
Journal of Scientific Computing (2023) 95:92
https://doi.org/10.1007/s10915-023-02218-1

Non-conforming Interface Conditions for the Second-Order
Wave Equation

Gustav Eriksson1

Received: 29 May 2022 / Revised: 13 January 2023 / Accepted: 23 April 2023 /
Published online: 12 May 2023
© The Author(s) 2023

Abstract
Imposition methods of interface conditions for the second-order wave equation with non-
conforming grids is considered. The spatial discretization is based on high order finite
differences with summation-by-parts properties. Previously presented solution methods for
this problem, based on the simultaneous approximation term (SAT) method, have shown to
introduce significant stiffness. This can lead to highly inefficient schemes. Here, two new
methods of imposing the interface conditions to avoid the stiffness problems are presented:
(1) a projection method and (2) a hybrid between the projection method and the SATmethod.
Numerical experiments are performed using traditional and order-preserving interpolation
operators. Both of the novel methods retain the accuracy and convergence behavior of the
previously developed SAT method but are significantly less stiff.

Keywords Summation-by-parts · High order · Non-conforming interface · Projection

1 Introduction

It is well known that high order finite differences are highly efficient for large-scale wave
propagation problems [1]. However, the design of such schemes requires particular care at the
boundaries to obtain stability. One way to obtain stable high order finite difference schemes
is to use finite difference operators with a summation-by-parts (SBP) property together with
simultaneous-approximation-terms (SBP-SAT) [2], the projection method (SBP-P) [3, 4] or
ghost points (SBP-GP) [5]. SBP finite difference operators are essentially standard finite dif-
ference stencils in the interior with boundary closures carefully designed tomimic integration
by parts in the discrete setting. The SBP difference operators have an associated discrete inner
product such that a discrete energy equation that is analogous to the continuous equation can
be derived. The boundary conditions should be imposed such that the scheme exhibits no
non-physical energy growth, sometimes referred to as strict stability [6]. The SAT method
achieves this by adding penalty terms that weakly impose the boundary conditions such that
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the resulting scheme is stable, see for example [7]. The SBP-GP method adds ghost points
at the boundaries and computes their values such that the boundary conditions are imposed
and the scheme is stable [8, 9]. The projection method derives an orthogonal projection and
rewrites the problem such that it is solved in the subspace of solutions where the boundary
conditions are exactly fulfilled, see [10].

An important aspect of finite difference methods is the ability to split the computational
domain into blocks and couple them across the interfaces. This is necessary to handle complex
geometries, but also to increase the efficiency of the schemes. For example, in the case of
the wave equation it may happen that a small wave speed in certain regions of the domain
demands a high grid resolution. By decomposing the domain into blocks a finer grid spacing
can be used only in these regions and a coarser grid where the wave speed is higher. This
way the required number of grid points per wave length can be obtained, without using a
unnecessarily refined grid in regions where its not needed. In general, the grid points at each
side of an interface are non-conforming, in which case interpolations are used to couple the
solutions. In the framework of SBP finite differences, it is crucial that the method of imposing
the interpolated interface conditions preserves the SBP properties of the difference operators.

The construction of interpolation operators along with SATs to obtain stable schemes
with non-conforming interfaces has received significant attention in the past [11–13]. In
[11] so-called SBP-preserving interpolation operators (here referred to as norm-compatible)
were first constructed and used to derive stable schemes for general hyperbolic and parabolic
problems. However, it was noted in [13, 14] that the global convergence rate was decreased
by one (compared to the convergence rate with conforming grids) for problems involving
second derivatives in space. In [15] this is solved by constructing order-preserving (OP)
interpolation operators along with SATs such that the global convergence rate is preserved.
The new operators come in two norm-compatible pairs (a pair consists of two operators
interpolating in opposite directions), where one of the operators in each pair is of one order
higher accuracy at the boundaries. In Sect. 2.2 a more detailed discussion on the accuracy of
the interpolation operators is presented.

A major downside of the SBP-SAT discretizations is the necessary decomposition of the
second derivative SBP operator, often referred to as the “borrowing trick” [16], necessary
to obtain an energy estimate. This procedure is known to introduce additional stiffness to
the problem. The main contribution of the current work is two new methods avoiding this
problem, one using SBP-P and the other a hybrid SBP-P-SAT. The analysis and numerical
experiments are done on the second-order wave equation. However, the discrete Laplace
operators presented are equally applicable to the heat equation and the Schrüdinger equation.

The paper is structured as follows: In Sect. 2 some necessary definitions and the discrete
operators are introduced. In Sect. 3 the continuous problem is presented. The new semi-
discrete schemes are presented in Sect. 4. The time discretization is presented in Sect. 5.
In Sect. 6 numerical experiments validating the new methods and comparing them to the
SBP-SAT schemes are presented. Conclusions are drawn in Sect. 7.

2 Definitions

Let

( f , g)� =
∫

�

f g dx and ‖ f ‖2� = ( f , f ), (1)
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define the L2-inner product and the corresponding norm for sufficiently smooth functions
f , g on a two-dimensional domain �. Let also

〈 f , g〉∂� =
∫

∂�

f g dS (2)

denote integration along the boundary ∂�. With this notation, the first Green’s identity reads

( f ,�g)� = 〈 f , n · ∇g〉∂� − (∇ f ,∇g)�, (3)

where n is the outward normal to the boundary.

