Skip to main content
Log in

Convergence and Asymptotic Stability of the BDF Schemes for the Nonlocal Partial Differential Equations with Delay

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we present the first and second order backward differentiation formulas (BDF1, vBDF1, BDF2 and vBDF2) with finite element method for a class of non-autonomous nonlocal partial differential equations with delay. First, the unique solvability of the numerical schemes is proved. The \(L^2\) upper bound of the numerical solution is given by energy estimation. The convergence analysis is fulfilled for nonlinear delay term, with \(\mathcal {O}(h^q+\Delta t)\) order for BDF1 and \(\mathcal {O}(h^{q}+\Delta t^2)\) order for BDF2. The convergence order with respect to the spatial discretization is recovered to an optimal \(\mathcal {O}(h^{q+1})\) order for a kind of specific delay term \(\psi =\nabla \cdot A(x,t)\nabla u\). Asymptotic stability analysis is also given, and it is proved that the numerical solution will approach the stationary solution at an exponential speed. Finally, a few numerical experiments are presented to show the convergence order, asymptotic behavior, and multiple stationary solutions of the numerical solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Adams, R.A., Fournier, J.J.F.: Sobolev Spaces. Elsevier, Oxford (2003)

    MATH  Google Scholar 

  2. Anguiano, M., Kloeden, P.E., Lorenz, T.: Asymptotic behaviour of nonlocal reaction–diffusion equations. Nonlinear Anal. Theory Methods Appl. 73(9), 3044–3057 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker, C.T.H., Bocharov, G.A., Rihan, F.A.: A report on the use of delay differential equations in numerical modelling in the biosciences. MCCM Technical Report, 344 (1999)

  4. Bates, P.W., Brown, S., Han, J.: Numerical analysis for a nonlocal Allen–Cahn equation. Int. J. Numer. Anal. Model. 6(1), 33–49 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  6. Berna, P.M., Rossi, J.D.: Nonlocal diffusion equations with dynamical boundary conditions. Nonlinear Anal. 195, 111751 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blanco-Cocom, L., Ávila-Vales, E.: Convergence and stability analysis of the \(\theta \)-method for delayed diffusion mathematical models. Appl. Math. Comput. 231, 16–25 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Brenner, S.C., Ridgway Scott, L., Ridgway Scott, L.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008)

  9. Chen, W., Gunzburger, M., Sun, D., Wang, X.: An efficient and long-time accurate third-order algorithm for the Stokes–Darcy system. Numer. Math. 134, 857–879 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chipot, M., Rodrigues, J.-F.: On a class of nonlocal nonlinear elliptic problems. ESAIM Math. Model. Numer. Anal. 26(3), 447–468 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chipot, M., Valente, V., Caffarelli, G.V.: Remarks on a nonlocal problem involving the Dirichlet energy. Rendiconti del Seminario Matematico della Università di Padova 110, 199–220 (2003)

  12. Chipot, M., Savitska, T.: Nonlocal p-Laplace equations depending on the \(L^p\) norm of the gradient. Adv. Differ. Equ. 19(11–12), 997–1020 (2014)

    MATH  Google Scholar 

  13. Cryer, C.W.: Highly stable multistep methods for retarded differential equations. SIAM J. Numer. Anal. 11(4), 788–797 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Du, Q., Gunzburger, M., Lehoucq, R.B., Zhou, K.: Analysis and approximation of nonlocal diffusion problems with volume constraints. SIAM Rev. 54(4), 667–696 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. D’Elia, M., Qiang, D., Glusa, C., Gunzburger, M., Tian, X., Zhou, Z.: Numerical methods for nonlocal and fractional models. Acta Numer. 29, 1–124 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  16. Green, D., Stech, H.W.: Diffusion and hereditary effects in a class of population models. In: Differential Equations and Applications in Ecology. Epidemics, and Population Problems, pp. 19–28. Academic Press, New York (1981)

  17. Huang, C., Vandewalle, S.: Unconditionally stable difference methods for delay partial differential equations. Numer. Math. 122, 579–601 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jackiewicz, Z.: Asymptotic stability analysis of \(\theta \)-methods for functional differential equations. Numer. Math. 43(3), 389–396 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kolmanovskii, V., Myshkis, A.: Introduction to the Theory and Applications of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht (1999)

    Book  MATH  Google Scholar 

  20. Liang, H.: Convergence and asymptotic stability of Galerkin methods for linear parabolic equations with delays. Appl. Math. Comput. 264, 160–178 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Reyes, E., Rodríguez, F., Martín, J.A.: Analytic-numerical solutions of diffusion mathematical models with delays. Comput. Math. Appl. 56(3), 743–753 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)

    MATH  Google Scholar 

  23. Tian, H.: Asymptotic stability of numerical methods for linear delay parabolic differential equations. Comput. Math. Appl. 56(7), 1758–1765 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, S., Chen, W., Pan, H., Wang, C.: Optimal rate convergence analysis of a second order scheme for a thin film model with slope selection. J. Comput. Appl. Math. 377, 112855 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, W., Rao, T., Shen, W., Zhong, P.: A posteriori error analysis for Crank–Nicolson–Galerkin type methods for reaction-diffusion equations with delay. SIAM J. Sci. Comput. 40(2), A1095–A1120 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, W., Yi, L.: Delay-dependent elliptic reconstruction and optimal \(L^{\infty }(L^2)\) a posteriori error estimates for fully discrete delay parabolic problems. Math. Comput. 91(338), 2609–2643 (2022)

    MATH  Google Scholar 

  27. Wang, W., Yi, L., Xiao, A.: A posteriori error estimates for fully discrete finite element method for generalized diffusion equation with delay. J. Sci. Comput. 84(1), 1–27 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang, W., Zhang, C.: Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space. Numer. Math. 115, 451–474 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wu, J.: Theory and Applications of Partial Functional Differential Equations. Springer, New York (1996)

    Book  MATH  Google Scholar 

  30. Xu, J., Zhang, Z., Caraballo, T.: Non-autonomous nonlocal partial differential equations with delay and memory. J. Differ. Equ. 270, 505–546 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yan, Y., Chen, W., Wang, C., Wise, S.M.: A second-order energy stable BDF numerical scheme for the Cahn–Hilliard equation. Commun. Comput. Phys. 23(2), 572–602 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yan, Y., Li, W., Chen, W., Wang, Y.: Optimal convergence analysis of a mixed finite element method for fourth-order elliptic problems. Commun. Comput. Phys. 24(2), 510–530 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zheng, S., Chipot, M.: Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms. Asymptot. Anal. 45(3–4), 301–312 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Chen thanks the Key Laboratory of Mathematics for Nonlinear Sciences, Fudan University, for the support.

Funding

Chen is supported by the National Natural Science Foundation of China (NSFC 12071090 and NSFC 12241101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Chen.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, S., Chen, W. Convergence and Asymptotic Stability of the BDF Schemes for the Nonlocal Partial Differential Equations with Delay. J Sci Comput 95, 88 (2023). https://doi.org/10.1007/s10915-023-02214-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-023-02214-5

Keywords

Mathematics Subject Classification

Navigation