation Method for the Poisson Equation

For convenience, let us start with the Poisson equation

Δ𝑢(x) = 𝑓 (x) ∀x ∈ Ω ⊂ R3
𝑢(x) = 𝑔(x), ∀x ∈ 𝜕Ω (11)

For given 4, let it be a tetrahedral partition of Ω, we choose a set of domain
points {b𝑖}𝑖=1, · · · ,𝑁 explained in the previous section as collocation points and let
𝑠 =

∑
𝑡 ∈4

∑
|𝛼 |=𝐷 𝑐

𝑡
𝛼B𝑡𝛼 in 𝑆𝑟𝐷 (4) with the coefficient vector c of 𝑠. Then we want to

find the coefficient vector c of spline function satisfying the standard Poisson equation
(11) at those collocation points{

Δ𝑠(b𝑖) = 𝑓 (b𝑖), b𝑖 ∈ Ω ⊂ R𝑛,
𝑠(b𝑖) = 𝑔(b𝑖), b𝑖 ∈ 𝜕Ω,

(12)

where {b𝑖}𝑖=1, · · · ,𝑁 ∈ D𝐷′,4 are the domain points of 4 of degree 𝐷 ′ > 0 as explained
in (9) in the previous section, where 𝐷 ′ will be different from 𝐷(𝐷 ′ > 𝐷).
Using these points, we let 𝐾 be the following matrix:

𝐾 :=
[
Δ(𝐵𝑡

𝑖, 𝑗 ,𝑘,𝑙
) (b𝑖)

]
.

In general, the spline 𝑠 with coefficients in c is a discontinuous function. In order
to make 𝑠 ∈ S𝑟

𝐷
(4), its coefficient vector c must satisfy the constraints 𝐻c = 0 for

the smoothness conditions that the S𝑟
𝐷
(4) functions possess (cf. [40]). Based on the

smoothness conditions (cf. Theorem 2.28 or Theorem 15.38 in [40]), we can construct
matrices 𝐻 for the 𝐶𝑟 smoothness conditions. Then, our collocation method is to find
c which solves the following constrained minimizations:

min
c
𝐽 (c) = 1

2
(‖𝐵c − 𝐺‖2 + ‖𝐻c‖2) (13)

subject to 𝐾c = f (14)
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where 𝐵, 𝐺 are from the boundary condition and 𝐻 is from the smoothness condition.
Note that we need to justify that the minimization has a solution. In general, we do
not know if 𝐾c = f has a solution or not. However, we can show that a neighborhood
of 𝐾c = f, i.e.

N = {c : ‖𝐾c − f‖ ≤ 𝜖} (15)
is not empty for an appropriate 𝜖 > 0 when |4| is small enough. Indeed, let us use
spline approximation theorem (cf. [40]) to have

Lemma 3 Suppose that Ω is a polygonal domain. Suppose that 𝑢 ∈ 𝐻3 (Ω). Then
there exists a spline function 𝑢𝑠 ∈ 𝑆𝑟

𝐷
(4) and a positive constant �̂� depending on

𝐷 ≥ 1 and 𝐷 ′ > 𝐷 such that

‖Δ𝑢(𝑥, 𝑦, 𝑧) − Δ𝑢𝑠 (𝑥, 𝑦, 𝑧)‖𝐿∞ (Ω) ≤ 𝜖1�̂�

where 𝜖1 is a given tolerance and �̂� depends on Ω, 𝐷, 𝐷 ′.

We thus consider a nearby problem of the minimization (13), which is:

min
c
‖𝐵c − 𝐺‖2 + ‖𝐻c‖2, (16)

subject to ‖𝐾c − f‖𝐿∞ ≤ 𝜖1. (17)

It is easy to see that the minimizer of (16) clearly approximates the minimizer of
(13) if 𝜖1 � 1. As the new minimization problem is convex and the feasible set is
also convex, the minimization (16) will have a unique solution if the feasible set is
non-empty.
We may assume that our numerical solution 𝑢𝑠 approximates 𝑢 on 𝜕Ω very well in

the sense that ‖𝑢 − 𝑢𝑠 ‖ ≤ 𝐶𝜖2 for a positive constant 𝐶. Denote ‖𝑢‖𝐿 := ‖Δ𝑢‖𝐿2 (Ω) .
In [39], Lai and Lee proved the following theorems

Theorem 7 Suppose 𝑓 and 𝑔 are continuous over bounded domain Ω ⊆ R𝑑 for 𝑑 = 2
or 𝑑 = 3. Suppose that 𝑢 ∈ 𝐻3 (Ω). When Ω is a domain with uniform positive reach,
we have the following inequality

‖𝑢 − 𝑢𝑠 ‖𝐿2 (Ω) ≤ 𝐶‖𝑢 − 𝑢𝑠 ‖𝐿 , ‖∇(𝑢 − 𝑢𝑠)‖𝐿2 (Ω) ≤ 𝐶‖𝑢 − 𝑢𝑠 ‖𝐿
and ∑︁

𝑖+ 𝑗=2
‖ 𝜕2

𝜕𝑥𝑖𝜕𝑦 𝑗
𝑢‖𝐿2 (Ω) ≤ 𝐶‖𝑢 − 𝑢𝑠 ‖𝐿

for a positive constant 𝐶 depending on Ω.

And we can obtain the better convergence results if we assume that |𝑢 − 𝑢𝑠 |𝜕Ω = 0, as
shown in the following theorem:

Theorem 8 Suppose that |𝑢 − 𝑢𝑠 |𝜕Ω = 0. Under the assumptions in Theorem 7, we
have the following inequality

‖𝑢 − 𝑢𝑠 ‖𝐿2 (Ω) ≤ 𝐶 |4|2 (‖𝑢 − 𝑢𝑠 ‖𝐿) and ‖∇(𝑢 − 𝑢𝑠)‖𝐿2 (Ω) ≤ 𝐶 |4|(‖𝑢 − 𝑢𝑠 ‖𝐿)

for a positive constant 𝐶, where |4| is the size of the underlying tetrahedral 4.

Proof We use the same arguments as in [39] to establish a proof.
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3 Our Proposed Algorithms and Their Convergence Analysis

3.1 A Spline Based Collocation Method for Monge-Ampère Equation

For convenience, let us explain our spline based collocationmethod for the 3DMonge-
Ampére equation first. In the 3D setting, wewill solve the following iterative equations
as in [6]

Δ𝑢𝑘+1 =
3
√︃
(Δ𝑢𝑘 )3 + 𝑎( 𝑓 − det(𝐷2𝑢𝑘 )), 𝑘 = 0, 1, · · · , . (18)

with an initial 𝑢0 by solving

Δ𝑢0 =
3
√︁
27 𝑓

together with the given boundary condition. Let us make two quick remarks. The
initial 𝑢0 so chosen is based on the following assumption. Writing _𝑖 , 𝑖 = 1, 2, 3, to be
the eigenvalues of det(𝐷2𝑢), the Monge-Ampére equation reads _1_2_3 = 𝑓 . If these
eigenvalues are close to each other, e.g. all are equal to _, we have _3 = 𝑓 and thus
_ = 3

√︁
𝑓 . Since Δ𝑢 = _1 + _2 + _3, we get Δ𝑢 = 3_ = 3 3

√︁
𝑓 = 3

√︁
27 𝑓 . However, when

these eigenvalues are quite different, such a choice of initial 𝑢0 may not be a good
one. We shall explain our approach later in this section.
Next about the parameter 𝑎 in (18), we have tested different numbers for 𝑎. Figure

1 shows that we can get more accurate results when using 𝑎 = 27.We will use 𝑎 = 27
in the rest of the paper.

