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A semi-discrete first-order low regularity exponential

integrator for the “good” Boussinesq equation

without loss of regularity

Hang Li · Chunmei Su*

Abstract In this paper, we propose a semi-discrete first-order low regularity
exponential-type integrator (LREI) for the “good” Boussinesq equation. It is
shown that the method is convergent linearly in the space Hr for solutions
belonging to Hr+p(r) where 0 ≤ p(r) ≤ 1 is non-increasing with respect to r,
which means less additional derivatives might be needed when the numerical
solution is measured in a more regular space. Particularly, the LREI presents
the first-order accuracy in Hr with no assumptions of additional derivatives
when r > 5/2. This is the first time to propose a low regularity method which
achieves the optimal first-order accuracy without loss of regularity for the GB
equation. The convergence is confirmed by extensive numerical experiments.

Keywords “good” Boussinesq equation · low regularity · error estimate ·
first-order integrator · without loss of regularity
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1 Introduction

We consider the following periodic boundary value problem of the “good”
Boussinesq (GB) equation:

{
ztt + zxxxx − zxx − (z2)xx = 0, x ∈ T, t > 0,

z(0, x) = φ0(x), zt(0, x) = ψ0(x),
(1.1)
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in a torus T = [−π, π], where φ0(x) and ψ0(x) are given initial data. The GB
equation was originally founded by Joseph Boussinesq [6] to describe the prop-
agation of dispersive shallow water waves. Furthermore, it was also extended
by replacing the quadratic nonlinearity with a general function of z to model
small oscillations of nonlinear beams [40] or the two-way propagation of water
waves in a channel. There have been many applications for the GB equation
in physics [14,16] and oceanographic engineering [39].

Analytically, similar to the well-know Korteweg-de Vries (KdV) equation,
the nonlinear Schrödinger (NLS) equation, and other dispersive equations,
the GB equation admits abundant soliton solutions, see [9,12,19,24,25]. How-
ever, the GB equation has some special characteristics that make it different
from the KdV or NLS equations, e.g., two solitons can merge into one soli-
ton or develop into the so-called antisolitons [25]. For less smooth solutions,
Kishimoto [17] gave a sharp locally well-posed result by using the fix-point
theory together with low regularity bilinear estimates in Bourgain spaces,
also known as the dispersive Sobolev spaces [38]. The main result in [17] is
that for any (φ0, ψ0) ∈ Hs × Hs−2, s ≥ −1/2, there exist a positive time
T (‖ψ0‖Hs , ‖ψ0‖Hs−2) > 0 and a unique solution of the GB equation in a
certain Banach space of functions X ⊂ C([0, T ];Hs × Hs−2), however, this
equation is ill-posed when s < −1/2. We refer to [10,11,17,27,42] for more
detailed theoretical results of the GB equation.

Along the numerical part, a large variety of classical numerical schemes
for approximating the time dynamics of the GB equation have been proposed
and analyzed, including the pseudospectral methods [8,12], finite difference
methods [7,28], the exponential integrators [37] and splitting methods [46].
However, as a result of the fourth-order spatial derivative in (1.1), these tradi-
tional schemes can not reach their ideal convergence rates when the solution is
not smooth enough. For example, an explicit finite difference scheme was con-
structed in [28], which strictly requires the boundedness of ∂6xz and ∂4t z and
a time step restriction of ∆t = O(∆x2), where ∆t and ∆x represent the time
and space step, respectively. Unfortunately, the solutions involved in practical
applications become rough due to the interference of noise. Thus it is nec-
essary to find appropriate methods which can achieve the ideal convergence
even for rough solutions. To this aim, some low regularity exponential inte-
grators (LREIs) requiring low additional regularity have been established by

introducing the concepts of twisted variable w(t) := eit∂
2
xu(t) and Duhamel’s

formula, see [22,31]. Compared to the classical methods, e.g., classical expo-
nential integrators, these strategies give rise to some numerical schemes that
still converge even when the solution is rough. Specifically, Ostermann & Su
[31] gave a first-order and a second-order LREIs and obtain the linear and
quadratic convergence in Hr (r > 1/2) by requiring one and three additional
derivatives, respectively. This demand is weaker than that of the operator split-
ting method [46] and the spectral method [8], the latter of which requires the
boundedness of at least four additional temporal and spatial derivatives to at-
tain the second-order convergence in time. Recently, the authors [22] proposed
a new first-order and second-order LREIs, which converge with less additional
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derivatives required than those in [31]. In particular, the second-order LREI
in [22] converges quadratically with two additional derivatives required, which
is weaker than that of [31].

In this article, we will introduce a newly developed LREI which has first-
order accuracy inHr by requiring the boundedness of additional spatial deriva-
tives at the order of p(r), where p(r) is non-increasing with respect to r, i.e.,

‖un − u(tn)‖r . τ, for u ∈ L∞(0, T ;Hr+p(r)).

Particularly, p(r) = 0 for all r > 5/2, which means the method is convergent
at the first order in Hr with no additional regularity needed. The first-order
LREI is established by the following strategy:

(i) In the first step, we rewrite the GB equation as a first-order system
(
z
zt

)

t

=

(
0 1

−∂4x + ∂2x 0

)(
z
zt

)
+

(
0

(z2)xx

)
.

Then we diagonalize the above matrix in Fourier space and introduce a
new complex variable u(t) involving z and zt so that the GB equation
equivalents to a Schrödinger-type equation.

(ii) In the second step, we extract the dominant term in the linear part of
the equation involving u(t) and introduce the so-called twisted variable

w(t) = eit∂
2
xu(t).

An appropriate approximation is used to integrate the Duhamel’s for-
mula on the new variable w.

(iii) Finally, we twist the variable back and obtain an approximation to u.
The integral for the nonlinear term is approximated so that the iteration
can be efficiently calculated in physical space or Fourier space.

Remark 1 The method of twisted variable is firstly introduced by Ostermann
and Schratz [30] to design low-regularity numerical schemes for the nonlinear
Schrödinger equation. Since then this technique has been extensively applied
for the nonlinear Schrödinger equation [18,20,29,43,33], KdV equation [13,32,
44,45], Klein-Gordon equation [3,41] and other equations [34,35]. Compared to
classical numerical methods, this type of low regularity integrators can achieve
the same convergence when the solutions are less regular.

Below we present our idea to design the new LERI briefly. The approach is
based on the phase space analysis of the nonlinear dynamics. Specifically, we
are devoted to finding a suitable approximation for the following time integral

∫ τ

0

e−is(k2+k2
1+k2

2)ds, with k1 + k2 = k.

The leading term −2k2 is kept and integrated exactly in [31], i.e.,
∫ τ

0

e−is(k2+k2
1+k2

2)ds =

∫ τ

0

e−2isk2+2isk1k2ds ≈
∫ τ

0

e−2isk2

ds.



4 Hang Li, Chunmei Su*

This finally leads to a first-order scheme with one additional order of regularity
required [31]. To weaken the constraint on regularity, the authors applied the
identity 1 = k1+k2

k together with the property

k2 + k21 + k22 = 2k22 + 2kk1 = 2k21 + 2kk2 = 2k2 − 2k1k2, (1.2)

and decompose the integral as
∫ τ

0

e−is(k2+k2
1+k2

2)ds =
k1
k

∫ τ

0

e−is(k2+k2
1+k2

2)ds+
k2
k

∫ τ

0

e−is(k2+k2
1+k2

2)ds

=
k1
k

∫ τ

0

e−2is(k2
2+kk1)ds+

k2
k

∫ τ

0

e−2is(k2
1+kk2)ds

≈ k1
k

∫ τ

0

(
e−2isk2

2 + e−2iskk1 − 1
)
ds+

k2
k

∫ τ

0

(
e−2isk2

1 + e−2iskk2 − 1
)
ds,

where the the integrals in the last line can be integrated exactly in phase space.
In this work, we apply the identity

k21 + k22 + 2k1k2
k2

= 1 (1.3)

instead and the decomposition follows as

e−is(k2+k2
1+k2

2) =
k21
k2

e−2is(k2
2+kk1) +

k22
k2

e−2is(k2
1+kk2) +

2k1k2
k2

e−2is(k2−k1k2)

≈ k21
k2

(e−2isk2
2 + e−2iskk1 − 1) +

k22
k2

(e−2isk2
1 + e−2iskk2 − 1)

