Skip to main content
Log in

Numerical Study of a Fast Two-Level Strang Splitting Method for Spatial Fractional Allen–Cahn Equations

  • Review
  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a numerical method to solve the multi-dimensional spatial fractional Allen–Cahn equations has been investigated. After semi-discretizating the equations, a system of nonlinear ordinary differential equations with a Toeplitz structure is induced. We propose to split the Toeplitz matrix into the sum of a circulant matrix and a skew-circulant matrix, and apply the Strang splitting method. Such a two-level Strang splitting method will reduce the computational complexity to \({\mathcal {O}}(q\log q)\). Moreover, it preserves not only the discrete maximum principle unconditionally but also second-order convergence as well. By introducing a new modified energy formula, the energy dissipation property can be guaranteed. Finally, some numerical experiments are conducted to confirm the theories we put forward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No application.

References

  1. Allen, S.M., Cahn, J.W.: Ground state structures in ordered binary alloys with second neighbor interactions. Acta Metall. 20, 423–433 (1972)

    Article  Google Scholar 

  2. Barakitis, N., Ekström, S.E., Vassalos, P.: Preconditioners for fractional diffusion equations based on the spectral symbol. Numer. Linear Algebra Appl. 29, e2441 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, Y., Fang, Z., Sun, H., Chen, H.: A fast two-level Strang splitting method for multi-dimensional spatial fractional Allen-Cahn equations with discrete maximum principle. East Asian J. Appl. Math. (2023). https://doi.org/10.4208/eajam.2022-248.161022

    Article  MathSciNet  Google Scholar 

  4. Chan, R., Ng, M.: Toeplitz preconditioners for Hermitian Toeplitz systems. Linear Algebra Appl. 190, 181–208 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, R., Ng, M.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, H., Sun, H.: A dimensional splitting exponential time differencing scheme for multidimensional fractional Allen-Cahn equations. J. Sci. Comput. 87, 1–25 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, H., Sun, H.: Second-order maximum principle preserving Strang’s splitting schemes for anisotropic fractional Allen-Cahn equations. Numer. Algorithms 90, 749–771 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Di Benedetto, F.: Analysis of preconditioning techniques for ill-conditioned Toeplitz matrices. SIAM J. Sci. Comput. 16, 682–697 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and structure preserving preconditioners for fractional diffusion equations. J. Comput. Phys. 307, 262–279 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donatelli, M., Mazza, M., Serra-Capizzano, S.: Spectral analysis and multigrid methods for finite volume approximations of space-fractional diffusion equations. SIAM J. Sci. Comput. 40, A4007–A4039 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Du, Q., Ju, L., Li, X., Qiao, Z.H.: Maximum principle preserving exponential time differencing schemes for the nonlocal Allen-Cahn equation. SIAM J. Numer. Anal. 57, 875–898 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Einkemmer, L., Ostermann, A.: Convergence analysis of Strang splitting for Vlasov-type equations. SIAM J. Numer. Anal. 52, 140–155 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Evan, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by mean curvature. Commun. Pure Appl. Math. 45, 1097–1123 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fiorentino, G., Serra Capizzano, S.: Multigrid methods for Toeplitz matrices. Calcolo 28, 283–305 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gohberg, I., Olshevsky, V.: Circulants, displacements and decompositions of matrices. Integr. Equ. Oper. Theory 15, 730–743 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gronwall, T.H.: Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20, 292–296 (1919)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer, Berlin (2006)

    MATH  Google Scholar 

  18. Hansen, E., Kramer, F., Ostermann, A.: A second-order positivity preserving scheme for semilinear parabolic problems. Appl. Numer. Math. 62, 1428–1435 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM (2008)

    Book  MATH  Google Scholar 

  20. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (2012)

    Book  Google Scholar 

  21. Hou, T., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72, 1214–1231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Huang, X., Li, D., Sun, H., Zhang, F.: Preconditioners with symmetrized techniques for space fractional Cahn-Hilliard equations. J. Sci. Comput. 92(41), 25 (2022)

    MathSciNet  MATH  Google Scholar 

  23. Lee, S., Liu, X., Sun, H.: Fast exponential time integration scheme for option pricing with jumps. Numer. Linear Algebr. Appl. 19, 87–101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, S., Pang, H., Sun, H.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32, 774–792 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, D., Quan, C., Xu, J.: Stability and convergence of Strang splitting. Part I: scalar Allen-Cahn equation. J. Comput. Phys. 458, 111087 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Massei, S., Mazza, M., Robol, L.: Fast solvers for two-dimensional fractional diffusion equations using rank structured matrices. SIAM J. Sci. Comput. 41, A2627–A2656 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  27. Moret, I., Novati, P.: RD-rational approximations of the matrix exponential. BIT 44, 595–615 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ng, M.: Circulant and skew-circulant splitting methods for Toeplitz systems. J. Comput. Appl. Math. 159, 101–108 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Pang, H., Sun, H.: Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential. Numer. Linear Algebra Appl. 18, 603–614 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pang, H., Sun, H.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pang, H., Sun, H.: Fast exponential time integration for pricing options in stochastic volatility jump diffusion models. East Asian J. Appl. Math. 4, 52–68 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Podlubny, I.: Fractional Differential Equations: an Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier (1998)

    MATH  Google Scholar 

  33. Powers, D.L.: Problem 74.5: on the norm of a matrix exponential. SIAM Rev. 17, 174–176 (1975)

    Article  Google Scholar 

  34. Serra Capizzano, S.: Preconditioning strategies for asymptotically ill-conditioned block Toeplitz systems. BIT 34, 579–594 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Serra Capizzano, S.: Superlinear PCG methods for symmetric Toeplitz systems. Math. Comput. 68, 793–803 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  36. Serra Capizzano, S.: Toeplitz preconditioners constructed from linear approximation processes. SIAM J. Matrix Anal. Appl. 20, 446–465 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhang, L., Zhang, Q., Sun, H.: Exponential Runge-Kutta method for two-dimensional nonlinear fractional complex Ginzburg-Landau equations. J. Sci. Comput. 83, 1–24 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work is supported in part by research grants of the Science and Technology Development Fund, Macau SAR (File No. 0122/2020/A3), University of Macau (File No. MYRG2020-00224-FST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Wei Sun.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, YY., Sun, HW. & Tam, SC. Numerical Study of a Fast Two-Level Strang Splitting Method for Spatial Fractional Allen–Cahn Equations. J Sci Comput 95, 71 (2023). https://doi.org/10.1007/s10915-023-02196-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02196-4

Keywords

Navigation