Fig. 1 log( ‖𝑢 − 𝑢 (𝑘)
𝑠 ‖∞)(𝑦-axis) for 𝑢3𝑑3(left) and 𝑢3𝑑5(right) for each iteration(𝑥-axis) with different

𝑎 = 6, 9, 27

For simplicity, we use the Dirichlet boundary condition 𝑢 |𝜕Ω = 𝑔 to explain our
numerical method.
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3.2 Two Computational Algorithms

We shall present two computational algorithms for numerical solution of the Monge-
Ampére equation . The first one is a standard approach which has been used by many
researchers based on finite different discretization and finite element discretization
in the literature. We shall use multivariate spline functions to discretize the function
space 𝐻2 (Ω) to demonstrate the efficiency and effectiveness of our multivariate spline
approach as well as show that our numerical results are better than many methods in
the literature. See our computational results in the next section.

Algorithm 1: An Iterative Poisson Equation Algorithm
Start with an initial solution 𝑢0 by solving the following Poisson equation using our collocation
method discussed in the previous section:

Δ𝑢0 =
3√︁27 𝑓 (19)

and 𝑢0 = 𝑔 on the boundary 𝜕Ω. We then iteratively solve the Poisson equation

Δ𝑢𝑘+1 =
3
√︃
(Δ𝑢𝑘 )3 + 27( 𝑓 − det(𝐷2𝑢𝑘 )) , 𝑘 = 0, 1, · · · . (20)

That is, we find 𝑢𝑘+1 ∈ 𝑆𝑟
𝐷
(4) satisfying the following equations approximately:{

Δ𝑢𝑘+1 ( b𝑖) =
3√︁(Δ𝑢𝑘 ( b𝑖))3 + 27( 𝑓 ( b𝑖) − 𝑑𝑒𝑡 (𝐷2𝑢𝑘 ( b𝑖))) b𝑖 ∈ Ω ⊂ R3,

𝑢𝑘+1 ( b𝑖) = 𝑔 ( b𝑖) , b𝑖 ∈ 𝜕Ω
(21)

In other words, we numerically solve (16) with

f𝑘 =
3
√︃
(Δ𝑢𝑘 ( b𝑖))3 + 27( 𝑓 ( b𝑖) − 𝑑𝑒𝑡 (𝐷2𝑢𝑘 ( b𝑖)))

by using the iterative algorithm in [39].
Terminate the iteration when ‖ 𝑓 − det(𝐷2𝑢𝑘+1) ‖𝑙∞ > ‖ 𝑓 − det(𝐷2𝑢𝑘 ) ‖𝑙∞ .

Next we explain an averaged iterative algorithm. Assume Ω is bounded and the
closure of Ω is of uniformly positive reach as explained in the previous section. For
any 𝑓 ∈ 𝐿2 (Ω), the solution of the Poisson equation with zero boundary condition
is in 𝐻2 (Ω) by Theorem 6. Furthermore, the solution of the Poisson equation with
boundary condition 𝑔 is in 𝐻2 (Ω) if 𝑔 ∈ 𝐻1/2 (𝜕Ω). Indeed, we consider a function
𝑣 ∈ 𝐻2 (Ω) whose trace on 𝜕Ω is 𝑔 ∈ 𝐻1/2 (𝜕Ω). Define 𝑤 = 𝑢 − 𝑣 and we have∫

Ω

∇𝑤 · ∇𝜙 =

∫
Ω

∇𝑢 · ∇𝜙 −
∫
Ω

∇𝑣 · ∇𝜙

=

∫
Ω

− 𝑓 · 𝜙 −
∫
Ω

Δ𝑣 · 𝜙 =

∫
Ω

(Δ𝑣 − 𝑓 ) · 𝜙.

for every 𝜙 ∈ 𝐻10 (Ω). Then the solution 𝑤 satisfying the weak formulation of

Δ𝑤 = 𝑓 − Δ𝑣 in Ω, 𝑤 = 0 on 𝜕Ω

is in 𝐻2 (Ω) (cf. [31]). Therefore, 𝑢 = 𝑤 + 𝑣 is in 𝐻2 (Ω).
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Let 𝑇 be an operator which maps 𝐻2 (Ω) → 𝐻2 (Ω) in the following sense: for
any 𝑣 ∈ 𝐻2 (Ω), let 𝑢 = 𝑇 (𝑣) be the solution of the Poisson equation:

Δ𝑢 =
3
√︃
(Δ𝑣)3 + 27( 𝑓 − det(𝐷2𝑣)) over Ω

and 𝑢 |𝜕Ω = 𝑔 with 𝑔 ∈ 𝐻1/2 (𝜕Ω). In other words, the operator 𝑇 on 𝐻2 (Ω) is defined
by

𝑇 (𝑢) = Δ−1 [ 3
√︃
(Δ𝑢)3 + 27( 𝑓 − det(𝐷2𝑢))] .

It is easy to see that 𝑇 is a nonlinear operator 𝑇 maps 𝐻2 (Ω) to 𝐻2 (Ω). Also, we can
see that the exact solution 𝑢∗ satisfying det(𝐷2𝑢∗) = 𝑓 is a fixed point of 𝑇 .
Now we are ready to define an averaged iterative algorithm. In this way, we can

find more accurate solutions than the one using Algorithm 1 only.

Algorithm 2: The Averaged Iterative Algorithm
Start with an initial 𝑢0, where Δ𝑢0 = 3√︁27 𝑓 over Ω and 𝑢0 = 𝑔 on 𝜕Ω.
We iteratively solve the Poisson equations

Δ𝑢
𝑘+ 12

=
3
√︃
(Δ𝑢𝑘 )3 + 27( 𝑓 − det(𝐷2𝑢𝑘 )) , (22)

together with the boundary condition 𝑢
𝑘+ 12

= 𝑔 on 𝜕Ω by using the minimization in (16) and
then take

𝑢𝑘+1 =
1
2
𝑢
𝑘+ 12

+ 1
2
𝑢𝑘 . (23)

Stop the iteration if ‖ 𝑓 − det(𝐷2𝑢𝑘+1) ‖𝑙∞ > ‖ 𝑓 − det(𝐷2𝑢𝑘 ) ‖𝑙∞ .

Let us present some performance of these two algorithms to show that Algorithm 2
indeed very useful. Consider a testing function 𝑢3𝑑𝑠1 as in Section 4, the eigenvalues
of the Hessian matrix 𝐷2𝑢3𝑑1 are 1, 5, 15. Although these three eigenvalues are not
close to any real positive number, we use various positive numbers 𝑝 for the right-hand
side of the Poisson equation Δ𝑢0 = 𝑝 to solve 𝑢0 as an initial solution and then apply
Algorithm 1 and Algorithm 2. In Table 1, the results from both Algorithms are shown
after the same number of iterations. We can see that Algorithm 2 produces more
accurate solution than Algorithm 1 from various initial values except for 𝑝 which is
close to 21 = Δ𝑢3𝑑𝑠1, i.e. 𝑝 ∈ [17.7, 26]. Also, the ℓ2 and ℎ1 errors from Algorithm 2
are better than the errors from Algorithm 1 for testing functions 𝑢3𝑑𝑠3 and 𝑢3𝑑𝑠8 as
shown in Figure 2.