2.1 Summation-by-Parts Finite Differences

We begin by considering one-dimensional SBP operators. Let J = [xl , xr ] define an interval
and let x = [x1, x2, ..., xm] be an equidistant discretization of J , where

xi = xl + (i − 1)h, i = 1, 2, ...,m, and h = xr − xl
m − 1

, (4)

is the step size. Let f ∈ C2(J ) and let f (x) = [ f (x1), f (x2), ..., f (xm)] be the restriction
of f on x. Introduce the second derivative finite difference approximation matrix D2 such
that

D2 f (x) ≈ d2

dx2
f . (5)

The one-dimensional second derivative operator D2 has summation-by-parts properties if it
satisfies

D2 = H−1
(
−M + erd

�
r − eld

�
l

)
, (6)

where H is diagonal and positive definite, M is symmetric and positive semi-definite, e�
l,r are

row-vectors extracting the solution at the first and last grid points and d�
l,r are row-vectors

approximating the first derivative of the solution at the first and last grid points [17]. The
matrix H defines a discrete inner product for vectors f, g ∈ R

m as

〈f, g〉H = f�Hg. (7)

We now consider the discretization of the two-dimensional domain �. Assume that
� is square, and discretize it using m equidistant grid points in each dimension. In the
present study general domains that would necessitate coordinate transforms are not consid-
ered (although this is highly relevant and an interesting extensions for a future study). Let
f = [f (1), f (1), ..., f (m)]�, where f (i) = [ f (i)

1 , f (i)
2 , ..., f (i)

m ] contains the solution points along
the y-axis at xi , be a two-dimensional grid function in a column-major order, see Fig. 1. Let g
be a grid function constructed analogously. Note that now f, g ∈ R

m2
. The one-dimensional
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Fig. 1 Computational domain showing the orientation of the solution vectors

SBP operators are extended to two dimensions using Kronecker products as follows:

D2x = (D2 ⊗ Im), D2y = (Im ⊗ D2),

Hx = (H ⊗ Im), Hy = (Im ⊗ H),

Mx = (M ⊗ Im), My = (Im ⊗ M),

eW = (e�
l ⊗ Im), eE = (e�

r ⊗ Im),

eS = (Im ⊗ e�
l ), eN = (Im ⊗ e�

r ),

dW = (d�
l ⊗ Im), dE = (d�

r ⊗ Im),

dS = (Im ⊗ d�
l ), dN = (Im ⊗ d�

r ),

(8)

where Im is the m × m identity matrix. The subscripts in the first three rows of equations
indicate the direction in which the operator is acting, for example D2x approximates the
second derivative in the x-direction. The subscripts in the last four rows indicate the boundary,
for example eW is used to extract the boundary values at the western boundary.

The discrete Laplace operator is given by

DL = D2x + D2y . (9)

We also have the following two-dimensional discrete inner product and norm:

(f, g)H̄ = f� H̄g and ‖f‖2
H̄

= (f, f)H̄ , (10)

where H̄ = Hx Hy . Using the SBP properties of D2 (6), the discrete two-dimensional Laplace
operator can be written as

DL = H−1
x (−Mx + e�

E dE − e�
WdW ) + H−1

y (−My + e�
NdN − e�

S dS), (11)

or

(f, DLg)H̄ = − f�(HyMx + HxMy)g + 〈eE f, dEg〉H − 〈eW f, dW g〉H
+ 〈eN f, dNg〉H − 〈eSf, dSg〉H ,

(12)
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which is the discrete equivalent to Green’s identity (3) on �.
The focus of the present work is on multiblock discretizations. Throughout the paper,

a two-block domain � = �L ∪ �R , where �L = [xl , 0] × [yl , yr ] is the left block and
�R = [0, xr ] × [yl , yr ] the right block. Here xl,r and yl,r define the outer boundary and an
internal boundary, or interface, is located at x = 0. For notational simplicity, assume that
both blocks are square, i.e., xr = −xl = yr − yl . Each block is discretized by an equidistant
grid with m(u) × m(u) and m(v) × m(v) grid points in the left and right blocks, respectively.
Throughout the paper, superscripts (u) and (v) will be used to denote operators in the left
and right blocks. For example, D(u)

L is the discrete Laplace operator in the left block and d(v)
S

approximates the y-derivative at the southern boundary in the right block. Solution vectors
in the left and right blocks will be denoted u and v, respectively.

For the SBP property (6) to hold, a decrease in order of accuracy of D2 at a few grid
points close to the boundaries is required. With the operators used here, for a 2pth-order
accurate inner stencil, the order of accuracy at the boundaries is p. This will lead to a
decrease in overall convergence rate. For one-dimensional problems it can be shown that the
convergence rate is at least min(2p, p+2) for a point wise stable discretization of the second-
order wave equation [18]. In [15], min(2p, p + 2) is referred to as the ideal convergence
rate for the two-dimensional problem with non-conforming interfaces. This is the rate that
the OP interpolation operators are designed to preserve. In this paper, 4th and 6th order SBP
operators and interpolation operators are used, i.e., p = 2 and p = 3. Thus, the convergence
rates we hope to obtain are 4 and 5 with the OP interpolation operators, and 3 and 4 with
traditional interpolation operators, for the 4th and 6th order SBP operators, respectively.

Remark 1 I have assumed that the two blocks, �L and �R , are square and that each block
is discretized using the same number of grid points in each dimension. This choice is made
purely from a readability perspective. The theory presented is equally applicable to rectangu-
lar blocks discretized with different number of grid points in each dimension, but the analysis
would become unnecessarily cluttered.