+
2k1k2
k2

(e−2isk2

+ e2isk1k2 − 1), (1.4)

where all three terms in the approximation can be exactly integrated. In this
way we are able to establish the numerical flow as follows

zn =
1

2
(un + un) + atn + b, znt =

i

2
〈∂2x〉(un − un) + a, (1.5)

where

a = F0(zt(0, ·)) =
1

2π

∫

T

ψ0(x)dx, b = F0(z(0, ·)) =
1

2π

∫

T

φ0(x)dx, (1.6)

and

un+1 = Ψ τ
1 (u

n), n ≥ 0, u0 = u(0, x) = φ(x)−b− i〈∂2x〉−1(ψ(x)−a), (1.7)

with 〈∂2x〉−1 defined in Section 2 and

Ψ τ
1 (f) = eiτ〈∂

2
x〉f − i

4
Bτ

[
− i∂−2

x

[(
e2iτ∂

2
x∂−2

x f
) (
∂2xf

)]
+ i∂−2

x

[(
∂−2
x f

)2]

− ieiτ∂
2
x∂−3

x

[(
eiτ∂

2
x∂xf

)(
e−iτ∂2

x∂xf
)]

+ i∂−3
x

[(
∂xf

)
f
]
− 2τ∂−2

x

[(
∂2xf

)
f
]
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− i∂−4
x

(
e2iτ∂

2
x − 1

) (
∂xf

)2
+ i∂−2

x e−iτ∂2
x

(
eiτ∂

2
xf

)2

− i∂−2
x

(
f
)2

− 2τ∂−2
x

(
∂xf

)2
+
i

2

[
(∂−1

x f)2 − eiτ∂
2
x(e−iτ∂2

x∂−1
x f)2

]

− ieiτ∂
2
x∂−1

x

[
(e−iτ∂2

xf)(eiτ∂
2
x∂−1

x f)
]
+ i∂−1

x

[
f(∂−1

x f)
]]

− iτ(atn + b)Bτ
(
f + ψ1(2iτ∂

2
x)f

)
, (1.8)

with ψ1 and Bτ given by (2.5) and (3.10) with (2.7), respectively. It can be
easily seen that the scheme is explicit and easy to implement if one applies
Fourier spectral method for spatial discretization.

Now we state the main theorem concerning the convergence of the above
scheme (1.8). Before that, we define a function p(r):

p(r) =





1, r = 1;

(3 − 2r)+, 1 < r ≤ 7/6;

2/3, 7/6 < r ≤ 17/12;

(7/2− 2r)+, 17/12 < r ≤ 3/2;

5/4− r/2, 3/2 < r < 5/2;

0+, r = 5/2;

0, r ≥ 5/2,

where c+ means c+ ε for any sufficiently small ε > 0.

Theorem 1 For r ≥ 1, suppose that the exact solution of (1.1) satisfies z
∈ C(0, T ;Hr+p(r)) and zt ∈ C(0, T ;Hr+p(r)−2). Then there exists a constant
τ0 > 0 such that for all step size 0 < τ ≤ τ0 and tn ≤ T , we have

‖z(tn)− zn‖r + ‖zt(tn)− znt ‖r−2 ≤ Cτ ,

where C > 0 depends on T , ‖z‖L∞(0,T ;Hr+p(r)) and ‖zt‖L∞(0,T ;Hr+p(r)−2).

It is clear p(r) represents the order of additional regularity required to
promise the first-order convergence of the numerical solution in Hr. Fig. 1
displays the plot of p(r), from which we observe that p(r) is non-increasing.
Particularly, p(r) ≡ 0 when r > 5/2, which means the scheme is convergent
linearly in Hr without loss of regularity when r > 5/2.

Compared to the convergence results of the scheme in [31], which converges
in Hr (r > 1/2) at the first order when the solution belongs to Hr+1, and the
method in [22], which achieves the first-order convergence in Hr for r > 7/6 as
the solution lies in Hr+2/3, it is obvious that our newly proposed scheme (1.8)
requires less regularity to attain the ideal first-order convergence. Furthermore,
for the convergence without smoothness assumptions, i.e., p(r) = 0, compared
to the first-order LREIs proposed in [22] and [31] which converge at the order of

1/2 and r−1/2
3r+1/2−, respectively, our newly developed first-order LREI presents

a linear convergence without additional regularity assumptions when r > 5/2.



6 Hang Li, Chunmei Su*

A
dd

it
io
na

lD
er
iv
at
iv
e

To Achieve Linear Convergence

1 7
6

17
12

3
2

5
2

1

2
3

1
2

1
4

0

(1, 1)

( 76 ,
2
3 ) ( 1712 ,

2
3 )

( 32 ,
1
2 )

( 52 , 0)

r

Fig. 1 Additional order of regularity required to achieve the first-order convergence. Par-
ticularly, for the domain (1, 7/6] and (17/12, 3/2], we plot it by a dash-dotted line or hollow
points to mean that a plus sign exists in p(r), e.g., the scheme is convergent linearly in H3/2

for solutions in H(3/2+1/2)+.

This is the first time to establish the optimal linear convergence without loss
of regularity for the GB equation. On the other hand, we have to admit that
the deficiency is that we have to impose r ≥ 1 due to the stability analysis (cf.
Section 4). Thus the analysis in Hr for r ≤ 1 is absent at the moment.

The rest of the paper is organized as follows. In Section 2, we present some
notions and powerful technical tools. The first-order LREI is constructed in
Section 3. Section 4 is devoted to establishing the error estimate of the scheme.
Some numerical results are presented to confirm the theoretical analysis in
Section 5 and conclusions are drawn in Section 6.

2 Preliminary

In this section, we introduce some notations and present some useful technical
lemmas which are of vital importance to design the method or to establish the
error estimates.

2.1 Notations

In this paper, we use the notationX . Y to denote that there exists a constant
C > 0 which may be different from line to line but is independent of the time
step τ such that |X | ≤ CY . The Fourier transform of a function f on a

torus T is defined by the coordinate representation {f̂k}+∞
k=−∞ under the basis
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{eikx}+∞
k=−∞ in L2(T), where

Fk(f) = f̂k =
1

2π

∫

T

f(x)e−ikxdx.

Thus f(x) =
∑
k∈Z

f̂ke
ikx is the inverse Fourier transform. The norm and inner

product in L2 are defined respectively by

‖f‖ := ‖f‖L2 =
(∑

k∈Z

|f̂k|2
)1/2

, (f, g) =
∑

k∈Z

f̂kĝk =
1

2π

∫

T

f(x)g(x)dx.

(2.1)
Moreover, we define several operators given in Fourier space as

∂−1
x f =

∑

k 6=0

1

ik
f̂ke

ikx, f̃ =
∑

k∈Z

∣∣f̂k
∣∣eikx,

|∂x|αf =
∑

k 6=0

|k|αf̂keikx, Jαf =
∑

k∈Z

(1 + k2)α/2f̂ke
ikx, α ∈ R.

(2.2)

Similarly, we define 〈∂2x〉 :=
√
−∂2x + ∂4x and its inverse by

〈∂2x〉f =
∑

k∈Z

√
k2 + k4f̂ke

ikx, 〈∂2x〉−1f =
∑

k 6=0

1√
k2 + k4

f̂ke
ikx.

Furthermore, we introduce the Sobolev space Hα with α ∈ R, which con-
sists of the functions f =

∑
k∈Z

f̂ke
ikx such that ‖f‖α = ‖Jαf‖ <∞, where

‖f‖2α = ‖Jαf‖2 =
∑

k∈Z

(1 + k2)α|f̂k|2.

It is clear that for f with zero mean value, i.e., f̂k = 0, it holds ‖f‖α .
‖|∂x|αf‖ . ‖f‖α. For α = 0, it is clear that the space reduces to L2 and the
corresponding norm is simply denoted as ‖ · ‖ which agrees with (2.1).

We say that R = R(u, t, τ, ξ) ∈ Rθ(τ
ν ) if and only if

‖R(u, t, τ, ξ)‖r ≤ Cτν ,

where R(u, t, τ, ξ) depends on the value u(t + ξ), 0 ≤ ξ ≤ τ , and C relies
on sup

0≤s≤τ
‖u(t+ s)‖r+θ. We write f = g + Rθ(τ

ν ) whenever f = g + R with

R ∈ Rθ(τ
ν).
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2.2 Preliminary tools

To begin with, we introduce the Kato-Ponce inequalities, which was previously
proved in [15,5,23] in the whole space R and extended to the periodic case by
Li and Wu [21] recently.

Lemma 1 (The Kato-Ponce inequalities) (i) If r > 1/2 and f, g ∈ Hr, then
we have

‖fg‖r . ‖f‖r‖g‖r. (2.3)

(ii) If s > 0, 1 < p ≤ ∞, 1 < p1, p3 <∞, 1 < p2, p4 ≤ ∞ satisfying 1
p = 1

p1
+ 1

p2

and 1
p = 1

p3
+ 1

p4
, then we have the following inequality

‖Js(fg)‖Lp . ‖Jsf‖Lp1 ‖g‖Lp2 + ‖Jsg‖Lp3 ‖f‖Lp4 . (2.4)

Next we present Hardy-Littlewood-Sobolev type inequality and Sobolev
embedding theorem on the torus T, which provides a new approach for the
subsequent estimate of local truncation errors. We refer to [1,2,4,26,36] and
references therein.