3.3 Convergence Analysis

According to [5], it is known that if det(𝐷2𝑢∗) = 𝑓 > 0 and 𝑢∗ is convex, then there
exist constants 𝑚, 𝑀 > 0, independent of the mesh size |4| such that

0 < 𝑚 ≤ _3 ≤ _2 ≤ _1 ≤ 𝑀,
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Table 1 Errors of numerical solutions 𝑢3𝑑𝑠1 for the Monge Ampère equation over [0, 1]3 with 𝐷 = 9,
𝑟 = 1 over the same tetrahedralization for various initial values 𝑝 by two algorithms

Δ𝑢0 = 𝑝
Algorithm 1 Algorithm 2

|𝑒𝑠 |𝑙2 |𝑒𝑠 |ℎ1 |𝑒𝑠 |𝑙2 |𝑒𝑠 |ℎ1
12.6 2.1291e-02 1.6315e-01 1.9230e-02 1.3670e-01
15.1 3.4135e-03 5.8902e-02 5.0004e-03 5.1503e-02
16.4 2.0124e-03 3.1978e-02 1.2081e-08 5.4356e-07
17.1 7.9130e-04 1.4517e-02 4.1401e-08 1.6448e-06
17.7 1.3980e-09 3.9929e-08 3.6103e-08 2.7446e-06
26.0 6.4074e-09 2.4003e-07 4.8324e-07 1.8097e-05
26.5 2.0899e-04 6.3176e-03 5.0149e-07 1.8781e-05
27.0 5.6423e-04 1.7172e-02 3.9592e-04 1.2049e-02
27.5 8.9037e-04 2.5381e-02 7.0701e-04 2.0696e-02

Fig. 2 Errors log( |𝑒𝑠 |𝑙2 ) , log( |𝑒𝑠 |ℎ1 ) for 𝑢
3𝑑𝑠3(Top) and 𝑢3𝑑𝑠8(Bottom)

where _1, _2, _3 are the eigenvalues of (𝐷2𝑢(𝑥)),∀𝑥 ∈ Ω. The following result is also
known (cf. [6]). For clarity, we provide a proof below.

Lemma 4 Suppose that the convex solution 𝑢∗ ∈ 𝑊2,∞ satisfies det(𝐷2𝑢∗) = 𝑓 > 0.
There exists a 𝛿 > 0 such that for any 𝑢 which is close enough to the exact solution
𝑢∗ in the sense that |𝑢 − 𝑢∗ |2,∞ ≤ 𝛿, we have

det(𝐷2𝑢) ≤ 1
27

(Δ𝑢)3 < 1
𝑎
(Δ𝑢)3

for any 𝑎 < 27.

Proof Recall that the eigenvalues of a symmetricmatrix are continuous functions of its
entries, as roots of the characteristic equation (cf. Ostrowski (1960) Appendix K [49]).
Thus, for a given 𝑢∗ ∈ 𝑊2,∞ (Ω), there exists 𝛿 > 0 such that for 𝑢 ∈ 𝑊2,∞ (Ω), |𝑢 −
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𝑢∗ |2,∞ ≤ 𝛿 implies 𝑀 ≥ _1 (𝐷2𝑢(𝑥)) ≥ _2 (𝐷2𝑢(𝑥)) ≥ _3 (𝐷2𝑢(𝑥)) > 0. Now, we
use the property that det(𝐷2𝑢) is the multiplication of all eigenvalues to have

det(𝐷2𝑢) = _1_2_3 =
1
27

(3_1_2_3 + 6_1_2_3 + 18_1_2_3)

≤ 1
27

(_31 + _
3
2 + _

3
3 + 6_1_2_3 + 3_3 (_

2
1 + _

2
2) + 3_1 (_

2
2 + _

2
3) + 3_2 (_

2
1 + _

2
3))

=
1
27

(_1 + _2 + _3)3 =
1
27

(Δ𝑢)3.

This completes all the proof. ut

We first consider the point-wise convergence of the sequence from Algorithm 1.

Theorem 9 Fix a spline spaceS𝑟
𝐷
(4) with 4 being a tetrahedralization of the domain

Ω. Let 𝑢𝑘 ∈ S𝑟
𝐷
(4), 𝑘 ≥ 1 be the sequence from Algorithm 1. Then, any average values

of 𝑓 − det(𝐷2𝑢𝑘 ), 𝑘 ≥ 1 are nonnegative in the following senses:

1
𝑛 + 1

𝑛∑︁
𝑘=0

( 𝑓 (x) − det(𝐷2𝑢𝑘 ) (x)) ≥ 0, x ∈ Ω (24)

for all 𝑛 ≥ 1. Furthermore, suppose that there eixsts a bound 𝑀 > 0 such that
|𝑢𝑘 (x) | ≤ 𝑀 over Ω for all 𝑘 ≥ 0. Then

1
𝑛 + 1

𝑛∑︁
𝑘=0

( 𝑓 (x) − det(𝐷2𝑢𝑘 ) (x)) → 0 (25)

when 𝑛→ ∞ for all x ∈ Ω.

We remark that the condition that |𝑢𝑘 (x) | ≤ 𝑀 above is a computational condition one
can check during the iterative computation ofAlgorithm 1.Our numerical experiments
show that for some testing functions𝑢, this condition does satisfywhile for other testing
functions, the condition does not satisfy. See Figure 3 for these numerical phenomena.

Proof By (21) and Lemma 4, we get

27det(𝐷2𝑢𝑘+1)) ≤ (Δ𝑢𝑘+1)3 = (Δ𝑢𝑘 )3 + 27( 𝑓 − det(𝐷2𝑢𝑘 ))
= (Δ𝑢𝑘−1)3 + 27( 𝑓 − det(𝐷2𝑢𝑘−1)) + 27( 𝑓 − det(𝐷2𝑢𝑘 ))
= (Δ𝑢𝑘−1)3 + 2 · 27 𝑓 − 27det(𝐷2𝑢𝑘−1) − 27det(𝐷2𝑢𝑘 )
= · · ·

= (Δ𝑢0)3 + 27(𝑘 + 1) 𝑓 − 27
𝑘∑︁
𝑗=0
det(𝐷2𝑢 𝑗 )

= 27 𝑓 + 27(𝑘 + 1) 𝑓 − 27
𝑘∑︁
𝑗=0
det(𝐷2𝑢 𝑗 ).
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Hence, we have

0 ≤ 27 𝑓 + 27(𝑘 + 1) 𝑓 − 27
𝑘∑︁
𝑗=0
det(𝐷2𝑢 𝑗 ) − 27det(𝐷2𝑢𝑘+1)) = 27

𝑘+1∑︁
𝑗=0

( 𝑓 − det(𝐷2𝑢 𝑗 )).

which leads to (24). In addition, we also have

(Δ𝑢𝑘+1)3 − (Δ𝑢0)3 = 27
𝑘∑︁
𝑗=0

( 𝑓 − det(𝐷2𝑢 𝑗 )).

By the assumption of this theorem, 𝑢𝑘+1 has a bound, i.e. ‖𝑢𝑘+1‖∞,Ω ≤ 𝑀 . Then we
can use the Markov inequality to have

‖Δ𝑢𝑘+1‖∞,Ω ≤ 𝐶

|4|2
‖𝑢𝑘+1‖∞,Ω ≤ 𝐶𝑀

|4|2
< ∞ (26)

for a constant 𝐶 > 0 independent of 𝑢𝑘+1. It thus follows

27
∑𝑘
𝑗=0 ( 𝑓 − det(𝐷2𝑢 𝑗 ))

𝑘 + 1 =
(Δ𝑢𝑘+1)3 − (Δ𝑢0)3

𝑘 + 1 → 0.