2.2 Interpolation Operators

Ifm(u) �= m(v), the grid points at the interface are non-conforming and interpolation operators
are needed to couple the solutions between the two blocks. The numerical experiments
presented in this paper is performed using a 1:2 grid ratio, i.e., the grid size in the left block
is twice the grid size in the right block, see Fig. 2. Let Iu2v denote the operator interpolating
from left to right, and Iv2u the operator interpolating from right to left. To obtain stability, we
require that the pair of interpolation operators are norm-compatible, i.e., they must satisfy

(Iv2uv,u)H (u) = (v, Iu2vu)H (v) , ∀u ∈ R
m(u)

, v ∈ R
m(v)

. (13)

Interpolation operators satisfying (13) were first derived in [11], and first applied to the
second-order wave equation in [13].

To satisfy the norm-compatibility condition (13), the order of accuracy of the interpolation
operators close to the boundariesmust be smaller than in the interior.As for the SBPoperators,
if the order of accuracy in the interior is 2p, at a few grid points close to the boundaries it
will be p. In [13] it was indicated that this reduced order of accuracy close to the boundaries
leads to a decrease of one in overall convergence rate when solving the wave equation on
second-order form. An obvious remedy to this problem would be to increase the order of
accuracy of the interpolation operators to p + 1 close to the boundaries. But, as was shown
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Fig. 2 A two block domain with
a 1:2 grid ratio non-conforming
interface

in [19], this is not possible while also satisfying (13). In [15] this problem was avoided by
noting that it is not necessary that both interpolation operators have order of accuracy p + 1
close to the boundaries. To preserve the overall convergence rate, it is enough if one of them
does and carefully chosen SATs are used. In [15], the new order-preserving interpolation
operators and SAT schemes were used to prove stability for the wave equation on second
order form, the heat equation, and Schrödingers equation, while simultaneously obtaining
the full convergence rate min(2p, p+ 2). The OP interpolation operators come in two pairs:
I bu2v and I gv2u , and I gu2v and I bv2u , where the ”good” operators (superscript g) have order of
accuracy p + 1 close to the boundaries and the ”bad” operators (superscript b) have order
of accuracy p at a few points close to the boundaries. In the interior, all four operators have
order of accuracy 2p. Each pair of the OP interpolation operators are norm-compatible, i.e.,
they satisfy (13).

3 Continuous Analysis

We consider the initial-value boundary problem

utt = c21�u, (x, y) ∈ �L , t ≥ 0,

vt t = c22�v, (x, y) ∈ �R, t ≥ 0,

n · ∇u = gu, (x, y) ∈ ∂�L \ ∂�I , t ≥ 0,

n · ∇v = gv, (x, y) ∈ ∂�R \ ∂�I , t ≥ 0,

u = v, (x, y) ∈ ∂�I , t ≥ 0,

c21ux = c22vx , (x, y) ∈ ∂�I , t ≥ 0,

(14)

with initial data for u, ut , v, and vt at t = 0. Here ∂�L,R denote the boundaries of the blocks,
∂�I denotes the interface, n is the outward pointing normal, gu,v are boundary data, and c1
and c2 are real constants.

Taking the L2-inner product between ut and the first equation in (14), adding the result
to the L2-inner product between vt and the second equation in (14), and using (3) lead to the
energy equation

d

dt
E = 2c21〈ut , n · ∇u〉�L + 2c22〈vt , n · ∇v〉�R . (15)
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The energy is given by

E = ‖ut‖2�L
+ ‖vt‖2�R

+ c21‖∇u‖2�L
+ c22‖∇v‖2�R

, (16)

Inserting the interface and boundary conditions (the last four equations in (14)) and assuming
gu,v = 0 leads to energy conservation,

d

dt
E = 0. (17)

This energy estimate is sufficient to show that (14) is stable and has a unique solution.

4 Spatial Discretization

We now turn to the spatial discretization, time is left continuous for now. Before discussing
the discretization of (14), a short introduction to the projectionmethod is included in Sect. 4.1.
Then, in Sect. 4.2, the new discretizations of the multi-block problem (14) are presented.

4.1 The ProjectionMethod

Consider the general linear constrained second-order ODE

wt t = Dw, t > 0,

Lw = 0, t > 0,

w = f1, t = 0,

wt = f2, t = 0,

(18)

where w ∈ R
N and N is a positive integer. The matrix D ∈ R

N×N may be the spatial
discretization of some PDE and L ∈ R

N×s the discretization of the boundary conditions
(s equations). We wish to impose the constraint Lw = 0 using the projection method. Let
V := {

w ∈ R
N : Lw = 0

}
be the subspace of vectors satisfying the constraint and define P

as the projection from R
N onto V . The projection method imposes the constraint by solving

the augmented ODE

wt t = PDPw, t > 0,

w = f1, t = 0,

wt = f2, t = 0.

(19)

From (19) we immediately see that wt t = Pwt t , and by integrating in time twice we obtain
w = Pw ⇔ Lw = 0 if f1,2 ∈ V . We conclude that if the initial data satisfy the constraint,
so will the solution to (19).

The particular form of P is determined by considering the stability properties of (19).
Assume that we have some inner product (·, ·)H associated with D and apply the energy
method, we obtain

1

2

d

dt
‖wt‖2H = (wt , PDPw)H . (20)

If P is self-adjoint with respect to the inner product, i.e.,

(w1, Pw2)H = (Pw1,w2)H , ∀w1,2 ∈ R
N , (21)
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we can rewrite (20) as

1

2

d

dt
‖wt‖2H = (ŵt , Dŵ)H , (22)

where ŵ = Pw. Obviously the constraint is fulfilled for ŵ, Lŵ = 0.And, if f1,2 ∈ V , we have
w = ŵ. By using the SBP properties of D and choosing L so that the terms corresponding to
energy growth are cancelled, a non-growing energy estimate is obtained immediately from
(22).