Lemma 2 (i) (Hardy-Littlewood-Sobolev type inequality) Let s ∈ [0, 1/2).
Then there exists a constant C = C(s) > 0 such that

‖f‖−s ≤ C‖f‖
L

2
1+2s (T)

,

for any f ∈ L
2

1+2s (T).
(ii) (Sobolev embedding theorem) Let s ∈ (0, 1/2). The inclusion

Hs(T) ⊆ Lq(T)

is continuous for any q ∈
[
1, 2

1−2s

]
.

Lemma 3 (i) For all x, y ∈ R and 0 ≤ θ ≤ 1, we have

|eix − 1| ≤ 21−θ|x|θ, |eix − 1− ix| ≤ 21−2θ|x|1+θ.

(ii) For t ∈ R, r ≥ 0 and f ∈ Hr, we have

‖ψ1(it∂
2
x)f‖r ≤ ‖f‖r,

where

ψ1(y) =

∫ 1

0

eysds, for y ∈ C. (2.5)

For the details of the proof, we refer to [31]. Moreover, we illustrate a lemma
which was introduced by [22,20].
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Lemma 4 (i) For f ∈ Hr with r ≥ 0, t ∈ R, it holds

‖〈∂2x〉−1f‖r ≤ ‖f‖r, ‖Af‖r ≤ ‖f‖r, ‖Bf‖r ≤ ‖f‖r, ‖(eitA − 1)f‖r ≤ |t|‖f‖r,
(2.6)

where A and B are given by

A := 〈∂2x〉+ ∂2x, B := 〈∂2x〉−1∂2x. (2.7)

(ii) For r ≥ 0 and 0 ≤ γ ≤ 1, f ∈ Hr+2γ, one has

‖(eit∂2
x − 1)f‖r . |t|γ‖f‖r+2γ, ‖(eit〈∂2

x〉 − 1)f‖r . |t|γ‖f‖r+2γ. (2.8)

(iii) If f, g ∈ H1, then it holds

∥∥J−1 (g(Jf))
∥∥ . min{‖f‖‖g‖1, ‖f‖1‖g‖}. (2.9)

(iv) If f, g ∈ Hr, r > 1/2 then we have

∥∥J−1 (g(Jf))
∥∥
r
. ‖f‖r‖g‖r. (2.10)

Lemma 5 For f, g ∈ Hr with r ≥ 1, it holds

∥∥ |∂x|−2 [ (|∂x| g)(|∂x| f)
]∥∥

r
. ‖f‖r‖g‖r. (2.11)

Proof To show the above inequality for r > 1, we only need to confirm

∥∥ |∂x|r−2 [
(|∂x| g)(|∂x| f)

]∥∥ . ‖f‖r‖g‖r.

According to the duality principle in L2, it suffices to prove

(
|∂x|r−2 [

(|∂x| g)(|∂x| f)
]
, φ

)
. ‖f‖r‖g‖r‖φ‖, ∀φ ∈ L2,

which is equivalent to

∑

k 6=0

∑

k1+k2=k

|k|r−2|k1||k2|f̂k1 ĝk2 φ̂k . ‖f‖r‖g‖r‖φ‖.

To this aim, we divide the above formula into two parts by discussing the
relationship between Fourier coefficients k and k1, i.e.,

∑

k 6=0

∑

k1+k2=k

|k|r−2|k1||k2|f̂k1 ĝk2 φ̂k =
∑

k 6=0

∑

k1+k2=k

|k1|≤2|k|

|k|r−2|k1||k2|f̂k1 ĝk2 φ̂k

+
∑

k 6=0

∑

k1+k2=k

|k1|>2|k|

|k|r−2|k1||k2|f̂k1 ĝk2 φ̂k. (2.12)

For the first term in (2.12), we have

|k2| = |k − k1| ≤ |k|+ |k1| ≤ 3|k|.
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By using Plancherel’s identity and the bilinear estimate, the first term can be
bounded as
∑

k 6=0

∑

k1+k2=k

|k1|≤2|k|

|k|r−2|k1||k2|f̂k1 ĝk2 φ̂k .
∑

k 6=0

∑

k1+k2=k

|k1|≤2|k|

|k|r
∣∣f̂k1

∣∣ |ĝk2 |
∣∣φ̂k

∣∣

. (|∂x|r(f̃ g̃), φ̃) . ‖f̃ g̃‖r‖φ̃‖ . ‖f̃‖r‖g̃‖r‖φ̃‖ . ‖f‖r‖g‖r‖φ‖,

where f̃ , g̃ and φ̃ are defined in (2.2).
For the second term in (2.12), thanks to |k1| > 2|k|, we are led to

|k2| = |k1 − k| ≥ |k1| − |k| > |k|.

For r > 1, it holds

|k|r−2|k1||k2| = |k|−r|k|2r−2|k1||k2| . |k|−r|k1|r|k2|r,

which implies

∑

k 6=0

∑

k1+k2=k

|k1|>2|k|

|k|r−2|k1||k2|f̂k1 ĝk2 φ̂k .
∑

k 6=0

∑

k1+k2=k

|k1|>2|k|

|k|−r|k1|r|k2|r
∣∣f̂k1

∣∣ |ĝk2 |
∣∣φ̂k

∣∣

.
∑

k 6=0

Fk(|∂x|r f̃ |∂x|r g̃)|k|−r|φ̂k|

. max
k

∣∣∣∣
∫

T

|∂x|r f̃(x)|∂x|r g̃(x)e−ikxdx

∣∣∣∣
∑

k 6=0

|k|−r|φ̂k|

. ‖|∂x|rf̃ |∂x|r g̃‖L1‖(|k|−r)06=k∈Z‖l2‖(|φ̂k|)06=k∈Z‖l2

. ‖|∂x|rf̃‖‖|∂x|r g̃‖‖φ̃‖

. ‖f‖r‖g‖r‖φ‖.

The proof is completed for the case of r > 1. For the case of r = 1, by using
the result in Lemma 4 (iii)

‖|∂x|−1(g|∂x|f)‖ . ‖J−1(g|∂x|f)‖ . ‖J−1(g̃(Jf̃))‖ . ‖f‖1‖g‖,

we are led to

‖ |∂x|−2 [ (|∂x| g)(|∂x| f)
]
‖1 . ‖ |∂x|−1 [ (|∂x| g)(|∂x| f)

]
‖

. ‖f‖1‖|∂x|g‖ . ‖f‖1‖g‖1.

This completes the proof.

3 First-order exponential-type integrator Ψ
τ

1

In the following part, we construct the first-order LREI based on the idea in
(1.3)–(1.4).
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3.1 Homogenization and reformulation of the GB equation

As can be seen blow, we will frequently encounter the operator ∂−1
x or ∂−2

x

during the process of integration, which makes the mean value of the obtained
function zero. Hence usually the zero-mode needs to be treated separately.
Fortunately, thanks to the periodic boundary conditions, the zero-mode of
z can be integrated exactly so that it remains to investigate other nonzero
Fourier modes.

By the periodicity of the solution, one easily gets

F0(ztt) = ∂ttF0(z) = 0,

which immediately gives F0(z) = at + b, where a and b are defined as (1.6).
Setting z = F0(z) + ž and plugging it into (1.1), we derive that

{
žtt + žxxxx − (2at+ 2b+ 1)žxx − (ž2)xx = 0, x ∈ T, t > 0,

ž(0, x) = φ(x) − b, žt(0, x) = ψ(x) − a.
(3.1)

Diagonalize the equivalent first-order system
(
ž
žt

)

t

=

(
0 1

−∂4x + ∂2x 0

)(
ž
zt

)
+

(
0

(ž2)xx + (2at+ 2b)žxx

)
,

and set

〈∂2x〉 =
√
∂2x + ∂4x, u = ž − i〈∂2x〉−1žt, v = ž − i〈∂2x〉−1žt,

we are led to the following coupled system





i∂tu = −〈∂2x〉u +B

[
1

4
(u+ v̄)2 + (at+ b)(u+ v̄)

]
,

i∂tv = −〈∂2x〉v +B

[
1

4
(ū + v)2 + (at+ b)(ū + v)

]
,

(3.2)

where the operator B is defined in (2.7). Recalling that z is a real function,
this implies u = v and (3.2) reduces to a single first-order equation involving
a complex variable




i∂tu = −〈∂2x〉u+B

[
1

4
(u+ u)2 + (at+ b)(u+ u)

]
,

u(0, x) = ž(0, x)− i〈∂2x〉−1žt(0, x).