Therefore, we finished a proof of Theorem 9. ut

Furthermore, we denote 𝑤(𝑢, 𝑓 ) := 3
√︁
(Δ𝑢)3 + 27( 𝑓 − det(𝐷2𝑢)). We have

‖Δ𝑢𝑘+1 − Δ𝑢‖𝐿2 (Ω) = ‖ (Δ𝑢𝑘 )3 + 27( 𝑓 − det(𝐷2𝑢𝑘 )) − (Δ𝑢)3
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖𝐿2 (Ω)

= ‖ (Δ𝑢𝑘 )
3 − (Δ𝑢)3 + 27(det(𝐷2𝑢) − det(𝐷2𝑢𝑘 ))

(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2
‖𝐿2 (Ω)

By simple calculations, we get

(Δ𝑢𝑘 )3 − (Δ𝑢)3 = (Δ𝑢𝑘 − Δ𝑢) ((Δ𝑢𝑘 )2 + Δ𝑢𝑘 · Δ𝑢 + (Δ𝑢)2)

and by Lemmas 2.1, 2.2 and 2.3 in [5]

det(𝐷2𝑢) − det(𝐷2𝑢𝑘 ) = cof((1 − 𝑡)𝐷2𝑢𝑘 + 𝑡𝐷2𝑢) : (𝐷2𝑢𝑘 − 𝐷2𝑢)

for some 𝑡 ∈ [0, 1] . By simple calculation and Lemma 5, we have

‖ (Δ𝑢𝑘 )3 − (Δ𝑢)3
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖𝐿2 (Ω)

≤ ‖ (Δ𝑢𝑘 − Δ𝑢) ((Δ𝑢𝑘 )2 + Δ𝑢𝑘 · Δ𝑢 + (Δ𝑢)2)
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖𝐿2 (Ω)

≤ ‖ (Δ𝑢𝑘 )2 + Δ𝑢𝑘 · Δ𝑢 + (Δ𝑢)2
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖𝐿∞ (Ω) ‖Δ𝑢𝑘 − Δ𝑢‖𝐿2 (Ω) .
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Let 𝑀 = (𝑀𝑖 𝑗 ), 𝑁 = (𝑁𝑖 𝑗 ) be matrix fields and 𝑐 be a real number. Then we get

𝑀 : 𝑁
𝑐

=
1
𝑐

3∑︁
𝑖, 𝑗=1

𝑀𝑖 𝑗𝑁𝑖 𝑗 =

3∑︁
𝑖, 𝑗=1

𝑀𝑖 𝑗

𝑐
𝑁𝑖 𝑗

≤ ‖𝑀
𝑐
‖∞

3∑︁
𝑖, 𝑗=1

|𝑁𝑖 𝑗 | ≤ ‖𝑀
𝑐
‖∞

( 3∑︁
𝑖, 𝑗=1

𝑁2𝑖 𝑗

)1/2
· 3, (27)

where ‖ 𝑀
𝑐
‖∞ = max1≤𝑖≤3

∑3
𝑗=1 |

𝑀𝑖 𝑗

𝑐
|. By (27) with , we have

‖ 27(det(𝐷2𝑢) − det(𝐷2𝑢𝑘 ))
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖𝐿2 (Ω)

≤ 27‖ (cof((1 − 𝑡)𝐷
2𝑢𝑘 + 𝑡𝐷2𝑢) : (𝐷2𝑢𝑘 − 𝐷2𝑢))

(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2
‖𝐿2 (Ω)

= 27
[ ∫ ( (cof((1 − 𝑡)𝐷2𝑢𝑘 + 𝑡𝐷2𝑢) : (𝐷2𝑢𝑘 − 𝐷2𝑢))

(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2
)2] 12

= 81‖ cof((1 − 𝑡)𝐷2𝑢𝑘 + 𝑡𝐷2𝑢)
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖∞ |𝑢𝑘 − 𝑢 |𝐻 2 (Ω)

≤ 81‖ (1 − 𝑡)𝐷2𝑢𝑘 + 𝑡𝐷2𝑢
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖2∞ |𝑢𝑘 − 𝑢 |𝐻 2 (Ω)

≤ 81‖ (1 − 𝑡)𝐷2𝑢𝑘 + 𝑡𝐷2𝑢
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖2∞‖𝑢𝑘 − 𝑢‖𝐻 2 (Ω)

for some 𝑡 ∈ [0, 1]. By these two equations, we can have

‖Δ𝑢𝑘+1 − Δ𝑢‖𝐿2 (Ω) = ‖ (Δ𝑢𝑘 )
3 − (Δ𝑢)3 + 27(det(𝐷2𝑢) − det(𝐷2𝑢𝑘 ))

(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2
‖𝐿2 (Ω)

≤ ‖ (Δ𝑢𝑘 − Δ𝑢) ((Δ𝑢𝑘 )2 + Δ𝑢𝑘 · Δ𝑢 + (Δ𝑢)2)
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖𝐿2 (Ω)

+ ‖ 27(det(𝐷2𝑢) − det(𝐷2𝑢𝑘 ))
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖𝐿2 (Ω)

≤ ‖ (Δ𝑢𝑘 )2 + Δ𝑢𝑘 · Δ𝑢 + (Δ𝑢)2
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖𝐿∞ (Ω) ‖Δ𝑢𝑘 − Δ𝑢‖𝐿2 (Ω)

+ 81‖ (1 − 𝑡)𝐷2𝑢𝑘 + 𝑡𝐷2𝑢
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖2∞‖𝑢𝑘 − 𝑢‖𝐻 2 (Ω)

for some 𝑡 ∈ [0, 1]. Now, we need the following lemma from [39] to prove one of the
main convergence results in this paper.

Lemma 5 Suppose that Ω is bounded and has uniformly positive reach 𝑟Ω > 0. Then
there exist two positive constants 𝐴 and 𝐵 such that

𝐴‖𝑢‖𝐻 2 (Ω) ≤ ‖Δ𝑢‖𝐿2 (Ω) ≤ 𝐵‖𝑢‖𝐻 2 (Ω) , ∀𝑢 ∈ 𝐻2 (Ω) ∩ 𝐻10 (Ω). (28)
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By Lemma 5, we have

‖Δ𝑢𝑘+1 − Δ𝑢‖𝐿2 (Ω) ≤ ‖ (Δ𝑢𝑘 )2 + Δ𝑢𝑘 · Δ𝑢 + (Δ𝑢)2
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖𝐿∞ (Ω) ‖Δ𝑢𝑘 − Δ𝑢‖𝐿2 (Ω)

+ 81‖ (1 − 𝑡)𝐷2𝑢𝑘 + 𝑡𝐷2𝑢
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖2∞
1
𝐴
‖Δ𝑢𝑘 − Δ𝑢‖𝐿2 (Ω)

and therefore

‖Δ𝑢𝑘+1 − Δ𝑢‖𝐿2 (Ω) ≤ 𝜌𝑘 ‖Δ𝑢𝑘 − Δ𝑢‖𝐿2 (Ω) ,

where

𝜌𝑘 : = ‖ (Δ𝑢𝑘 )2 + Δ𝑢𝑘 · Δ𝑢 + (Δ𝑢)2
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖𝐿∞ (Ω)+

81
𝐴
‖ (1 − 𝑡)𝐷2𝑢𝑘 + 𝑡𝐷2𝑢
(𝑤(𝑢𝑘 , 𝑓 ))2 + 𝑤(𝑢𝑘 , 𝑓 )𝑤(𝑢, 𝑓 ) + (𝑤(𝑢, 𝑓 ))2

‖2∞. (29)

We are now ready to conclude the following result

Theorem 10 Suppose that Ω is bounded and has uniformly positive reach. If 𝜌𝑘 ≤
𝛾 < 1 for all 𝑘 ≥ 1, then the sequence {𝑢𝑘 } from Algorithm 1 converges.

Note that our numerical experiments show that for some testing function 𝑢, we
have indeed 𝜌𝑘 < 1 while there is other testing function 𝑢 which gives 𝜌𝑘 > 1. See
Figures 3 and 4. Also, it is hard to estimate 𝜌𝑘 from the formula (29).

Fig. 3 𝜌𝑘 and ‖Δ𝑢𝑘 ‖∞ for 80 iterations for smooth solutions 𝑠1, 𝑠2, 𝑠3 and non-smooth solutions 𝑛𝑠1, 𝑛𝑠2

In Figures 3 and 4, we plot 𝜌𝑘 corresponding to the numerical solution for smooth
solutions 𝑠1, 𝑠2, 𝑠3, 𝑠4 and non-smooth solutions 𝑛𝑠1, 𝑛𝑠2. They are defined as follows.

