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Abstract
Within the last years pressure robust methods for the discretization of incompressible flu-
ids have been developed. These methods allow the use of standard finite elements for the
solution of the problem while simultaneously removing a spurious pressure influence in the
approximation error of the velocity of the fluid, or the displacement of an incompressible
solid. To this end, reconstruction operators are utilized mapping discretely divergence free
functions to divergence free functions. This work shows that the modifications proposed for
Stokes equation by Linke (Comput Methods Appl Mech Eng 268:782–800, 2014) also yield
gradient robust methods for nearly incompressible elastic materials without the need to resort
to discontinuous finite elements methods as proposed in Fu et al. (J Sci Comput 86(3):39–30,
2021).

Keywords Gradient robustness · Linear elasticity · Nearly incompressible · Mixed finite
elements

Mathematics Subject Classification Primary: 65N30 · 65N15; Secondary: 74B05 · 74F05

1 Introduction

The Stokes equation for steady flow of an incompressible fluid is given as

−ν�u − ∇ p = f in �,

∇ · u = 0 in �,

u = 0 on �,

(1)

in a, polygonal, domain � ⊂ R
d ; d = 2, 3 for given data f ∈ L2(�) and ν > 0, where u

denotes the fluid velocity and p denotes the pressure. Under the famous inf-sup condition
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for the finite element spaces Vh and Qh , the use of mixed finite elements allows to obtain
discrete approximations uh ∈ Vh and ph ∈ Qh satisfying an error estimate of the form

‖u − uh‖1 ≤ c

β
inf

vh∈Vh
‖u − vh‖1 + c

ν
inf

qh∈Qh
‖p − qh‖0,

see, e.g., [3] Here β is the inf-sup constant associated to the choice of Vh and Qh , ‖ · ‖1 and
‖ · ‖0 denote the H1 and L2 norm on �, respectively. Further, here and throughout the paper
c denotes a generic constant which is independent of all relevant quantities of the estimate
but may take a different value at each appearance.

While the estimate can yield asymptotically optimal orders, provided suitable finite ele-
ment spaces are taken, without the need to utilize exactly divergence free finite element
functions for the approximation of uh the right hand side of the estimate hints towards an
undesirable influence of the pressure on the approximation error of the velocity. In fact, it
has been observed, e.g., in [1] that indeed complicated pressures can give rise to a large error
in the velocity approximation, even in situations where the true velocity can be represented
in the discrete space Vh .

A potential remedy, allowing for arbitrary inf-sup stable element pairs while providing
pressure independent velocity has beenproposedby [1].Heproposed the use of reconstruction
operators on the right hand side of the equation to map discretely divergence free functions
to divergence free functions. This proposed method has been implemented to a range of
problems and a variety of finite element pairs for the discretization of Stokes equation, such
as non-conforming Crouzeix–Raviart element [4], Taylor-Hood and MINI elements with
continuous pressure spaces [5], on rectangular elements [6], for embedded discontinuous
Galerkin methods (EDG) [7]. For 3-d polyhedral domains with concave edges a pressure
robust reconstruction is given in [8]. While the obtained convergence orders are optimal, the
price to pay, for these methods is a loss of quasi optimality of the method due to Strang’s
first lemma. Recently, [9] showed that a more involved construction of the reconstruction
operator allows for a quasi-optimal discretization.

In this paper, we consider the extension of these results to nearly incompressible linear
elasticity, e.g.,

−2μ∇ · ε(u) − λ∇(∇ · u) = f in �,

u = 0 on ∂�,

where ε(u) denotes the symmetric gradient, andμ, λ > 0 are the Lamé parameters. To avoid
the locking phenomenon, e.g., [10, Chapter VI.3], typically a mixed form

−2μ∇ · ε(u) − ∇ p = f in �,

∇ · u − 1

λ
p = 0 in �,

u = 0 on ∂�,

(2)

is considered. Here the incompressible case, i.e., λ = ∞, can easily be included by dropping
the term − 1

λ
p in the second line. It is clear conceptually that the same difficulties as for

the Stokes problem will occur in the incompressible limit. However, the treatment of the
nearly incompressible case requires additional care. To this end, [2] defined a discretization
to be “gradient robust”, if the influence of gradient forces f = ∇φ in the discrete solution
vanishes sufficiently fast as λ → ∞. [2] showed that a standard mixed discretization of (2)
is not gradient robust and provided a gradient robust hybrid discontinuous Galerkin (HDG)
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scheme. Within this article, we will show that mixed methods can be made gradient robust
using the approach proposed by [1] for the mixed discretization of (2).