(3.3)

While ž and žt can be recovered through

ž =
1

2
(u + u), žt =

i

2
〈∂2x〉(u− u). (3.4)

Noticing that the leading term of 〈∂2x〉 is −∂2x, we introduce the so-called
twisted variable

w(t) = eit∂
2
xu(t).
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Plugging it into (3.3) yields

∂tw = iAw − i

4
eit∂

2
xB(e−it∂2

xw + eit∂
2
xw)2 − i(at+ b)eit∂

2
xB(e−it∂2

xw + eit∂
2
xw).

(3.5)
Applying Duhamel’s formula of (3.5), we obtain

w(tn + σ) = eiσAw(tn)−
iB

4

∫ σ

0

ei(σ−s)Aei(tn+s)∂2
x(g1(w(tn), s))

2ds

− iB

∫ σ

0

ei(σ−s)Aei(tn+s)∂2
x [a(tn + s) + b]g1(w(tn), s)ds, (3.6)

where A and B are defined in (2.7), and

g1(w(tn), s) = e−i(tn+s)∂2
xw(tn + s) + ei(tn+s)∂2

xw(tn + s).

Based on this, a first-order approximation can be easily derived [31]

‖w(tn + σ)− w(tn)‖r ≤ Cσ, r > 1/2, (3.7)

where C only depends on sup
0≤s≤σ

‖u(tn + s)‖r. Setting σ = τ and approximating

w(tn + s) by w(tn) in the integral of (3.6), applying (3.7) and Lemma 4 (i),
we get

w(tn + τ) = eiτAw(tn)−
i

4
BeiτA

∫ τ

0

ei(tn+s)∂2
x(g2(w(tn), s))

2ds

− iBeiτA
∫ τ

0

ei(tn+s)∂2
x(atn + b)g2(w(tn), s)ds+R0(τ

2), (3.8)

where g2(w(tn), s) = e−i(tn+s)∂2
xw(tn) + ei(tn+s)∂2

xw(tn).
Twisting the variable back, we obtain an approximation of u(tn + τ) with

a local error of order two

u(tn + τ) = eiτ〈∂
2
x〉u(tn)−

i

4
Beiτ〈∂

2
x〉

∫ τ

0

eis∂
2
x(e−is∂2

xu(tn) + eis∂
2
xu(tn))

2ds

− i(atn + b)Beiτ〈∂
2
x〉

∫ τ

0

eis∂
2
x(e−is∂2

xu(tn) + eis∂
2
xu(tn))ds+R0(τ

2)

= eiτ〈∂
2
x〉u(tn)−

i

4
Bτ

[
Iτ0 (u(tn)) + Iτ1 (u(tn)) + 2Iτ2 (u(tn))

]

− iτ(atn + b)Bτ
(
u(tn) + ψ1(2iτ∂

2
x)u(tn)

)
+R0(τ

2), (3.9)

where ψ1 is given by (2.5) and

Bτ (f) = Beiτ〈∂
2
x〉f = 〈∂2x〉−1∂2xe

iτ〈∂2
x〉f, Iτ0 (f) =

∫ τ

0

eis∂
2
x

(
eis∂

2
xf

)2
ds,

(3.10)

Iτ1 (f) =

∫ τ

0

eis∂
2
x

(
e−is∂2

xf
)2
ds, Iτ2 (f) =

∫ τ

0

eis∂
2
x

∣∣e−is∂2
xf

∣∣2ds. (3.11)
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Now we calculate the terms Iτj in (3.9) respectively. Firstly for f satisfying
F0(f) = 0, as was shown in [31], Iτ1 (f) and I

τ
2 (f) can be calculated exactly as

Iτ1 (f) =
∑

k

∑

k1+k2=k

∫ τ

0

e−is(k2−k2
1−k2

2)dsf̂k1 f̂k2e
ikx

=
(∑

k

∑

k1+k2=k

k1 6=0,k2 6=0

e−2iτk1k2 − 1

−2ik1k2
+
∑

k

∑

k1+k2=k

k1=0 or k2=0

∫ τ

0

ds
)
f̂k1 f̂k2e

ikx

=
∑

k

∑

k1+k2=k

k1 6=0,k2 6=0

e−2iτk1k2 − 1

−2ik1k2
f̂k1 f̂k2e

ikx + 2τ f̂0
∑

k∈Z

f̂ke
ikx − τ f̂2

0

=
i

2

[
(∂−1

x f)2 − eiτ∂
2
x(e−iτ∂2

x∂−1
x f)2

]
, (3.12)

Iτ2 (f) =
∑

k1,k2∈Z

∫ τ

0

eis(k
2
1−k2

2−(k1−k2)
2)dsf̂k1 f̂k2e

i(k1−k2)x

= − i

2
eiτ∂

2
x∂−1

x

[
(e−iτ∂2

xf)(eiτ∂
2
x∂−1

x f)
]
+
i

2
∂−1
x

[
f(∂−1

x f)
]
+ τ‖f‖2. (3.13)

It remains to calculate Iτ0 (f) which reads as

Iτ0 (f) =
∑

k∈Z

∑

k1+k2=k

∫ τ

0

e−isΦdsf̂k1
f̂k2

eikx with Φ = k2 + k21 + k22 . (3.14)

Different from the above two terms Iτ1 (f) and Iτ2 (f), in which the obtained
integration is a function with separable variables k, k1 and k2 that enables us
to compute the obtained convolution efficiently in physical space or Fourier
space, it is impossible to compute the exact integral of Iτ0 efficiently in any
space. To overcome this difficulty, in [22], we proposed an approximation of Iτ0
by applying the identity 1 = k1+k2

k and an appropriate approximation which
can be computed efficiently. In this paper, we utilize similar idea based on the
identity

1 =
k21 + k22 + 2k1k2

k2
, Φ = 2k22 + 2kk1 = 2k21 + 2kk2 = 2k2 − 2k1k2,

and approximate the corresponding integrals in a proper way.

3.2 The first-order exponential-type integrator Ψ τ
1

Case I. When k = 0, the mean value of Iτ0 (f) can be computed exactly and
efficiently by

F0 (I
τ
0 (f)) =

i

2
F0

[(
eiτ∂

2
x∂−1

x f
)2]− i

2
F0

[(
∂−1
x f

)2]
+ τ

(
f̂0

)2
= T τ

0 (f). (3.15)

Case II. When k 6= 0, in order to balance the power of k1 and k2 as much
as possible in the following estimations, we use different forms of the phase
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function Φ as 2k22 + 2kk1, 2k
2
1 + 2kk2, and 2k2 − 2k1k2 for coefficients

k2
1

k2 ,
k2
2

k2 ,

and 2k1k2

k2 , respectively. Specifically,

∑

k 6=0

Fk (I
τ
0 (f)) e

ikx =
∑

k 6=0

∑

k1+k2=k

∫ τ

0

e−is(k2+k2
1+k2

2)dsf̂k1
f̂k2

eikx

=
∑

k 6=0

∑

k1+k2=k

k21
k2

∫ τ

0

e−2is(k2
2+kk1)dsf̂k1

f̂k2
eikx

+
∑

k 6=0

∑

k1+k2=k

k22
k2

∫ τ

0

e−2is(k2
1+kk2)dsf̂k1

f̂k2
eikx

+
∑

k 6=0

∑

k1+k2=k

2k1k2
k2

∫ τ

0

e−2is(k2−k1k2)dsf̂k1
f̂k2

eikx

= T τ
1 (f) + T τ

2 (f) + T τ
3 (f). (3.16)

By symmetry, obviously we have T τ
1 (f) = T τ

2 (f) and it suffices to approximate
T τ
1 (f) and T

τ
3 (f). To begin with, we decompose T τ

1 (f) as

T τ
1 (f) =

∑

k 6=0

∑

k1+k2=k

k21
k2

∫ τ

0

e−2is(k2
2+kk1)dsf̂k1

f̂k2
eikx

=
∑

k 6=0

∑

k1+k2=k

k21
k2

∫ τ

0

e−2isk2
2dsf̂k1

f̂k2
eikx

+
∑

k 6=0

∑

k1+k2=k

k21
k2

∫ τ

0

(
e−2iskk1 − 1

)
dsf̂k1

f̂k2
eikx

+
∑

k 6=0

∑

k1+k2=k

k21
k2

∫ τ

0

(
e−2isk2

2 − 1
) (

e−2iskk1 − 1
)
dsf̂k1

f̂k2
eikx

= Lτ
1(f) + Lτ

2(f) + P τ
1 (f). (3.17)

For f with F0(f) = 0, similarly Lτ
1(f) and L

τ
2(f) can be integrated exactly as

Lτ
1(f) =

∑

k 6=0

∑

k1+k2=k

k2=0

k21
k2

∫ τ

0

e−2isk2
2dsf̂k1

f̂k2
eikx

+
∑

k 6=0

∑

k1+k2=k

k2 6=0

k21
k2

∫ τ

0

e−2isk2
2dsf̂k1

f̂k2
eikx

= − i

2
∂−2
x

[(
e2iτ∂

2
x∂−2

x f
) (
∂2xf

)]
+
i

2
∂−2
x

[(
∂2xf

) (
∂−2
x f

)]
, (3.18)