– 𝑠1: polynomial function (𝑥2 + 5𝑦2 + 15𝑧2)/2;
– 𝑠2: exponential function exp((𝑥2 + 𝑦2 + 𝑧2)/2);
– 𝑠3: radical function −

√︁
6 − (𝑥2 + 𝑦2 + 𝑧2);

– 𝑠4: (𝑥2 + 𝑦2 + 𝑧2)/2 − sin(𝑥) − sin(𝑦) − sin(𝑧);
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Fig. 4 An enlarged graphs in Figure 3

– 𝑛𝑠1: −
√︁
3 − (𝑥2 + 𝑦2 + 𝑧2) where 𝑓 is∞ at (1, 1, 1);

– 𝑛𝑠2:
(𝑥2 + 𝑦2 + 𝑧2)3/4

3
where 𝑓 is∞ at (0, 0, 0).

The graphs in these figure above show that 𝜌𝑘 < 1 and ‖Δ𝑢𝑘 ‖∞ are bounded for smooth
testing solutions. However, 𝜌𝑘 may be bigger than 1 and ‖Δ𝑢𝑘 ‖∞ may increase which
maybe unbounded for nonsmooth testing functions.
When 𝜌𝑘 > 1, the above analysis will not be useful to see convergence of the

sequence {𝑢𝑘 }. The remaining case is 𝜌𝑘 ≤ 1. In this case, we need Algorithm 2.
That is, we now study the convergence of our Algorithm 2. Letting 𝑢𝑘 , 𝑘 ≥ 1 be the
sequence from Algorithm 2, it is easy to see that

𝑢𝑘+1 − 𝑢∗ =
1
2
(𝑢𝑘 − 𝑢∗) +

1
2
(𝑇 (𝑢𝑘 ) − 𝑇 (𝑢∗)) (30)

for all 𝑘 ≥ 1 since 𝑢∗ is a fixed point of 𝑇 . Since 𝜌𝑘 ≤ 1, we have ‖𝑇 (𝑢𝑘 ) −𝑇 (𝑢∗)‖ ≤
‖𝑢𝑘−𝑢∗‖ and hence, ‖𝑢𝑘+1−𝑢∗‖ ≤ ‖𝑢𝑘−𝑢∗‖ for all 𝑘 ≥ 1. It follows that 𝑢𝑘 , 𝑘 ≥ 1 are
bounded in a 𝐻2 (Ω) norm. We now show the averaged iterative algorithm converges.

Theorem 11 Suppose that Ω is a bounded domain which has a uniformly positive
reach. Suppose that 𝑔 ∈ 𝐻1/2 (𝜕Ω). Suppose that 𝜌𝑘 ≤ 1. Then Averaged Iterative
Algorithm 2 converges.

Proof Let 𝑆 = 𝐻2 (Ω). By the assumptions, the operator 𝑇 defined above from 𝑆 to 𝑆
is a continuous and nonexpansive operator. We first recall the following equality: For
any 𝑥, 𝑦, 𝑧 ∈ 𝑆 and a real number _ ∈ [0, 1], we have the following identity

_‖𝑥 − 𝑧‖2 + (1 − _)‖𝑦 − 𝑧‖2 − _(1 − _)‖𝑥 − 𝑧‖2 = ‖_𝑥 + (1 − _)𝑦 − 𝑧‖2.
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The proof is left to the interested reader. Let _ = 1/2 and 𝑥 = 𝑢𝑘 , 𝑦 = 𝑇 (𝑢𝑘 ), and
𝑧 = 𝑢∗ which is a fixed point or the solution. Then we have

‖𝑢𝑘+1 − 𝑢∗‖2 =
1
2
‖𝑢𝑘 − 𝑢∗‖2 +

1
2
‖𝑇 (𝑢𝑘 ) − 𝑢∗‖2 −

1
4
‖𝑢𝑘 − 𝑇 (𝑢𝑘 )‖2

=
1
2
‖𝑢𝑘 − 𝑢∗‖2 +

1
2
‖𝑇 (𝑢𝑘 ) − 𝑇 (𝑢∗)‖2 −

1
4
‖𝑢𝑘 − 𝑇 (𝑢𝑘 )‖2

≤ ‖𝑢𝑘 − 𝑢∗‖2 −
1
4
‖𝑢𝑘 − 𝑇 (𝑢𝑘 )‖2.

It follows that
𝑁∑︁
𝑘=1

1
4
‖𝑢𝑘 − 𝑇 (𝑢𝑘 )‖2 + ‖𝑢𝑁+1 − 𝑢∗‖2 ≤ ‖𝑢0 − 𝑢∗‖2

for any integer 𝑁 > 1. That is, ‖𝑢𝑘 − 𝑇 (𝑢𝑘 )‖ → 0 when 𝑘 → ∞.
We now claim that the sequence 𝑢𝑘 , 𝑘 ≥ 1 converges. Note that due to the

nonexpansiveness, ‖𝑢𝑘 ‖, 𝑘 ≥ 1 are bounded as explained above. Let �̂� be the limit of
a subsequence of 𝑢𝑘 , 𝑘 ≥ 1. Then we have �̂� = 𝑇 (�̂�) by the continuity of the operator
𝑇. So �̂� is a fixed point of 𝑇 . By the definition of 𝑇 , we have

Δ�̂� =
3
√︃
(Δ�̂�)3 + 27( 𝑓 − det(𝐷2�̂�))

or (Δ�̂�)3 = (Δ�̂�)3+27( 𝑓 −det(𝐷2�̂�)). It follows that 𝑓 = det(𝐷2�̂�). Since theMonge-
Ampére equation has a unique solution, we have �̂� = 𝑢∗. If there exists another �̃�which
is the limit of another subsequence of 𝑢𝑘 , 𝑘 ≥ 1, we also have �̃� = 𝑇 (�̃�). Then �̃� = 𝑢∗.
Hence, the sequence {𝑢𝑘 , 𝑘 ≥ 1} from Algorithm 2 converges. ut

4 Numerical Results for 3D Monge-Ampère Equations

In this section, we present numerical results from various computational experiments.
We will first test several smooth and nonsmooth solutions over convex domains, such
as [0, 1]3. Next, we show the numerical results over non-convex domains such as
𝐶, 𝐿, 𝑆-shaped domains. For all the experiments, we use 8 processors on a parallel
computer, which has AMD Ryzen 7 4800H with Radeon Graphics 2.90 GHz. All
the cases, the errors are computed based on 𝑁𝐼 = 351 × 351 × 351 equally spaced
points {([𝑖)}𝑁 𝐼𝑖=1 fell inside the domain of computation. The errors will be calculated
according to the norms

|𝑢 |𝑙2 =

√︃∑𝑁𝐼
𝑖=1 (𝑢 (𝑖))2
𝑁 𝐼

|𝑢 |ℎ1 =

√︃∑𝑁𝐼
𝑖=1 (𝑢 (𝑖))2+(𝑢𝑥 (𝑖))2+(𝑢𝑦 (𝑖))2+(𝑢𝑧 (𝑖))2

𝑁 𝐼

|𝑢 |𝑙∞ = max |𝑢(𝑖) |,

where 𝑢(𝑖) := 𝑢([𝑖), 𝑢𝑥 (𝑖) := 𝑢𝑥 ([𝑖), 𝑢𝑦 (𝑖) := 𝑢𝑦 ([𝑖) and 𝑢𝑧 (𝑖) := 𝑢𝑧 ([𝑖) for given
functions 𝑢, 𝑢𝑥 , 𝑢𝑦 , 𝑢𝑧 . Tables in this section are the numerical results of |𝑒𝑠 |𝑙2 and
|𝑒𝑠 |ℎ1 , where 𝑒𝑠 := 𝑢 − 𝑢𝑠 .
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4.1 Smooth Testing Functions