The self-adjoint condition (21) is equivalent to P being an orthogonal projection with
respect to H . Based on this, the following explicit formula for P can be derived:

P = I − H−1L�(LH−1L�)−1L, (23)

where I is the N × N identity matrix.
The projection method has been applied to various problems in the past. For more details

see [3, 4, 10, 20]. See also [21] for examples of the projection method used for interface
conditions.

4.2 Multi-block Analysis

We now consider the multi-block problem (14). The Neumann boundary conditions are
imposedusing theSAT technique,which has been extensively used in the past, see for example
[22]. Tomake the analysismore readable, the terms corresponding to outer boundaries are left
out. In Appendix 1, the semi-discrete schemes including boundary treatments are specified.

Let

w =
[
u
v

]
, (24)

be the global semi-discrete solution vector of size N = m(u)m(u) + m(v)m(v). Discretizing
(14) in space without considering the interface conditions yields

wt t = D̂Lw, t > 0,

w = f1, t = 0,

wt = f2, t = 0,

(25)

where

D̂L =
[
c21D

(u)
L 0

0 c22D
(v)
L

]
, (26)

and f1,2 is the discrete initial data. The global inner product associated with D is given by

(w1,w2)Ĥ = w�
1 Ĥw2, ∀w1,2 ∈ RN , (27)

where

Ĥ =
[
H̄ (u) 0
0 H̄ (v)

]
, (28)

We now wish to discretize the continuous interface conditions,

u = v, c21ux = c22vx , (x, y) ∈ ∂�I , t ≥ 0, (29)
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using interpolation operators, and modify (25) using either SBP-P or SBP-P-SAT so that the
discrete conditions are imposed and the modified ODE system is stable.

4.3 Stability with SBP-P

We begin by considering only the projection method to impose the interface conditions. The
following lemma is the first main result of this paper:

Lemma 1 The ODE (19) with D = D̂L , H = Ĥ , and L given by

L =
[
e(u)
E −Iv2ue

(v)
W

c21 Iu2vd
(u)
E −c22d

(v)
W

]
, (30)

is a stable approximation of (14) with a non-conforming interface.

Proof Let ŵ =
[
û
v̂

]
= Pw denote the projected solution vector. We begin by restating (22)

for this problem. We have

1

2

d

dt
‖wt‖2Ĥ = c21(ût , D

(u)
L û)H̄ (u) + c22(v̂t , D

(v)
L v̂)H̄ (v) . (31)

Using the SBP properties of D(u,v)
L (12), and rearranging results in

d

dt
E = 2c21(e

(u)
E ût , d

(u)
E û)H (u) − 2c22(e

(v)
W v̂t , d

(v)
W v̂)H (v) , (32)

where E is an energy given by

E = ‖ut‖2H̄ (u) + c21û
�(H (u)

y M (u)
x + H (u)

x M (u)
y )û

+ ‖vt‖2H̄ (v) + c22 v̂
�(H (v)

y M (v)
x + H (v)

x M (v)
y )v̂ ≥ 0.

(33)

Since Lŵ = LPw = 0 by construction, the discrete interface conditions

e(u)
E û = Iv2ue

(v)
W v̂ and c22d

(v)
W v̂ = c21 Iu2vd

(u)
E û, (34)

hold exactly. Substituted into (32) results in

d

dt
E = 2c21((Iv2ue

(v)
W v̂t , d

(u)
E û)H (u) − (e(v)

W v̂t , Iu2vd
(u)
E û)H (v) ). (35)

Using that the interpolation operators are norm-compatible, i.e., that they satisfy (13), we
get

d

dt
E = 0, (36)

which proves stability. ��

Remark 2 The scheme (19) with D = D̂L and L given by (30) is the same as in [21] if
the grids at the interface are conforming, and the interpolation operators are replaced with
identity matrices.
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4.4 Stability with SBP-P-SAT

With the hybrid method, instead of projecting the second interface condition

c21 Iu2vd
(u)
E u = c22d

(v)
W v, (37)

it is imposed weakly using the SAT method. Let

D̃ = D̂L +
[

0 0
−(H (v)

x )−1e(v)�
W c21 Iu2vd

(u)
E (H (v)

x )−1e(v)�
W c22d

(v)
W

]
, (38)

denote a modified spatial operator. The second term in (38) is a SAT imposing (37) weakly
on the equation for v. The following lemma is the second main result of this paper:

Lemma 2 The ODE (19) with D = D̃, H = Ĥ , and L given by

L =
[
e(u)
E −Iv2ue

(v)
W

]
, (39)

is a stable approximation of (14) with a non-conforming interface.

Proof Let ŵ =
[
û
v̂

]
= Pw denote the projected solution vector. We begin by restating (22)

for this problem. We have

1

2

d

dt
‖wt‖2Ĥ = c21(ût , D

(u)
L û)H̄ (u) + c22(v̂t , D

(v)
L v̂)H̄ (v)

+ 〈e(v)
W v̂, c22d

(v)
W v̂ − c21 Iu2vd

(u)
E û〉H (v)

(40)

Using the SBP properties of D(u,v)
L (12), and rearranging results in

d

dt
E = 2c21

((
e(u)
E ût , d

(u)
E û

)
H (u)

−
(
e(v)
W v̂t , Iu2vd

(u)
E û

)
H (v)

)
, (41)

where E is an energy given by

E = ‖ut‖2H̄ (u) + c21û
�(H (u)

y M (u)
x + H (u)

x M (u)
y )û

+ ‖vt‖2H̄ (v) + c22 v̂
�(H (v)

y M (v)
x + H (v)

x M (v)
y )v̂ ≥ 0.