The rest of the paper is structured as follows. In Sect. 2, we introduce the notion of gradient
robustness and discuss the discretization of (2). Next, in Sect. 3, we show that the proposed
discretization is indeed gradient robust and provide error estimates. We conclude the paper
with a series of examples highlighting the derived results in Sect. 4.

2 Gradient Robustness and Discretization

2.1 Gradient Robustness

We define the spaces V0 of divergence free function and its orthogonal complement V⊥ as

V0 =
{
u ∈ H1

0 (�;Rd) : ∇ · u = 0
}

,

V⊥ =
{
u ∈ H1

0 (�;Rd) : a(u, v) = 0,∀ v ∈ V0
}

,

where foru, v ∈ V = H1
0 (�;Rd),we define the bilinear form (scalar product)a : V×V → R

by

a(u, v) = 2μ(ε(u), ε(v)), (3)

with the L2(�)-scalar product ( ·, · ). Now, any function u ∈ V can be uniquely written as
u = u0 + u⊥ ∈ V0 ⊕ V⊥.

Using Helmholtz decomposition, f ∈ L2(�;Rd) can be uniquely decomposed as

f = ∇φ + w, (4)

whereφ ∈ H1(�)/R is irrotational,w is divergence free and both are orthogonal with respect
to the L2(�)-scalar product, i.e.,

(w,∇ φ) = 0. (5)

With these definitions, the decay of the influence of gradient forces, i.e., w = 0, onto the
solutions u of (2) can be quantified as the following result from [2, Theorem 1] shows:

Lemma 1 If f ∈ H−1(�) is a gradient, i.e., f = ∇φ, for some φ ∈ L2(�). Then for the
solution u = u0 + u⊥ of (2) it holds u0 = 0 and

‖u‖1 = ‖u⊥‖1 ≤ c

μ + λ
‖φ‖0.

In particular, ‖u‖1 = O(λ−1) as λ → ∞.

Since this bound need not hold for arbitrary, inf-sup stable, discretizations, [2, Definition 2]
introduced the following notion:

Definition 1 A discretization of (2) is called gradient robust, if for any fixed f = ∇φ with
φ ∈ L2(�), μ > 0 and any discretization parameter h there is a constant ch such that the
approximate solution uh ∈ V⊥

h and satisfies

‖uh‖1 ≤ ch
λ

‖φ‖0.
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2.2 Abstract Discretization

In order to discretize (2), we define a second bilinear form b : Q×V → R, with Q = L2
0(�),

by

b(q, v) = (p,∇ · v). (6)

Now we select subspaces Vh ⊂ V and Qh ⊂ Q such that there is a positive constant β

satisfying the inf-sup condition

inf
qh∈Qh

sup
vh∈Vh

(qh,∇ · vh)
‖qh‖0‖vh‖1 ≥ β. (7)

Now, the standard, in general not gradient robust, weak formulation is given as follows:
Find (uh, ph) ∈ Vh × Qh such that

a(uh, vh) + b(ph, vh) = (f, vh) ∀vh ∈ Vh,

b(qh,uh) − 1

λ
(ph, qh) = 0 ∀qh ∈ Qh .