Example 1 (Polynomial Examples) In [17], the researchers experimented the follow-
ing two smooth exact solutions:

– 𝑓 3𝑑1 = 75 such that an exact solution is 𝑢3𝑑𝑠1 = 1
2 (𝑥

2 + 5𝑦2 + 15𝑧2)
– 𝑓 3𝑑2 = 1000 such that an exact solution is 𝑢3𝑑𝑠2 = 1

2 (𝑥
2 + 10𝑦2 + 100𝑧2)

Numerical results of their least squares/relaxation method (called LR method in this
paper) are shown in Table 2. Together we present numerical results based on our
spline collocation method by Algorithms 2. Table 2 shows our spline collocation

Table 2 Errors of numerical solutions 𝑢3𝑑𝑠1, 𝑢3𝑑𝑠2 for Monge Ampère equation over [0, 1]3 for LL
methods with 𝐷 = 5, 𝑟 = 1 and LR method in [17]

LR method

ℎ
𝑢3𝑑𝑠1 𝑢3𝑑𝑠2

|𝑒𝑠 |𝑙2 |𝑒𝑠 |ℎ1 |𝑒𝑠 |𝑙2 |𝑒𝑠 |ℎ1
0.2 7.19e-02 1.58e-00 2.74e-02 5.16e-01
0.1 1.80e-02 7.91e-01 7.52e-03 2.81e-01
0.0625 7.06e-03 4.95e-01 3.06e-03 1.83e-01
0.04 2.89e-03 3.16e-01 1.26e-03 1.20e-01

LL method

ℎ
𝑢3𝑑𝑠1 𝑢3𝑑𝑠2

|𝑒𝑠 |𝑙2 |𝑒𝑠 |ℎ1 |𝑒𝑠 |𝑙2 |𝑒𝑠 |ℎ1
0.25 2.68e-07 1.01e-05 2.48e-04 4.63e-03

method (called LL method) produces more accurate solutions than those presented in
[17]. The eigenvalues of the Hessian matrix are 1, 5, 15 and therefore det(𝐷2𝑢3𝑑𝑠1) =
_1_2_3 = 75 andΔ𝑢3𝑑𝑠1 = _1+_2+_3 = 21. InAlgorithm 2, we choose an initial value
Δ𝑢0 = 14.55 to approximate the exact solution 𝑢3𝑑𝑠1. This choice of initial value leads
to converging iterations since 14.55 is close to Δ𝑢3𝑑𝑠1 = 3

√︁
27 𝑓 = 3√27 · 75 = 12.65.

Similarly, we choose our initial value 𝑢0 for 𝑢3𝑑𝑠2 satisfying Δ𝑢0 = 106.2 which
makes the iterations from Algorithm 2 converge. By choosing good initial value 𝑢0
we achieve the numerical results shown in Table 2.

We also test other smooth solutions which were experimented in the literature,
e.g., [4], [6], [17], [13], and etc..

Example 2 (Smooth Exponential Functions) Consider a smooth exponential exact
solution 𝑢3𝑑𝑠3 = 𝑒

(𝑥2+𝑦2+𝑧2 )
2 associated with 𝑓 3𝑑3 = (1 + 𝑥2 + 𝑦2 + 𝑧2)𝑒

3(𝑥2+𝑦2+𝑧2 )
2 . We

compare our methods with the least squares/relaxation method(LR method) in [17].
Table 3 shows comparison results including 𝑙2, ℎ1 norm of these two methods for each
mesh size ℎ.
We can see that better convergence results using LL methods with 𝐷 = 5, 𝑟 = 1.

In Figure 5, we show plots of the |𝑒𝑠 |𝑙2 , |𝑒𝑠 |ℎ1 with respect to the mesh size ℎ. We can
see that the rate of convergences is about O(ℎ4.82).
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Table 3 Errors of numerical solutions 𝑢3𝑑𝑠3 for Monge Ampère equation over [0, 1]3 for LL methods
with 𝐷 = 5, 𝑟 = 1 and LR method in [17]

LR method
ℎ |𝑒𝑠 |𝑙2 rate |𝑒𝑠 |ℎ1 rate
0.2 7.19e-02 - 1.58e-00 -
0.1 1.80e-02 1.99 7.91e-01 0.99
0.0625 7.06e-03 1.99 4.95e-01 1.00
0.04 2.89e-03 1.99 3.16e-01 0.99

LL method
ℎ |𝑒𝑠 |𝑙2 rate |𝑒𝑠 |ℎ1 rate
1 1.17e-03 - 1.24e-02 -
0.5 4.36e-05 4.74 7.82e-04 3.99
0.25 1.42e-06 4.94 2.72e-05 4.84
0.125 1.10e-07 3.69 1.36e-06 4.32

Fig. 5 Convergence rates of 𝑙2, ℎ1 errors for solutions 𝑢3𝑑𝑠3(Left) and 𝑢3𝑑𝑠5(Right) with respect to |4 |
based on the LL method

Example 3 In [4] and [6], Awanou introduced the pseudo transient continuation, time
marching methods and the spline element methods for Monge-Ampére equations. He
presented several 2D and 3D numerical examples by his methods. For testing function
𝑢3𝑑𝑠4 = 𝑒

(𝑥2+𝑦2+𝑧2 )
3 , it seems that the numerical results using the spline element method

(SE method) in [6] is the best. We use our spline collocation method(LL method) and
compare 𝐿2, 𝐻1, 𝐻2 errors of our method and the SE method. Table 4 and 5 show that
we can get better accuracy when ℎ = 1 and ℎ = 1/2 for each degree 𝐷 = 4, 5, 6.

Table 4 Errors of numerical solutions 𝑢3𝑑𝑠4 for Monge Ampère equation over [0, 1]3 for LL methods
with 𝐷 = 3, 4, 5, 6, 𝑟 = 1, ℎ = 1 and SE method in [6]

𝐷
SE method LL method

𝐿2 norm 𝐻 1 norm 𝐻 2 norm 𝐿2 norm 𝐻 1 norm 𝐻 2 norm

3 1.2338e-02 7.6984e-02 4.4411e-01 1.6916e-02 1.0879e-01 3.8250e-01
4 1.6289e-03 1.4719e-02 1.3983e-01 6.4696e-04 6.1874e-03 3.7146e-02
5 1.5333e-03 8.7312e-03 6.0412e-02 1.7440e-04 2.2203e-03 1.7392e-02
6 1.2324e-04 9.7171e-04 1.0584e-02 4.6740e-05 6.2257e-04 3.5432e-03

4.2 Non-smooth Testing Functions

Example 4 In [17], the researchers considered the following problem which do not
have exact solution with the 𝐻2 (Ω)− regularity or may have no solution at all. For
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Table 5 Errors of numerical solutions 𝑢3𝑑𝑠4 for Monge Ampère equation over [0, 1]3 for LL methods
with 𝐷 = 3, 4, 5, 6, 𝑟 = 1, ℎ = 1/2 and SE method in [6]

𝐷
SE method LL method

𝐿2 norm 𝐻 1 norm 𝐻 2 norm 𝐿2 norm 𝐻 1 norm 𝐻 2 norm

3 3.1739e-03 2.3005e-02 2.4496e-01 2.4294e-03 1.5806e-02 1.0139e-01
4 3.2786e-04 3.5626e-03 5.2079e-02 9.5591e-05 1.1644e-03 9.8077e-03
5 2.4027e-05 3.9210e-04 8.8868e-03 5.8750e-06 1.2214e-04 1.4292e-03
6 1.3821e-06 2.2369e-05 6.0918e-04 6.0635e-07 1.4198e-05 1.6487e-04

𝑅 ≥
√
3, let 𝑢 = −

√︁
𝑅2 − (𝑥2 + 𝑦2 + 𝑧2) be a testing function. When 𝑅 >

√
3, this

function belongs to 𝐶∞ (Ω̄), while 𝑢 ∈ 𝐶0 (Ω̄) ∩𝑊1,𝑠 (Ω), with 1 ≤ 𝑠 < 2, if 𝑅 =
√
3.