(42)

Since Lŵ = LPw = 0 by construction, the discrete interface condition

e(u)
E û = Iv2ue

(v)
W v̂, (43)

holds exactly. Substituted into (41) results in

d

dt
E = 2c21

((
Iv2ue

(v)
W v̂t , d

(u)
E û

)
H (u)

−
(
e(v)
W v̂t , Iu2vd

(u)
E û

)
H (v)

)
. (44)

Using that the interpolation operators are norm-compatible, i.e., that they satisfy (13), we
get

d

dt
E = 0, (45)

which proves stability. ��
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Remark 3 With both SBP-P and SBP-P-SAT the key to obtaining energy stability is to inter-
polate the two interface conditions in opposite directions. In Sects. 4.3 and 4.4, continuity
of the solution is imposed by interpolating right to left and the continuity of the flux by
interpolating left to right. Conservative energy estimates can also be obtained by swapping
the interpolations and using the transpose of (13). With only SBP-P this amounts to

L =
[
Iu2ve

(u)
E −e(v)

W

c21d
(u)
E −c22 Iv2ud

(v)
W

]
, (46)

and with SBP-P-SAT

L =
[
Iu2ve

(u)
E −e(v)

W

]
, (47)

and

D̃ = D̂L +
[−(H (u)

x )−1e(u)�
E c21d

(u)
E (H (u)

x )−1e(u)�
E c22 Iv2ud

(v)
W

0 0

]
. (48)

Numerical experiments show that the differences between the choices in terms of accuracy
and stiffness are minor, and dependent on the SBP and interpolation operators used. The
results presented in this paper are obtained using the discretizations presented in Sects. 4.3
and 4.4.

4.5 Order-Preserving Interpolation

In [15] the order-preserving scheme is obtained by interpolating continuity of the solution
using the ”good” operators and continuity of the flux using the ”bad” operators. With this
choice, it turns out that the local truncation errors of the particular SATs used are balanced,
meaning that they have the same minimal scaling with respect to the grid size. A detailed
analysis of the truncation errors with SBP-P and SBP-P-SAT is out of scope in the present
work. But, in the numerical experiments I investigate whether the OP interpolation operators
can be used with the newmethods to obtain a higher overall convergence rate as well. For the
discretizations in Sects. 4.3 and 4.4, this amounts to replacing Iv2u with I gv2u and Iu2v with
I bu2v in (30), (38), and (39). Note that with SBP-P and SBP-P-SAT only one pair of the OP
interpolation operators is used, whereas the SBP-SAT discretization requires both pairs.

5 Time Discretization

All methods considered can be written as a system of second-order ODEs, given by

wt t = Qw + G(t), t > 0,

w(t) = f1, t = 0,

wt (t) = f2, t = 0,

(49)

where Q is a matrix approximating the spatial derivatives including boundary and interface
conditions and G(t) contains the boundary data. In Appendix 1 Q and G(t) are specified
for all schemes used to produce the numerical results. In this paper (49) is solved using an
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explicit 4th order time-marching scheme [21, 23], given by

w(0) = f1,

w(1) =
(
I + k2

2
Q

)
f1 + k

(
I + k2

6
Q

)
f2 + k2

2
G(0) + k3

6
Gt (0),

w(n+1) =
(
2I + k2Q + k4

12
Q2

)
w(n) − w(n−1)

+ k2
(
I + k2

12
Q

)
G(tn) + k4

12
Gtt (tn),

(50)

where I is the identity matrix, k denotes the time step, and tn = nk, n = 0, 1, ..., is the
discrete time-level. In [23] it is shown that the scheme is stable if

k2ρ(Q) < 12, (51)

where ρ(Q) denotes the spectral radius of Q. Introducing the undivided matrix Q̃ = h(v)2Q,
where h(v) is the spatial interval in the right block, we get the stability condition

k <

√
12

ρ(Q̃)
h(v). (52)

The scaled spectral radius ρ(Q̃) depends on the discretization method, but not on the spatial
interval h(v) (for large enough problems). Therefore, comparing the scaled spectral radius of
the methods gives a good indication of the required time steps, and consequently the overall
efficiency of the schemes.

6 Numerical Experiments

In this section numerical experiments are presented comparing the new discretizations to the
SAT discretizations presented in [14] (traditional interpolation) and [15] (OP interpolation).
The Neumann boundary conditions are imposed using the SAT method. All schemes are
presented in Appendix 1. The domain is given by [−10, 10] × [0, 10] with an interface at
x = 0. The left and right blocks are discretized with m and 2m − 1 grid points in each
dimension, which results in a non-conforming interface with grid ratio 1:2 at x = 0. The
methods are compared in terms of efficiency (measured by the spectral radius) in Sect. 6.1,
and accuracy for a problem with a known analytical solution in Sect. 6.2.