(8)

Under thewell known inf-sup condition (7) onVh and Qh , the system (8) is uniquely solvable
[11, Theorem5.5.2]. Following [11, Proposition 5.5.3] the displacement error is thus bounded
as follows:

‖u − uh‖1 ≤ c

β
inf

vh∈Vh
‖u − vh‖1 + 1

μ

(
1

λ
+ 1

)
inf

qh∈Qh
‖p − qh‖0. (9)

Following [1], we assume that there exists a reconstruction operator

πdiv : Vh → Hdiv(�;Rd) =
{
v ∈ L2(�;Rd) : ∇ · v ∈ L2(�)

}
,

to be specified later in Sect. 2.3, mapping discretely divergence free functions to divergence
free functions. Then the modified problem is given as:

a(uh, vh) + b(ph, vh) = (f,πdivvh) ∀vh ∈ Vh,

b(qh,uh) − 1

λ
(ph, qh) = 0 ∀qh ∈ Qh .

(10)

Clearly, by construction, the modified problem (10) admits a solution under the same condi-
tions as (8), since only the right hand side has been modified. In Theorem 4, we will see that
the discretization (10) is gradient robust, under appropriate assumptions on πdiv. Further, in
Theorem 5, we show the gradient robust displacement error estimate

‖u − uh‖1 ≤ chk
(
1 +

√
μ

λ

)
‖u‖k+1 + c

hk

λ
‖p‖k, (11)

where ‖ · ‖k denotes the norm on Hk(�) or Hk(�;Rd); of course assuming sufficient
regularity of u and p and approximation order of Vh and Qh . While the introduction of a
variational crime in (10) means that instead of a quasi-best approximation error we only
provide an estimate of optimal convergence order the estimate (11) is clearly better than (9)
in view of the asymptotics as λ → ∞ and μ → 0.
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Fig. 1 Commutative diagram for
the reconstruction operator πdiv

2.3 Reconstruction Operator and Assumptions

The construction of the reconstruction operator πdiv proposed by [1] is based on the choice
of a suitable subspaceMh ⊂ Hdiv(�;Rd) satisfying the commuting diagram in Fig. 1 where
π L2

denotes the L2-projection onto Qh .
The commuting diagram is equivalently expressed by the equation

b(qh,π
divvh) = b(qh, vh) ∀vh ∈ Vh, qh ∈ Qh, (12)

holds assuming that ∇ · Mh ⊆ Qh . Further, we define

V0
h = {vh ∈ Vh : b(qh, vh) = 0 ∀qh ∈ Qh}, (13)

Hdiv
0 (�;Rd) = {v ∈ Hdiv(�;Rd) : ∇ · v = 0}. (14)

Then clearly, by (12)we have that the restriction ofπdiv to discretely divergence free functions
maps into divergence free functions, i.e.,

πdiv : V0
h → Hdiv

0 (�;Rd) (15)

and further for any vh ∈ Vh it holds

πdivvh · n = 0 on ∂� (16)

where, n is the unit outward normal vector. Analogously to the continuous setting, we can
define the orthogonal complement V⊥

h by

V⊥
h = {

uh ∈ Vh : a(uh, vh) = 0,∀ vh ∈ V0
h

}
,

and the corresponding discrete decomposition uh = u0h + u⊥
h ∈ V0

h ⊕ V⊥
h .

Before we continue, let us make some, generic assumptions on the considered spaces Vh

and Qh defined on a shape regular family Th of decompositions of �.

Assumption 1 Following [6, Assumptions A1,A2, and A3], we assume, that for some k ≥ 2
and i = 0, 1 the finite element space Vh is equipped with an interpolation operator
Ih : Hk+1(�;Rd) → Vh satisfying

hiT ‖Ihv − v‖i,T ≤ chk+1
T ‖v‖k+1,T ∀v ∈ Hk+1(�;Rd), T ∈ Th

where ‖ · ‖i,T denotes the respective norm on the element T , and hT is the element diameter.

For the space Qh , we assume that the L2-projection π L2 : Hk(�) → Qh satisfies

hiT ‖π L2
q − q‖i,T ≤ chkT ‖q‖k,T ∀q ∈ Hk(�), T ∈ Th .
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Further, it is assumed that Vh and Qh satisfy the inf-sup inequality (7). Finally, we assume
that there exists a subspace Q̃h ⊂ L2(�;Rd) such that the respective L2-projection π̃ L2

satisfies

hiT ‖π̃ L2
q − q‖i,T ≤ chk−1

T ‖q‖k−1,T ∀q ∈ Hk(�;Rd), T ∈ Th .