More precisely, let us consider the following two solutions

𝑢3𝑑𝑠5 = −
√︃
6 − (𝑥2 + 𝑦2 + 𝑧2) with 𝑓 3𝑑5 = 6(6 − (𝑥2 + 𝑦2 + 𝑧2))− 52

and

𝑢3𝑑𝑠6 = −
√︃
3 − (𝑥2 + 𝑦2 + 𝑧2) with 𝑓 3𝑑6 = 3(3 − (𝑥2 + 𝑦2 + 𝑧2))− 52 .

The numerical results from the least squares/relaxation method in [17] (called LR
method) are shown in Table 6. In Figure 5, we can see that the rate of convergences of
𝑢3𝑑𝑠5 are about O(ℎ4.82). In addition, we show our spline collocation method (called
LL method) in the same table for comparison.

Table 6 Errors of numerical approximation of the solution 𝑢3𝑑𝑠5 for Monge Ampère equation over [0, 1]3
by the and LR method and by the LL method with 𝐷 = 5, 𝑟 = 1

LR method
|4 | |𝑒𝑠 |𝑙2 rate |𝑒𝑠 |ℎ1 rate

0.2 4.96e-03 - 8.60e-02 -
0.1 1.28e-03 1.95 4.41e-02 0.96
0.0625 5.09e-04 1.96 2.78e-02 0.97
0.04 2.10e-04 1.97 1.79e-02 0.98

LL method
|4 | |𝑒𝑠 |𝑙2 rate |𝑒𝑠 |ℎ1 rate

1 3.75e-05 - 3.88e-04 -
0.5 1.10e-06 5.09 1.73e-05 4.49
0.25 5.05e-08 4.45 6.73e-07 4.69
0.125 3.52e-09 3.84 3.06e-08 4.46

Table 7 Errors of numerical approximation of the solution 𝑢3𝑑𝑠6 for Monge Ampère equation over [0, 1]3
by the and LR method and by the LL method with 𝐷 = 5, 𝑟 = 1

LR method
|4 | |𝑒𝑠 |𝑙2 rate |𝑒𝑠 |ℎ1 rate

0.2 1.15e-02 - 6.60e-01 -
0.1 3.06e-03 1.91 6.31e-01 -
0.0625 1.24e-03 1.92 6.25e-01 -
0.04 5.17e-04 1.96 6.22e-01 -

LL method
|4 | |𝑒𝑠 |𝑙2 rate |𝑒𝑠 |ℎ1 rate

1 8.07e-02 - 7.02e-01 -
0.5 7.06e-03 3.52 1.63e-01 2.10
0.25 4.78e-04 3.88 2.21e-02 2.89
0.125 3.85e-04 0.31 2.54e-02 -0.20
0.0625 3.57e-04 0.11 1.98e-02 0.35
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It is clear to see that when the solution 𝑢3𝑑𝑠5 is smooth, both methods work nicely
and our collocation method is much accurate.
Next let us consider the non-smooth solution 𝑢3𝑑𝑠6 in Table 7. Table 7 shows

numerical results such as 𝑙2, ℎ1 errors of these two methods for various mesh sizes.
Our method can get more accurate solution with 𝐷 = 5, 𝑟 = 1 with the large mesh
size |4|. However, it is clear that an adaptive method is needed to improve the
approximation since the maximal error, 𝑒𝑠 = 𝑢 − 𝑢𝑠 , is worst near the point (1, 1, 1).

4.3 Numerical Results over Nonconvex Domains

Fig. 6 Several 3D domains (Top : Cube, Letter L, Letter C , Bottom: Letter S, Subset of the unit ball)

In this section, we test various solutions for each domain in Figure 6. We display
CPU times versus the number of vertices and triangles in Table 8 for each domain in
Figure 6 when 𝐷 = 9, 𝑟 = 1.

Table 8 CPU time results and numbers of vertices and tetrahedrons over domains in Figure 6 when
𝐷 = 9, 𝑟 = 1

Domain No. of Vetices No. of Tetrahedrons Total CPU(s)

Cube 125 384 56.0
Letter L 105 288 42.7
Letter C 190 431 129.2
Letter S 115 171 45.9

Example 5 We use our method to numerically solve three smooth testing functions
𝑢3𝑑𝑠3, 𝑢3𝑑𝑠4, 𝑢3𝑑𝑠5 over 5 solids which are not strictly convex or not convex. They
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even do not have an uniformly positive reach. Table 9 shows our method performs
very well.

Table 9 Errors of numerical solutions 𝑢3𝑑𝑠3 − 𝑢3𝑑𝑠5 for Monge Ampère equations over several domains
in Figure 6 for LL methods with 𝐷 = 9, 𝑟 = 1

Solution Cube Letter L Letter C Letter S

|𝑒𝑠 |𝑙2 |𝑒𝑠 |ℎ1 |𝑒𝑠 |𝑙2 |𝑒𝑠 |ℎ1 |𝑒𝑠 |𝑙2 |𝑒𝑠 |ℎ1 |𝑒𝑠 |𝑙2 |𝑒𝑠 |ℎ1

𝑢3𝑑𝑠3 1.76e-09 1.64e-07 6.63e-10 2.58e-08 1.48e-08 8.67e-07 3.39e-11 1.75e-09
𝑢3𝑑𝑠4 2.82e-11 1.91e-10 3.90e-11 1.04e-09 2.31e-08 3.56e-07 5.84e-11 2.70e-09
𝑢3𝑑𝑠5 5.05e-02 3.61e-01 2.47e-08 9.56e-07 3.87e-08 3.32e-06 6.03e-10 5.03e-08

Example 6 In [17], the researchers considered the problem over the unit ball Ω =

{(𝑥, 𝑦, 𝑧) |𝑥2 + 𝑦2 + 𝑧2 < 1} and a convex solution

𝑢3𝑑𝑠7 = − 1
2
√
3
(1 − 𝑥2 − 𝑦2 − 𝑧2)

of the Monge-Ampére-Dirichlet problem with 𝑓 = 1
3
√
3
. They experimented their

numerical solutions (called LR method) over the unit ball as well as the 3/4 ball as
shown in Figure 6.
In Table 10, we first include the numerical results from [17] and then compare the

𝐿2 (Ω), 𝐻1 (Ω) norms of the computed approximation error 𝑢3𝑑𝑠7 − 𝑢𝑠 by our spline
collocation method. In addition, we tested the solution 𝑢3𝑑𝑠7 over the subset of the

Table 10 Errors of numerical approximation of solution 𝑢3𝑑𝑠7 for Monge Ampère equation over the unit
ball for the LR method and the LL method with 𝐷 = 5, 𝑟 = 1

LR method
|4 | |𝑒𝑠 |𝑙2 rate |𝑒𝑠 |ℎ1 rate

2.98e-01 3.26e-02 - 2.60e-01 -
1.61e-01 1.11e-02 1.74 1.28e-01 1.14
8.32e-02 3.22e-03 1.88 6.16e-02 1.11
4.34e-02 9.89e-04 1.80 2.86e-02 1.17

LL method
|4 | |𝑒𝑠 |𝑙2 rate |𝑒𝑠 |ℎ1 rate

1 3.71e-13 - 3.15e-12 -
0.5 2.97e-14 3.64 1.39e-13 4.51

unit ball as shown in Figure 6. The numerical results we obtained are displayed in
Table 11.