6.1 Spectral Radius

To measure the influence of material parameter jumps on the required time step the scaled
spectral radius ρ(Q̂) is plotted against C in Fig. 3, where c1 = 1 and c2 = C . Also plotted
is the scaled spectral radius for a single block problem without an interface with wave
speed c = max(C, 0.5). Note that the wave speed for the single block problem is bounded
from below by 0.5 since for C < 0.5 the scaled spectral radius of the two-block problem
is dominated by the left block discretization. And hence we cannot hope to obtain a lower
spectral radius thanwith the single block problem andC = 0.5. The results in Fig. 3 show that
for all operators considered (4th and 6th order accurate with traditional and OP interpolation
operators) the scaled spectral radius with SBP-SAT is significantly higher than with SBP-P
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Fig. 3 Scaled spectral radius ρ(Q̂) plotted versus C (ratio between wave speeds in fine block and coarse
block) with order-preserving and traditional interpolation operators discretized using projection (SBP-P),
hybrid projection and SAT (SBP-P-SAT), and SAT (SBP-SAT) for the 4th and 6th order SBP operators

and SBP-P-SAT. Note also that the scaled spectral radius with SBP-P and SBP-P-SAT exactly
matches the single block discretization, indicating that the spectral radii with SBP-P and SBP-
P-SAT are unaffected by the interface coupling procedure. In Table 1the scaled spectral radii
of the schemes are presented forC = 0.5, which with a 1:2 grid ratio corresponds to an equal
number of grid points per wave length in each block. With this choice, for the 6th order OP
operators with a given grid resolution, an approximately 2.5 times larger time step can be
used with SBP-P or SBP-P-SAT compared to SBP-SAT. For the 4th order OP operators, the
ratio is approximately 6.6.

Remark 4 The SBP-SAT schemes involve tuning the value of a parameter. Typically, increas-
ing its value leads to a more accurate scheme (up to a point) at the cost of increasing the
spectral radius. How to choose this parameter is not obvious, and one unclear aspect of the
SAT method. The results in this paper are obtained using the same values as in [14, 15], see
Appendix 1.
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Table 1 Scaled spectral radius of RHS matrix with order-preserving and traditional interpolation operators
with projection (SBP-P), hybrid projection and SAT (SBP-P-SAT), and SAT (SBP-SAT) for 4th and 6th order
SBP operators

Operators SBP-P SBP-P-SAT SBP-SAT Single-block

Traditional 4th order 10.66 10.66 57.21 10.66

Order-preserving 4th order 10.66 10.66 467.82

Traditional 6th order 28.36 28.36 133.41 28.36

Order-preserving 6th order 28.36 28.36 180.81

Here C = 0.5, which corresponds to an equal number of grid points per wave length in the two blocks. The
final column shows the scaled spectral radius of the corresponding single-block discretization with 4th and
6th order SBP operators

6.2 Accuracy

In this section the accuracy of the methods is compared using an analytical solution given
by

u = cos(x + y − √
2c1t) + k2 cos(x − y + √

2c1t),

v = (1 + k2) cos(k1x + y−√
2c1t),

(53)

where k1 =
√
2c21/c

2
2 − 1 and k2 = (c21 − c22k1)/(c

2
1 + c22k1). The wave speeds are set to

c1 = 1 and c2 = 0.5. The boundary and initial data are given by (53). The time step is
chosen as one tenth of the largest stable time step (with this choice the temporal errors are
insignificant in comparison to the spatial errors). The convergence rate is approximated as

q =
log

(
e1
e2

)

log
(
m1
m2

) , (54)

where e1 and e2 are errors in the H -norm (28) at t = 2 of two separate simulations with
m = m1 and m = m2.

In Table 2 the error and convergence results of the SBP-P, SBP-P-SAT, and SBP-SAT
discretizations are presented for the 4th and 6th order traditional and OP interpolation opera-
tors. Overall the accuracy of the SBP-P, SBP-P-SAT, and SBP-SAT schemes are very similar.
With the traditional interpolation operators, 3rd and 4th order convergence are obtained with
the 4th and 6th order operators respectively. And, with the order-preserving interpolation
operators, convergence rates 4 and 5 are obtained. This shows that SBP-P and SBP-P-SAT
exhibit the same convergence behaviors as previously observed with SBP-SAT, where the
traditional interpolation operators lead to an order reduction whereas the OP interpolation
operators retain the full convergence rates. One stand-out result is the accuracy with the
6th order traditional interpolation operators. With SBP-P and SBP-P-SAT, the errors with
m = 801 are smaller by almost one magnitude compared to the error with SBP-SAT.

7 Conclusion

Two new SBP finite difference discretizations of the second-order wave equation with non-
conforming grid interfaces are presented. The first scheme utilizes the projection method
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Table 2 Error (in base 10
logarithm) and convergence of
4th and 6th order traditional and
order-preserving interpolation
and SBP operators with
projection (subscript p), hybrid
(subscript h), and SAT (subscript
s) discretizations