Lτ
2(f) = − i

2
eiτ∂

2
x∂−3

x

[(
eiτ∂

2
x∂xf

)(
e−iτ∂2

xf
)]

+
i

2
∂−3
x

[(
∂xf

)
f
]

− τ∂−2
x

[(
∂2xf

)
f
]
. (3.19)
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The remainder term P τ
1 (f) will be thrown away in the scheme and the estimate

is postponed to the next section. Similarly T τ
3 (f) can be decomposed as

T τ
3 (f) =

∑

k 6=0

∑

k1+k2=k

2k1k2
k2

∫ τ

0

e−2is(k2−k1k2)dsf̂k1
f̂k2

eikx

=
∑

k 6=0

∑

k1+k2=k

2k1k2
k2

∫ τ

0

e−2isk2

dsf̂k1
f̂k2

eikx

+
∑

k 6=0

∑

k1+k2=k

2k1k2
k2

∫ τ

0

(
e2isk1k2 − 1

)
dsf̂k1

f̂k2
eikx

+
∑

k 6=0

∑

k1+k2=k

2k1k2
k2

∫ τ

0

(
e−2isk2 − 1

) (
e2isk1k2 − 1

)
dsf̂k1

f̂k2
eikx

= Lτ
3(f) + Lτ

4(f) + P τ
2 (f), (3.20)

where Lτ
3(f) and L

τ
4(f) can be integrated exactly as

Lτ
3(f) = −i∂−4

x

(
e2iτ∂

2
x − 1

) (
∂xf

)2
, (3.21)

Lτ
4(f) = i∂−2

x e−iτ∂2
x

(
eiτ∂

2
xf

)2

− i∂−2
x

(
f
)2 − 2τ∂−2

x

(
∂xf

)2
. (3.22)

Combining (3.9), (3.12), (3.13), (3.17) and (3.20), we obtain

u(tn + τ) = Ψ τ
1 (u(tn))−

i

2
BτP τ

1 (u(tn))−
i

4
BτP τ

2 (u(tn)) +R0(τ
2), (3.23)

where

Ψ τ
1 (f) = eiτ〈∂

2
x〉f − i

4
Bτ

[
T τ
0 (f) + 2Lτ

1(f) + 2Lτ
2(f) + Lτ

3(f) + Lτ
4(f) + Iτ1 (f)

+ 2Iτ2 (f)
]
− iτ(atn + b)Bτ

(
f + ψ1(2iτ∂

2
x)f

)
, (3.24)

with operators Bτ , Iτ1 , I
τ
2 , T

τ
0 , L

τ
1 , L

τ
2 , L

τ
3 , L

τ
4 defined in (3.10), (3.12),

(3.13), (3.15), (3.18), (3.19), (3.21), (3.22) respectively. Furthermore, notic-
ing BτT τ

0 (f) = 0, we can rewrite (3.24) simply as

Ψ τ
1 (f) = eiτ〈∂

2
x〉f − i

4
Bτ

[
2Lτ

1(f) + 2Lτ
2(f) + Lτ

3(f) + Lτ
4(f)

+ Iτ1 (f) + 2Iτ2 (f)
]
− iτ(atn + b)Bτ

(
f + ψ1(2iτ∂

2
x)f

)
, (3.25)

which is exactly (1.8) when Iτj and Lτ
j are plugged in. Recalling (3.4) and

z = F0(z) + ž, now we are able to propose the scheme

zn =
1

2
(un + un) + atn + b, znt =

i

2
〈∂2x〉(un − un) + a, (3.26)

where
un+1 = Ψ τ

1 (u
n), n ≥ 0, u0 = u(0, x). (3.27)

The proposed scheme is fully explicit in time and it is easy to implement
efficiently if pseudospectral method is used for spatial discretization thanks to
FFT.
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4 Error estimates

In this section, we will establish the global error estimate concerning the first-
order scheme (3.25).

4.1 Local error estimate

In this part, we give the local error estimate of the scheme (3.25). Inspired by
(3.23) and (2.6), it remains to estimate P τ

1 (f) and P
τ
2 (f).

Lemma 6 For r ≥ 1, f ∈ Hr+p(r), it holds

‖P τ
1 (f)‖r . τ2‖f‖2r+p(r).

Proof Firstly the k-th Fourier coefficient of P τ
1 (f) can be bounded as

|Fk (P
τ
1 (f))|

.
∑

k1+k2=k

|k|−2|k1|2
∣∣∣∣
∫ τ

0

(
e−2isk2

2 − 1
) (

e−2iskk1 − 1
)
ds

∣∣∣∣
∣∣∣f̂k1

∣∣∣
∣∣∣f̂k2

∣∣∣

. τ
∑

k1+k2=k

|k|−2|k1|2 sup
0≤s≤τ

(∣∣(e−2isk2
2 − 1

)∣∣ ∣∣(e−2iskk1 − 1
)∣∣ )

∣∣∣f̂k1

∣∣∣
∣∣∣f̂k2

∣∣∣

. τ1+α+β
∑

k1+k2=k

|k|−2|k1|2 |k2|2α |k|β |k1|β
∣∣∣f̂k1

∣∣∣
∣∣∣f̂k2

∣∣∣

. τ1+α+β |k|−2+β
∑

k1+k2=k

|k1|2+β |k2|2α
∣∣∣f̂k1

∣∣∣
∣∣∣f̂k2

∣∣∣ , (4.1)

where α, β ∈ [0, 1]. This gives

‖P τ
1 (f)‖r .

∥∥∥τ1+α+β
∑

k 6=0

|k|−2+β
∑

k1+k2=k

|k1|2+β |k2|2α
∣∣∣f̂k1

∣∣∣
∣∣∣f̂k2

∣∣∣ eikx
∥∥∥
r

. τ1+α+β
∥∥∥|∂x|−2+β

[(
|∂x|2+β

f̃
)(

|∂x|2α f̃
)]∥∥∥

r
. (4.2)

Now we give several estimates for P τ
1 (f) which might be valid in different

regimes.
(1) For r ≥ 1, setting α = 1 and β = 0 in (4.2), applying the inequalities

in Lemma 5 yields

‖P τ
1 (f)‖r . τ2

∥∥∥|∂x|−2
[(

|∂x|2 f̃
)(

|∂x|2 f̃
)]∥∥∥

r
. τ2

∥∥ |∂x| f̃
∥∥2
r
= τ2‖f‖2r+1,

(4.3)
which implies a second-order local error by requiring one additional derivative.

(2) By applying Lemma 4 (iv), for r + β − 1 > 1/2, we get

‖P τ
1 (f)‖r . τ1+α+β

∥∥∥|∂x|−1
[(

|∂x|2+β
f̃
)(

|∂x|2α f̃
)]∥∥∥

r+β−1
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. τ1+α+β
∥∥∥
(
|∂x|1+β

f̃
)∥∥∥

r+β−1

∥∥∥
(
|∂x|2α f̃

)∥∥∥
r+β−1

. τ1+α+β‖f‖r+2β‖f‖r+2α+β−1.

To get a local error bound of order two, setting α+ β = 1, one obtains

‖P τ
1 (f)‖r . τ2‖f‖2r+2β, with β ∈ [1/3, 1/2] , r > 3/2− β. (4.4)

We clearly see that compared to the estimate in (1), this decreases the addi-
tional regularity required when r > 1 and the least order of additional regular-
ity can be decreased to 2/3 which is valid when r > 7/6. On the other hand,
w observe that it is possible to require less additional regularity by choosing
smaller β, however, we have to pay extra price that the error itself is estimated
in a much more regular space by noticing the constraint r > 3/2− β.

(3) When r+β−2 ∈ [0, 1/2), by applying Lemma 2 and Hölder inequality,
one gets

‖P τ
1 (f)‖r . τ1+α+β

∥∥∥
(
|∂x|2+β

f̃
)(

|∂x|2α f̃
)∥∥∥

r+β−2

. τ1+α+β
∥∥∥
(
|∂x|2+β

f̃
)(

|∂x|2α f̃
)∥∥∥

L
2

5−2r−2β

. τ1+α+β
∥∥∥
(
|∂x|2+β

f̃
)∥∥∥

L
4

5−2r−2β

∥∥∥
(
|∂x|2α f̃

)∥∥∥
L

4
5−2r−2β

. τ1+α+β ‖f‖ 2r+2β−3
4 +2+β ‖f‖ 2r+2β−3

4 +2α

. τ1+α+β ‖f‖2r
2+

3
2β+

5
4
.