Table 11 CPU time and errors of our spline solution to 𝑢3𝑑𝑠7 for Monge Ampère equation over the domain
in Figure 6 with 𝐷 = 5, 𝑟 = 1, the number of vertices=585, the number of tetrahedrons=2304

LL method
CPU time |𝑒𝑠 |𝑙2 |𝑒𝑠 |ℎ1
174.70 1.9005e-08 2.4941e-06
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4.4 Comparison with Numerical Method in [13]

In this section, we compare our LL method with the Cascadic method in [13]. The
researchers presented several examples in [13] over the irregular domains in Figure 7
by using the following test functions

𝑢3𝑑𝑠3 = 𝑒
(𝑥2+𝑦2+𝑧2 )

2 ,

𝑢3𝑑𝑠6 = −
√︃
3 − (𝑥2 + 𝑦2 + 𝑧2),

𝑢3𝑑𝑠8 =
𝑥2 + 𝑦2 + 𝑧2

2
− sin(𝑥) − sin(𝑦) − sin(𝑧),

𝑢3𝑑𝑠9 =
(𝑥2 + 𝑦2 + 𝑧2) 34

3
.

We use our method (LL method) to compute numerical solutions based on the same
testing functions over the same testing domains. Our numerical results are shown in
Tables 12, 13 and 14.

Fig. 7 Several 3D domains (Cube, Letter L, Torus)

Table 12 The CPU time, DOFs, errors |𝑒𝑠 |𝑙2 , |𝑒𝑠 |ℎ1 using LL method with 𝐷 = 6, 𝑟 = 1 and |𝑒𝑠 |𝑙2
using the Cascadic method in [13] over the cube [0, 1]3

LL method Cascadic method

solution CPU time DOFs |𝑒𝑠 |𝑙2 |𝑒𝑠 |ℎ1 |𝑒𝑠 |𝑙2
𝑢3𝑑𝑠3 18.712 32256 4.4010e-08 1.6144e-06 9.8659e-04
𝑢3𝑑𝑠6 6.9873 32256 4.0285e-04 2.6783e-02 1.7831e-04
𝑢3𝑑𝑠8 14.852 32256 1.8152e-11 6.8884e-10 3.5044e-04
𝑢3𝑑𝑠9 12.826 32256 1.3242e-04 1.1264e-03 2.2255e-04
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Table 13 The CPU time, DOFs, errors |𝑒𝑠 |𝑙2 , |𝑒𝑠 |ℎ1 using LL method with 𝐷 = 6, 𝑟 = 1 and |𝑒𝑠 |𝑙2
using the Cascadic method in [13] over L-shaped domain

LL method Cascadic method

solution CPU time DOFs |𝑒𝑠 |𝑙2 |𝑒𝑠 |ℎ1 |𝑒𝑠 |𝑙2
𝑢3𝑑𝑠3 12.826 24192 1.5727e-08 7.0173e-07 4.8655e-03
𝑢3𝑑𝑠6 4.5050 24192 6.5992e-05 7.6198e-04 1.6238e-04
𝑢3𝑑𝑠8 12.935 24192 1.4826e-11 6.9814e-10 1.2240e-04
𝑢3𝑑𝑠9 4.8951 24192 2.3076e-04 2.0929e-03 4.2183e-04

Table 14 The CPU time, DOFs, errors |𝑒𝑠 |𝑙2 , |𝑒𝑠 |ℎ1 using LL method with 𝐷 = 4, 𝑟 = 1 and |𝑒𝑠 |𝑙2
using the Cascadic method in [13] over Torus

LL method Cascadic method

solution CPU time DOFs |𝑒𝑠 |𝑙2 |𝑒𝑠 |ℎ1 |𝑒𝑠 |𝑙2
𝑢3𝑑𝑠3 141.01 80990 6.0125e-07 1.3250e-05 3.1914e-04
𝑢3𝑑𝑠6 90.420 80990 5.6340e-04 1.1438e-02 1.9850e-04
𝑢3𝑑𝑠8 119.42 80990 4.9540e-07 9.5117e-06 2.1182e-04
𝑢3𝑑𝑠9 125.64 80990 2.3272e-07 1.3522e-05 1.7504e-04

4.5 Free Movement of Transportation

Finally, we consider the free movement problem. In this case, the Monge-Ampére
equation (4) becomes

det(𝐷2𝑢(x)) = 1, x in Ω ⊂ R3 (31)
∇𝑢(x) = 𝜕𝑊, x on 𝜕Ω. (32)

To completely determine 𝑢, we need to specify an oblique boundary condition. When
bothΩ and𝑊 are star-shaped domains, e.g., convex domains, we canmatch the centers
of Ω and 𝑊 by shifts and use a ray 𝑅 from the center to intercept the boundary of
Ω and the boundary of 𝑊 . This can build up a map from 𝜕Ω to the boundary of 𝑊 .
Using the outward normal of 𝜕Ω and the outward normal of𝑊 , we solve the Neumann
boundary condition of the Monge-Ampére equation (4) becomes

det(𝐷2𝑢(x)) = 1, x in Ω ⊂ R3 (33)
n𝜕Ω∇𝑢(x) = n𝑊 𝜕𝑊, x on 𝜕Ω. (34)

Now we can apply our computational approach to find a solution of 𝑢 and form a
transportation map from Ω to 𝑊 . So that we can show which points in Ω is mapped
to which points in𝑊 by using an image or stack of images.

Example 7 For simplicity, we first consider the 2D setting over a rectangular domain
Ω and 𝑊 is a circular domain as shown in Figure 8. On the left-hand side, we have
an image density function and on the right-hand side, the density is transported to
the circular domain. The center of the rectangular domain Ω = [−1, 1]2 is the origin
(0, 0) and the same for the circular domain 𝑊 = {(𝑥, 𝑦), 𝑥2 + 𝑦2 ≤ 1}. In Figure 9
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and 10, we use the point (−0.4, 0) and (0, 0.4) as the center of the circular domain,
respectively. The image on the right-hand side of Figure 9 is clearly deformed and
the similar for the image (right) of Figure 10. The cost for transportation in these two
cases

1
2

∫
Ω

‖x − ∇𝑢(x)‖2 𝑓 (x)𝑑x (35)

is larger than the cost for the transportation in Figure 8.

Fig. 8 A density over a rectangular domain Ω = [−1, 1]2(on the left) and a transported image over the
circular domain (on the right)

Fig. 9 A density over a rectangular domain Ω = [−1, 1]2(on the left) and a transported image over the
circular domain (on the right). Note the point (−0.4, 0) in the circular domain was chosen as the center.

Example 8 We now show the transportation from the points in the cube Ω = [−1, 1]3
to the unit ball 𝑊 = {(𝑥, 𝑦, 𝑧) : 𝑥2 + 𝑦2 + 𝑧2 ≤ 1}. Again we use the density 𝑓 (x)
which is a stack of the same image over Ω to show how a point in Ω is transported to
the point in𝑊 .
We can see that our computation is reliable as the points in Ω are completed

transported into 𝑊 . In fact the map ∇𝑢 is a bĳection due to the convexity of the
Brenier potential 𝑢 as shown in Figure 12.
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Fig. 10 A density over a rectangular domain Ω = [−1, 1]2(on the left) and a transported image over the
circular domain (on the right). Note the point (0, 0.4) in the circular domain was chosen as the center.

Fig. 11 A density over a rectangular domain Ω = [−1, 1]3(on the left) and a transported image over the
spherical domain𝑊 (on the right)

Fig. 12 An iso-surface plot of the Brenier potential over a rectangular domain Ω = [−1, 1]3
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