m ep qp eh qh es qs

(a) 4th order traditional

26 −1.74 – −1.75 – −1.74 –

51 −2.97 −4.18 −2.98 −4.18 −2.93 −4.05

101 −4.09 −3.76 −4.10 −3.74 −3.96 −3.46

201 −5.09 −3.33 −5.09 −3.33 −4.93 −3.25

401 −6.02 −3.10 −6.02 −3.10 −5.89 −3.20

801 −6.93 −3.03 −6.93 −3.03 −6.79 −2.99

(b) 4th order OP

26 −1.77 – −1.78 – −1.78 –

51 −3.04 −4.32 −3.05 −4.33 −3.06 −4.36

101 −4.28 −4.15 −4.28 −4.14 −4.30 −4.15

201 −5.51 −4.12 −5.52 −4.12 −5.54 −4.14

401 −6.73 −4.06 −6.73 −4.05 −6.76 −4.06

801 −7.94 −4.03 −7.95 −4.03 −7.97 −4.03

(c) 6th order traditional

26 −1.93 – −1.89 – −1.86 –

51 −3.62 −5.74 −3.61 −5.82 −3.49 −5.54

101 −5.24 −5.44 −5.23 −5.45 −4.91 −4.76

201 −6.79 −5.19 −6.79 −5.23 −6.17 −4.20

401 −8.23 −4.78 −8.23 −4.78 −7.35 −3.93

801 −9.53 −4.34 −9.53 −4.33 −8.57 −4.06

(d) 6th order OP

26 −1.93 – −1.89 – −1.87 –

51 −3.63 −5.78 −3.62 −5.86 −3.59 −5.83

101 −5.28 −5.52 −5.27 −5.52 −5.23 −5.51

201 −6.89 −5.40 −6.89 −5.43 −6.86 −5.44

401 −8.48 −5.28 −8.48 −5.29 −8.47 −5.36

801 −9.99 −5.03 −10.10 −5.07 −10.04 −5.23

to impose the interface conditions and the second scheme a hybrid projection-SAT method.
Semi-discrete energy conservation is shown for both discretizations using the energymethod.
Numerical experiments with traditional and order-preserving interpolation operators demon-
strate similar accuracy and convergencebehavior as for theSATschemes.Themost significant
advantage of the new methods compared to SAT is the reduced spectral radius of the spa-
tial operators. The new methods are less stiff than the SAT schemes, allowing for several
times larger time steps with explicit time integration methods. Furthermore, it is found that
the stiffness of the new schemes is the same as without the interface altogether, i.e., it is
unaffected by the coupling procedure. Although the analysis and numerical experiments are
done for the second-order wave equation, the discrete Laplace operator presented here can
be directly applied to the heat equation and the Schrödinger equation. In a future study, the
ideas introduced in this paper will be extended to general hyperbolic systems.

Funding Open access funding provided by Uppsala University. This work was supported by FORMAS (Grant
No. 2018-00925).
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ADiscretizations

The spatial discretization matrix Q and data vector G(t) in (49) are here presented for the
single-block discretization with SBP-SAT and the two-block discretizations using SBP-P,
SBP-P-SAT, and SBP-SAT.

A1. Single Block SBP-SAT

The single-block discretization with Neumann boundary conditions imposed using SBP-SAT
is given by

Q = DL + τ̄WdW + τ̄EdE + τ̄SdS + τ̄NdN , (55)

and

G(t) = −τ̄W gW (t) − τ̄EgE − τ̄SgS − τ̄NgN . (56)

Here

τ̄W = c2 H̄−1
x e�

W , τ̄E = −c2 H̄−1
x e�

E

τ̄S = c2 H̄−1
y e�

S , τ̄N = −c2 H̄−1
y e�

N ,
(57)

and gW ,E,S,N are vectors of g evaluated on the boundary grid points.

A2. Two-Block SBP-P

The two-block discretization with Neumann boundary conditions imposed using SBP-SAT
and interface conditions imposed using SBP-P is given by

Q = P

([
c21D

(u)
L 0

0 c22D
(v)
L

]
+ SATBC

)
P, (58)

and

G(t) = −P

[
τ̄
(u)
W g(u)

W (t) + τ̄
(u)
S g(u)

S (t) + τ̄
(u)
N g(u)

N (t) 0

0 τ̄
(v)
E g(v)

E (t) + τ̄
(v)
S g(v)

S (t) + τ̄
(v)
N g(v)

N (t)

]
. (59)
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Here

SATBC =
[
τ̄

(u)
W d(u)

W + τ̄
(u)
S d(u)

S + τ̄
(u)
N d(u)

N 0
0 τ̄

(v)
E d(v)

E + τ̄
(v)
S d(v)

S + τ̄
(v)
N d(v)

N

]
, (60)

where the penalty matrices τ̄
(u)
W ,S,N and τ̄

(v)
E,S,N are given by (57) evaluated in each respective

block and g(u)
W ,S,N and g(v)

E,S,N are boundary data. The projection operator is given by

P = I − Ĥ−1L�(L Ĥ−1L�)−1L, (61)

where

L =
[

e(u)
E −I gv2ue

(v)
W

c21 I
b
u2vd

(u)
E −c22d

(v)
W

]
. (62)

with the OP interpolation operators and

L =
[

e(u)
E −Iv2ue

(v)
W

c21 Iu2vd
(u)
E −c22d

(v)
W

]
, (63)

with the traditional interpolation operators.

A3. Two-Block SBP-P-SAT

The two-block discretization with Neumann boundary conditions imposed using SBP-SAT
and interface conditions imposed using the hybrid SBP-P-SAT method is given by

Q = P

([
c21D

(u)
L 0

0 c22D
(v)
L

]
+ SATIC + SATBC

)
P, (64)

and

G(t) = −P

[
τ̄
(u)
W g(u)

W (t) + τ̄
(u)
S g(u)

S (t) + τ̄
(u)
N g(u)

N (t) 0

0 τ̄
(v)
E g(v)

E (t) + τ̄
(v)
S g(v)

S (t) + τ̄
(v)
N g(v)

N (t)

]
. (65)