Similarly setting α+ β = 1, one derives

‖P τ
1 (f)‖r . τ2 ‖f‖2r

2+
3
2β+

5
4
, r ∈ (3/2− β, 2− β], β ∈ [0, 1]. (4.5)

(4) On the other hand, we can estimate P τ
1 (f) by employing the inequality

(2.4) in Lemma 1, by setting β = 0, α = 1 in (4.1),

‖P τ
1 (f)‖r . τ2

∥∥∥Jr−2
(
|∂x|2 f̃

)(
|∂x|2 f̃

)∥∥∥

. τ2
∥∥∥
(
Jr f̃

)∥∥∥
Lp1

∥∥∥
(
|∂x|2 f̃

)∥∥∥
Lp2

, (4.6)

where 2 ≤ p1 < ∞, 2 < p2 ≤ ∞ and 1
p1

+ 1
p2

= 1
2 , when r > 2. Applying the

Sobolev embedding theorem in Lemma 2, we get

‖P τ
1 (f)‖r . τ2‖f‖r− 1

p1
+ 1

2
‖f‖ 5

2−
1
p2

, 2 < p1, p2 <∞.

To obtain a lower spatial regularity requirement, it is natural to choose r− 1
p1
+

1
2 = 5

2 − 1
p2

for 1
p1

+ 1
p2

= 1
2 with p1 ∈ (2,∞) and p2 ∈ (2,∞), i.e., p1 = 1

r
2−

3
4

and p2 = 1
5
4−

r
2

with r ∈ (2, 5/2), which yields the local error estimate as

‖P τ
1 (f)‖r . τ2‖f‖2r

2+
5
4
, r ∈ (2, 5/2). (4.7)
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(5) Finally, using the bilinear inequality (2.3) in Lemma 1, for α+ β = 1,
one has

‖P τ
1 (f)‖r . τ1+α+β

∥∥∥
(
|∂x|2+β

f̃
)(

|∂x|2α f̃
)∥∥∥

r+β−2

. τ2
∥∥∥
(
|∂x|2+β

f̃
)∥∥∥

r+β−2

∥∥∥
(
|∂x|2α f̃

)∥∥∥
r+β−2

. τ2‖f‖r+2β‖f‖r+2α+β−2

. τ2‖f‖2r+2β, (4.8)

for r > 5/2−β with 0 ≤ β ≤ 1. This implies an error without loss of regularity
when r > 5/2 by choosing β = 0.

Taking β = 0 in (4.5), one gets

‖P τ
1 (f)‖r . τ2 ‖f‖2r

2+
5
4
, r ∈ (3/2, 2],

which combines with (4.7) and (4.8) gives

‖P τ
1 (f)‖r . τ2 ‖f‖2r

2+
5
4
, r ∈ (3/2, 5/2);

‖P τ
1 (f)‖r . τ2 ‖f‖2r+ , r = 5/2;

‖P τ
1 (f)‖r . τ2 ‖f‖2r , r > 5/2.

(4.9)

For r ≤ 3
2 , by (4.5), we have to choose β = (32 − r)+, i.e., β = 3

2 − r + ε with
any sufficiently small ε > 0 which reads as

‖P τ
1 (f)‖r . τ2 ‖f‖2r

2+
5
4+

3
2 (

3
2−r)+ = ‖f‖2( 7

2−r)+ , r ∈ [1, 3/2]. (4.10)

Similarly (4.4) equivalents to the estimate

‖P τ
1 (f)‖r . τ2 ‖f‖2(3−r)+ , r ∈ (1,

7

6
]; ‖P τ

1 (f)‖r . τ2 ‖f‖2r+ 2
3
, r >

7

6
.

(4.11)
Lemma 6 is concluded by taking the minimum of the required order of regu-
larity for (4.9), (4.10), (4.11) and (4.4).

Concerning the term P τ
2 (f), we have the following estimate.

Lemma 7 For r ≥ 1, we have

‖P τ
2 (f)‖r . τ2‖f‖2r+q(r),

where

q(r) =

{
5/4− r/2, 1 ≤ r ≤ 5/2;

0, r > 5/2.
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Proof It follows from (3.20) that

|Fk (P
τ
2 (f))|

.
∑

k1+k2=k

|k|−2|k1||k2|
∣∣∣∣
∫ τ

0

(
e−2isk2 − 1

) (
e2isk1k2 − 1

)
ds

∣∣∣∣
∣∣∣f̂k1

∣∣∣
∣∣∣f̂k2

∣∣∣

. τ
∑

k1+k2=k

|k|−2|k1||k2| sup
0≤s≤τ

(∣∣(e−2isk2 − 1
)∣∣ ∣∣(e2isk1k2 − 1

)∣∣ )
∣∣∣f̂k1

∣∣∣
∣∣∣f̂k2

∣∣∣

. τ1+α+β
∑

k1+k2=k

|k|−2|k1||k2| |k|2α |k1|β |k2|β
∣∣∣f̂k1

∣∣∣
∣∣∣f̂k2

∣∣∣

. τ2|k|−2+2α
∑

k1+k2=k

|k1|1+β |k2|1+β
∣∣∣f̂k1

∣∣∣
∣∣∣f̂k2

∣∣∣ , (4.12)

for α, β ∈ [0, 1] satisfying α + β = 1. Using similar approach applied in the
proof of Lemma 6, we establish several estimates by applying various tools.

(1) When r + 2α − 2 ∈ (−1/2, 0], by applying Lemma 2 and Hölder in-
equality, one gets

‖P τ
2 (f)‖r . τ2

∥∥∥
(
|∂x|1+β

f̃
)(

|∂x|1+β
f̃
)∥∥∥

r+2α−2

. τ2
∥∥∥
(
|∂x|1+β

f̃
)(

|∂x|1+β
f̃
)∥∥∥

L
2

5−2r−4α

. τ2
∥∥∥
(
|∂x|1+β

f̃
)∥∥∥

2

L
4

5−2r−4α

. τ2 ‖f‖2r
2+

5
4
.

Noticing the constraint r ∈ (3/2− 2α, 2− 2α] and α ∈ [0, 1], we immediately
get

‖P τ
2 (f)‖r . τ2 ‖f‖2r

2+
5
4
, r ∈ [1, 2]. (4.13)

(2) Setting α = 0 and β = 1, one gets

‖P τ
2 (f)‖r . τ2

∥∥∥|∂x|−2
(
|∂x|2 f̃

)(
|∂x|2 f̃

)∥∥∥
r
. τ2

∥∥∥Jr−2
(
|∂x|2 f̃

)(
|∂x|2 f̃

)∥∥∥ ,

which is exactly the same as in (4.6). Hence (4.7) also holds for P τ
2 (f), i.e.,

‖P τ
2 (f)‖r . τ2‖f‖2r

2+
5
4
, r ∈ (2, 5/2]. (4.14)

(3) It remains to give a bound of ‖P τ
2 (f)‖r for r > 5/2. Employing the

bilinear estimate (2.3), one easily gets

‖P τ
2 (f)‖r . τ2

∥∥∥
(
|∂x|1+β

f̃
)(

|∂x|1+β
f̃
)∥∥∥

r+2α−2

. τ2
∥∥∥
(
|∂x|1+β

f̃
)∥∥∥

2

r+2α−2

. τ2‖f‖2r+α, for r > 5/2− 2α,
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which implies

‖P τ
2 (f)‖r . τ2‖f‖2r, for r > 5/2; ‖P τ

2 (f)‖r . τ2‖f‖2(r
2+

5
4 )+

, r ∈ [1, 5/2].

This together with (4.13) and (4.14) concludes Lemma 7.

It is easy to see q(r) ≤ p(r) by direct computations. In spirit of (3.23),
Lemma 6 and Lemma 7, we obtain the local error of the scheme (3.25).

Lemma 8 Suppose r ≥ 1, u ∈ L∞(0, T ;Hr+p(r)). Then we have

‖u(tn + τ)− Ψ τ
1 (u(tn))‖r ≤ Lτ2,

where L depends on ‖u‖L∞(0,T ;Hr+p(r)).

4.2 Stability

Lemma 9 Suppose r ≥ 1 and f, g ∈ Hr. Then for τ > 0, we have

‖Ψ τ
1 (f)− Ψ τ

1 (g)‖r ≤ (1 +Mτ)‖f − g‖r, (4.15)

where M depends on r and ‖f‖r + ‖g‖r.

Proof To begin with, by using (2.3), (3.10) and (3.11), one can easily check
that

‖Iτ1 (f)− Iτ1 (g)‖r ≤ Cτ sup
τ≥s≥0

∥∥∥eis∂
2
x

[
(e−is∂2

xf)2 − (e−is∂2
xg)2

]∥∥∥
r

≤ Cτ sup
τ≥s≥0

‖e−is∂2
x(f + g)‖r‖e−is∂2

x(f − g)‖r

≤ Cτ(‖f‖r + ‖g‖r)‖f − g‖r. (4.16)

Similar discussions for Iτ1 (f) and I
τ
2 (f) yield that

‖Iτ2 (f)− Iτ2 (g)‖r ≤ Cτ(‖f‖r + ‖g‖r)‖f − g‖r,
‖Iτ0 (f)− Iτ0 (g)‖r ≤ Cτ(‖f‖r + ‖g‖r)‖f − g‖r. (4.17)

Noticing the decomposition of T τ
i (f) (i = 1, 2, 3) in (3.15), (3.17) and (3.20),

we have

Iτ0 (f) = T τ
0 (f) + 2Lτ

1(f) + 2Lτ
2(f) + 2P τ

1 (f) + Lτ
3(f) + Lτ

4(f) + P τ
2 (f),

(4.18)

which yields

‖W τ (f)−W τ (g)‖r = ‖Iτ0 (f)− Iτ0 (g)− 2P τ
1 (f) + 2P τ

1 (g)− P τ
2 (f) + P τ

2 (g)‖r
≤ ‖Iτ0 (f)− Iτ0 (g)‖r + 2‖P τ

1 (f)− P τ
1 (g)‖r + ‖P τ

2 (f)− P τ
2 (g)‖r, (4.19)

where W τ (f) := T τ
0 (f) + 2Lτ

1(f) + 2Lτ
2(f) + Lτ

3(f) + Lτ
4(f).
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It remains to deal with the terms P τ
1 (f) and P

τ
2 (f). According to Lemmas

1, 4, 5 and the definition of P τ
1 in (3.17), for r ≥ 1, we have

‖P τ
1 (f)− P τ

1 (g)‖r

.
∥∥∥
∑

k 6=0

∑

k1+k2=k

k21
k2

∫ τ

0

(
e−2isk2

2 − 1
) (

e−2iskk1 − 1
)
ds
(
f̂k1

f̂k2
− ĝk1

ĝk2

)
eikx

∥∥∥
r

. τ
∥∥∥
∑

k 6=0

∑

k1+k2=k

k−2k21

∣∣∣f̂k1
f̂k2

− f̂k1
ĝk2

+ f̂k1
ĝk2

− ĝk1
ĝk2

∣∣∣ eikx
∥∥∥
r

. τ
∥∥∥
∑

k 6=0

∑

k1+k2=k

k−2k21

∣∣∣f̂k1

∣∣∣
∣∣∣f̂k2

− ĝk2

∣∣∣+
∣∣∣f̂k1

− ĝk1

∣∣∣
∣∣∣ĝk2

∣∣∣ eikx
∥∥∥
r

. τ

(∥∥∥∥∂
−2
x

[
(∂2xf̃)(

˜f − g)

]∥∥∥∥
r

+

∥∥∥∥∂
−2
x

[
∂2x(

˜f − g)g̃

]∥∥∥∥
r

)

= τ
( ∥∥∥∥∂

−1
x

[
(∂xf̃)(

˜f − g)

]
− ∂−2

x

[
(∂xf̃)∂x(

˜f − g)

]∥∥∥∥
r

+

∥∥∥∥∂
−1
x

[
∂x(f̃ − g)g̃

]
− ∂−2

x

[
∂x(f̃ − g)∂xg̃

]∥∥∥∥
r

)

. τ(‖f‖r + ‖g‖r)‖f − g‖r, (4.20)

where we have used the modified version of Newton-Leibniz formula

∂−2
x [(∂2xf)g] = ∂−1

x [(∂xf)g]− ∂−2
x [(∂xf)(∂xg)],

which can be obviously derived by the decomposition

k−2k21 = k−2k1(k − k2) = k−1k1 − k−2k1k2.

Recalling the definition of P τ
2 (f) in (3.20), we can establish

‖P τ
2 (f)− P τ

2 (g)‖r . τ(‖f‖r + ‖g‖r)‖f − g‖r, (4.21)

by employing similar arguments as above. Combining (4.16)–(4.21), applying
Lemma 1 and Lemma 4, for r ≥ 1, we have

‖Ψ τ
1 (f)− Ψ τ

1 (g)‖r =

∥∥∥∥e
iτ〈∂2

x〉(f − g)− i

4
Bτ

[
W τ (f)−W τ (g) + Iτ1 (f)− Iτ1 (g)

+ 2 (Iτ2 (f)− Iτ2 (g))
]
− iτ(atn + b)Bτ

(
f − g + ψ1(2iτ∂

2
x)(f − g)

)∥∥∥∥
r

≤ ‖f − g‖r +
[∥∥W τ (f)−W τ (g)

∥∥
r
+ ‖Iτ1 (f)− Iτ1 (g)‖r

+ 2 ‖Iτ2 (f)− Iτ2 (g)‖r
]
+ Crτ(‖f − g‖r + ‖f − g‖r)

≤ (1 +Mτ)‖f − g‖r. (4.22)

where M depends on r and ‖f‖r + ‖g‖r and the proof is complete.
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4.3 Proof of Theorem 1

Proof In spirit of (3.27), it suffices to show

‖u(tn)− un‖r ≤ Cτ.

Combining the local error estimate in Lemma 8 and stability inequality (4.15),
we are led to

‖u(tn+1)− un+1‖r ≤ ‖u(tn+1)− Ψ τ
1 (u(tn))‖r + ‖Ψ τ

1 (u(tn))− Ψ τ
1 (u

n)‖r
≤ Lτ2 + ‖Ψ τ

1 (u(tn))− Ψ τ
1 (u

n)‖r
≤ Lτ2 + eτM‖u(tn)− un‖r,

where L depends on ‖u‖L∞(0,T ;Hr+p(r)) (or equivalently ‖z‖L∞(0,T ;Hr+p(r)) +
‖zt‖L∞(0,T ;Hr+p(r)−2)), and M depends on ‖u(tn)‖r and ‖un‖r. Then the as-
sertion follows by a standard induction argument [18,30,31].

5 Numerical experiments

In this section, we present some numerical experiments of the newly proposed
first-order LREI Ψ τ

1 to justify our theoretical convergence results. The numer-
ical investigations of convergence of the first-order LREIs in [22,31] will be
provided as comparisons. Furthermore, the Fourier pseudospectral method is
used for spatial discretization so that each iteration can be calculated by FFT
via O(M logM) operations, where M represents the number of grid points
in space. We choose the spatial mesh size ∆x = 1/26 for soliton solutions
and ∆x = π/215 for rough solutions. Moreover, we define the error in Hr as
‖z(tn)− zn‖r + ‖∂tz(tn)− znt ‖r−2.

5.1 Soliton solutions

In the first experiment, we numerically verify the temporal convergence of the
first-order LREI Ψ τ

1 (3.27) for the soliton solution [24] of (1.1)

z(x, t) = −Asech2[(ω/2)(x− vt+ ζ0)], (5.1)

where ζ0 ∈ R, 0 < ω ≤ 1, and the relations among the amplitude A, velocity
v and frequency ω are given as follows

A = 3ω2/2, v = ±(1− ω2)1/2.

It can be clearly observed that (5.1) decays exponentially at far field, which
enables us to impose the periodic boundary conditions on a bounded domain
[−x0, x0] when x0 is chosen large enough. Fig. 2 shows the error in H2, for the
numerical solution obtained by (3.27) at tn = 1, where x0 = 80. From Fig. 2
we can see that the scheme converges at the first order in time.
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10-3 10-2 10-1

10-6
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10-4

Fig. 2 Linear convergence of the LREI scheme Ψτ
1 for the soliton solution with ζ0 = 0,

ω = 1/2, v =
√
3/2. Here we select the spatial mesh size as ∆x = 1/26.

5.2 Rough solutions

In the second experiment, we apply the first-order LREI Ψ τ
1 (3.27) to (1.1)

under nonsmooth initial data. We numerically compare the results with those
of the first-order LREIs in [22] and [31].

Following the construction method of the initial data with desired regular-
ity in [31], we choose the spatial mesh size ∆x = 2π/M with M = 216 and the
grid points xj = −π + j∆x, 0 ≤ j < M . Moreover, a uniformly distributed
random vector rand(1,M) can be taken in the computer, which is denoted
by Z = (z0, . . . , zM−1) = rand(1,M). Then we define the inverse derivative
operator |∂x,M |−θ as a truncation of the operator |∂x|−θ (2.2), which maps a
function f ∈ L2(T) to Hθ(T)

|∂x,M |−θf =

M/2−1∑

k=−M/2,k 6=0

|k|−θ f̂ke
ikx, θ ∈ R.

Then we define

Z0 =
Z1 + c ∗ ‖Z1‖∞

‖Z1 + c ∗ ‖Z1‖∞‖ ,

where c := rand(1) is a random number and Z1 := |∂x,M |−θZ, x ∈ T. Finally,
we get Z0 ∈ Hθ(T). For instance, Fig. 3 displays the initial data obtained as
above for θ = 2 and θ = 2.5, respectively.