Here

SATIC =
[

0 0
−(H (v)

x )−1e(v)�
W c21 I

b
u2vd

(u)
E (H (v)

x )−1e(v)�
W c22d

(v)
W

]
, (66)

with the OP interpolation operators and

SATIC =
[

0 0
−(H (v)

x )−1e(v)�
W c21 Iu2vd

(u)
E (H (v)

x )−1e(v)�
W c22d

(v)
W

]
, (67)

with the traditional interpolation operators. Also

SATBC =
[
τ̄

(u)
W d(u)

W + τ̄
(u)
S d(u)

S + τ̄
(u)
N d(u)

N 0
0 τ̄

(v)
E d(v)

E + τ̄
(v)
S d(v)

S + τ̄
(v)
N d(v)

N

]
, (68)

where the penalty matrices τ̄
(u)
W ,S,N and τ̄

(v)
E,S,N are given by (57) evaluated in each respective

block and g(u)
W ,S,N and g(v)

E,S,N are boundary data. The projection operator is given by

P = I − Ĥ−1L�(L Ĥ−1L�)−1L, (69)
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where

L =
[
e(u)
E −I gv2ue

(v)
W

]
. (70)

with the OP-interpolation operators and

L =
[
e(u)
E −Iv2ue

(v)
W

]
, (71)

with the traditional interpolation operators.

A4. Two-Block SBP-SAT

The two-block discretization with Neumann boundary conditions imposed using SBP-SAT
and interface conditions imposed using the SBP-SAT is given by

Q =
[
c21D

(u)
L 0

0 c22D
(v)
L

]
+ SATIC + SATBC , (72)

and

G(t) = −
[
τ̄
(u)
W g(u)

W (t) + τ̄
(u)
S g(u)

S (t) + τ̄
(u)
N g(u)

N (t) 0

0 τ̄
(v)
E g(v)

E (t) + τ̄
(v)
S g(v)

S (t) + τ̄
(v)
N g(v)

N (t)

]
. (73)

The SAT imposing the interface conditions using the OP interpolation operators is given by

SATIC =
[
H (u)
x 0
0 H (v)

x

]−1 [
SAT 11

IC SAT 12
IC

SAT 21
IC SAT 22

IC

]
, (74)

where

SAT 11
IC = SATu1e

(u)
E + SATu2 I

g
C2Fe

(u)
E + SAT∂uc

2
1d

(u)
E ,

SAT 12
IC = −SATu1 I

g
F2Ce

(v)
W − SATu2e

(v)
W − SAT∂uc

2
2 I

b
F2Cd

(v)
W ,

SAT 21
IC = −SATv1 I

g
C2Fe

(u)
E − SATv2e

(u)
E − SAT∂vc

2
1 I

b
C2Fd

(u)
E

SAT 22
IC = SATv1e

(v)
W + SATv2 I

g
F2Ce

(v)
W + SAT∂vc

2
2d

(v)
W

(75)

and

SATu1 = − c21τ

h(u)
x

e(u)�
E + c21

2
d(u)�
E

SATu2 = − c22τ

h(v)
x

e(u)�
E I bF2C

SAT∂u = −1

2
e(u)�
E

SATv1 = − c22τ

h(v)
x

e(v)�
W − c22

2
d(v)�
W

SATv2 = − c21τ

h(u)
x

e(v)�
W I bC2F

SAT∂v = 1

2
e(v)�
W

. (76)
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Here h(u,v)
x are the grid sizes in the x-direction in each block,

τ = θ

4α
, (77)

with θ = 3 and α = 0.2508560249 for the 4th order operators and α = 0.1878715026 for
the 6th order operators. With the traditional interpolation operators, we have

SATIC =
[
H (u)
x 0
0 H (v)

x

]−1 [
SAT 11

IC SAT 12
IC

SAT 21
IC SAT 22

IC

]
, (78)

where

SAT 11
IC = SATu1e

(u)
E + SATu2 IC2Fe

(u)
E + SAT∂uc

2
1d

(u)
E ,

SAT 12
IC = −SATu1 IF2Ce

(v)
W − SATu2e

(v)
W − SAT∂uc

2
2 IF2Cd

(v)
W ,

SAT 21
IC = −SATv1 IC2Fe

(u)
E − SATv2e

(u)
E − SAT∂vc

2
1 IC2Fd

(u)
E

SAT 22
IC = SATv1e

(v)
W + SATv2 IF2Ce

(v)
W + SAT∂vc

2
2d

(v)
W

(79)

and

SATu1 = −c21τe
(u)�
E + c21

2
d(u)�
E

SATu2 = −τc22e
(u)�
E IF2C

SAT∂u = −1

2
e(u)�
E

SATv1 = −τc22e
(v)�
W − c22

2
d(v)�
W

SATv2 = −τc21e
(v)�
W IC2F

SAT∂v = 1

2
e(v)�
W

. (80)

Here

τ = θ max

(
1

αh(u)
x

,
1

αh(v)
x

)
(81)

with θ = 3 and α = 0.2508560249 for the 4th order operators and α = 0.1878715026 for
the 6th order operators. Here h(u,v)

x are the grid sizes in the x-direction in each block. The
SAT imposing the boundary conditions is given by

SATBC =
[
τ̄

(u)
W d(u)

W + τ̄
(u)
S d(u)

S + τ̄
(u)
N d(u)

N 0
0 τ̄

(v)
E d(v)

E + τ̄
(v)
S d(v)

S + τ̄
(v)
N d(v)

N

]
, (82)

where the penalty matrices τ̄
(u)
W ,S,N and τ̄

(v)
E,S,N are given by (57) evaluated in each respective

block and g(u)
W ,S,N and g(v)

E,S,N are boundary data.
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