Figs. 4-6 show the errors of the scheme Ψ τ
1 and those in [22,31] in Hr with

various r at the final time tn = T = 1 for different rough initial data, where
the reference solution is obtained by the first-order LREI Ψ τ

1 (3.27) with a tiny
time step τ = 3 × 10−5. Specifically, Figs. 4–6 display the temporal errors of
the three schemes when the given initial data has additional order of regularity
0, 1/4, 1/2, 2/3 and 1, respectively. From the numerical results shown in Figs.
4 to 6, it can be clearly observed that:
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Fig. 3 Left: initial value z0 ∈ H2 with θ = 2. Right: initial value z(0, x) ∈ H2.5 with
θ = 2.5.

(1) The newly developed first-order LREI scheme in (3.27) has first-order
convergence in all cases, which demonstrates the theoretical results pre-
sented in Theorem 1.

(2) Compared to the other two schemes in [22,31], the newly proposed scheme
behaves most regularly and the oscillations are the weakest while the
method in [31] behaves most irregularly and might suffer an order re-
duction (cf. Fig. 4). Furthermore, the method presented in this paper is
the most accurate when the time step is small enough. This shows the
superiority of the newly proposed method (1.8).

10-3 10-2 10-1
10-3

10-2

10-1

100

10-3 10-2 10-1

10-3

10-2

10-1

Fig. 4 Numerical errors in H2.5 (left) and H2 (right) of three first-order schemes at the
final time T = 1 with rough solution in H2.5 and H2.25, respectively.
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Fig. 5 Numerical errors in H1.5 and H17/12 of three first-order schemes at the final time
T = 1 with rough solution in H2 and H25/12, respectively.
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Fig. 6 Numerical errors in H7/6 and H1 of the three first-order schemes at the final time
T = 1 with rough solution in H11/6 and H2, respectively.

6 Conclusions

In this work, we developed a new first-order low regularity exponential-type
integrator for the “good” Boussinesq equation with rough initial data. The
method is based on a twisted variable and the phase space analysis of the
nonlinear dynamics. By applying the Kato-Ponce inequalities, the Hardy-
Littlewood-Sobolev type inequality and Sobolev embedding theorem, we es-
tablished the linear convergence in Hr with solutions in Hr+p(r) for r ≥ 1,
where p(r) is non-increasing with respect to r. Particularly, the first-order ac-
curacy can be achieved in Hr for solutions in Hr when r ≥ 5/2. This is the
lowest regularity requirement of the existing methods for the GB equation so
far. The analytical result is supported by extensive numerical experiments.
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13. Hofmanová, M., Schratz, K.: An exponential-type integrator for the KdV equation.
Numer. Math. 136 (4), 1117–1137 (2017)

14. Johnson, R. S.: A modern introduction to the mathematical theory of water waves.
Number 19. Cambridge University Press, Cambridge (1997)

15. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations.
Commun. Pure Appl. Math. 41, 891–907 (1988)

16. Kirby, J. T.: Nonlinear, dispersive long waves in water of variable depth. Technical
report, Delaware Univ. Newark Center Appl. Coastal Research (1996)

17. Kishimoto, N.: Sharp local well-posedness for the “good” Boussinesq equation. J. Differ.
Equ. 254 (6), 2393–2433 (2013)

18. Knoller, M., Ostermann, A., Schratz, K.: A Fourier integrator for the cubic nonlinear
Schrödinger equation with rough initial data. SIAM J. Numer. Anal. 57, 1967–1986
(2019)

19. Lambert, F., Musette, M., Kesteloot, E.: Soliton resonances for the good Boussinesq
equation. Inverse Probl. 3 (2), 275 (1987)

20. Li, B., Wu, Y.: A fully discrete low-regularity integrator for the 1d periodic cubic non-
linear Schrödinger equation. Numer. Math. 149 (1), 151–183 (2021)

21. Li, B., Wu, Y.: An unfiltered low-regularity integrator for the KdV equation with solu-
tions below H1. arXiv:2206.09320 (2022)

http://arxiv.org/abs/2206.09320


FIRST-ORDER LREI FOR GB 27

22. Li, H., Su, C.: Low regularity exponential-type integrators for the “good” Boussinesq
equation, to appear in IMA J. Numer. Anal. (2022)

23. Li, L.: On Kato–Ponce and fractional Leibniz. Rev. Mat. Iberoam. 35 (1), 23–100 (2019)
24. Manoranjan, V., Mitchell, A., Morris, J. L.: Numerical solutions of the good Boussinesq

equation. SIAM J. Sci. Stat. Comput. 5 (4), 946–957 (1984)
25. Manoranjan, V., Ortega, T., Sanz-Serna, J.: Soliton and antisoliton interactions in the

“good” Boussinesq equation. J. Math. Phys. 29 (9), 1964–1968 (1988)
26. Maz’ya, V., Shaposhnikova, T.: On the Bourgain, Brezis, and Mironescu theorem con-

cerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195 (2), 230–
238 (2002)

27. Oh, S., Stefanov, A.: Improved local well-posedness for the periodic “good” Boussinesq
equation. J. Differ. Equ. 254 (10), 4047–4065 (2013)

28. Ortega, T., Sanz-Serna, J.: Nonlinear stability and convergence of finite-difference meth-
ods for the “good” Boussinesq equation. Numer. Math. 58 (1), 215–229 (1990)

29. Ostermann, A., Rousset, F., Schratz, K.: Error estimates of a Fourier integrator for the
cubic Schrödinger equation at low regularity. Found. Comput. Math. 21 (3), 725–765
(2021)

30. Ostermann, A., Schratz, K.: Low regularity exponential-type integrators for semilinear
Schrödinger equations. Found. Comput. Math. 18, 731–755 (2018)

31. Ostermann, A., Su, C.: Two exponential-type integrators for the “good” Boussinesq
equation. Numer. Math. 143 (3), 683–712 (2019)

32. Ostermann, A., Su, C.: A lawson-type exponential integrator for the Korteweg–de Vries
equation. IMA J. Numer. Anal. 40 (4), 2399–2414 (2020)

33. Ostermann, A., Wu, Y., Yao, F.: A second-order low-regularity integrator for the non-
linear Schrödinger equation. Adv. Cont. Discr. Mod. 91 (1), 1–14 (2022)

34. Rousset, F., Schratz, K.: A general framework of low regularity integrators. SIAM J.
Numer. Anal. 59 (3), 1735–1768 (2021)

35. Schratz, K., Wang, Y., Zhao, X.: Low-regularity integrators for nonlinear Dirac equa-
tions. Math. Comput. 90 (327), 189–214 (2021)

36. Stein, E. M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton
university press (2016)

37. Su, C., Yao, W.: A Deuflhard-type exponential integrator fourier pseudo-spectral
method for the “good” Boussinesq equation. J. Sci. Comput. 83 (1), 1–19 (2020)

38. Tao, T.: Nonlinear Dispersive Equations. Local and Global Analysis. Amer. Math. Soc.,
Providence RI (2006)

39. Tatlock, B., Briganti, R., Musumeci, R. E., Brocchini, M.: An assessment of the roller
approach for wave breaking in a hybrid finite-volume finite-difference boussinesq-type
model for the surf-zone. Appl. Ocean Res. 73, 160–178 (2018)

40. Varlamov, V.: Eigenfunction expansion method and the long-time asymptotics for the
damped Boussinesq equation. Discrete Contin. Dyn. Syst. 7 (4), 675-702 (2001)

41. Wang, Y., Zhao, X.: A symmetric low-regularity integrator for nonlinear Klein-Gordon
equation. Math. Comput. 91 (337), 2215–2245 (2022)

42. Wang, H., Esfahani, A.: Well-posedness for the Cauchy problem associated to a periodic
Boussinesq equation. Nonlinear Anal. 89, 267–275 (2013)

43. Wu, Y., Yao, F.: A first-order Fourier integrator for the nonlinear Schrödinger equation
on T without loss of regularity. Math. Comput. 91 (335), 1213–1235 (2022)

44. Wu, Y., Zhao, X.: Optimal convergence of a second order low-regularity integrator for
the KdV equation. IMA J. Numer. Anal. doi.org/10.1093/imanum/drab054 (2021)

45. Wu, Y., Zhao, X.: Embedded exponential-type low-regularity integrators for KdV equa-
tion under rough data. BIT Numer. Math. 62 (3), 1049–1090 (2022)

46. Zhang, C., Wang, H., Huang, J., Wang, C., Yue, X.: A second order operator splitting
numerical scheme for the “good” Boussinesq equation. Appl. Numer. Math. 119, 179–
193 (2017)


	1 Introduction
	2 Preliminary
	3 First-order exponential-type integrator 1
	4 Error estimates
	5 Numerical experiments
	6 Conclusions