Further requirements on Q̃h will be made in Assumption 2.

With these preparations, we can now state the additional assumptions on the reconstruction
operator.

Assumption 2 Following [6, Assumption A4], we first assume, that the reconstruction oper-
ator satisfies the following orthogonality relation

(
vh − πdivvh,q

) = 0 ∀vh ∈ Vh,q ∈ Q̃h, (17)

where Q̃h ⊂ L2(�;Rd) is given in Assumption 1. Second, we assume the following local
approximation property to hold

‖πdivvh − vh‖0,T ≤ chmT |vh |m,T ∀ vh ∈ Vh, T ∈ Th,m = 0, 1. (18)

Before concluding the assumption, let us note that the assumptions can indeed be satisfied.
To this end, we give an example which we will also use for the numerical results in Sect. 4.

Example 1 Let us assume that the domain can be decomposed into a familyTh of shape regular
rectangular (d = 2) or brick (d = 3) elements. For the spaceVh = Vk

h , we consider, paramet-
ric, piecewise Qk and globally continuous finite elements with k ≥ 2. For the discretization
of Qh = Qk−1

h , we select the space of discontinuous piecewise Pk−1 functions. Indeed
theses pairs satisfy the inf-sup condition (7), see, e.g., [11, Sec. 8.6.3 & 8.7.2] for k = 2,
for arbitrary k [3, Sec. 3.2] or [12] for mapped pressure spaces. Moreover, [6, Sec. 4.2.1]
showed, that the choice Mh = BDMk as space of Brezzi-Douglas-Marini elements yield
the desired commuting diagram property (12) together with the canonical interpolation πdiv.
Further, they showed [6, Lemma 2.1], that the restriction of πdiv to discretely divergence free
functions maps into divergence free functions, i.e.,

πdiv :
{
vh ∈ Vh : b(qh, vh) ∀qh ∈ Qh} → {v ∈ Hdiv(�;Rd) : ∇ · v = 0

}

and further for any vh ∈ Vh it holds

πdivvh · n = 0 on ∂�.

Further, [6, Sect. 4.2.1] shows the validity of Assumption 2 where Q̃h is the space of discon-
tinuous piecewise Pd

k−2 functions.

Remark 1 Infact, [6] showed that (12) follow from a set of assumed orthogonality properties
and surjectivity of divergence and normal traces from which suitable choices of Mh and
constructions of πdiv can be obtained.

3 Error Analysis

In this section, we proceed with error analysis of the modified weak form (10). We split
the analysis in two parts for incompressible materials (λ = ∞) and nearly incompressible
materials (λ �= ∞).
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3.1 Incompressible Materials

We proceed to the error analysis of incompressible materials, where λ = ∞ and the term
involving 1

λ
is dropped in (10). The analysis follows, at large, the arguments in [4] with some

minor adjustments to the elasticity case.

Theorem 2 Let Assumptions 1 and 2 be satisfied and λ = ∞. Then the solution (u, p) ∈
Hk+1(�;Rd)× Hk(�) of the continuous problem (2) and the solution (uh, ph) ∈ Vh × Qh

of (10) satisfy the error estimate

‖u − uh‖21 ≤ c
∑
T∈Th

h2kT |u|2k+1,T ≤ ch2k‖u‖k+1,

where | · |k denotes the Hk-semi-norm, where k ≥ 2 is given by Assumption 1.

Before proving the above theorem, we would like to prove an important lemma which is
need to prove the theorem.

Lemma 3 Let Assumptions 1 and 2 be satisfied and λ = ∞. Then for any functions u ∈
Hk+1(�;Rd) and wh ∈ Vh it is

∣∣(∇ · ε(u),πdivwh) + (ε(u), ε(wh))
∣∣ ≤ c

∑
T∈Th

hkT |u|k+1,T ‖wh‖1,T , (19)

where | · |k,T denotes the Hk-semi-norm on T , where k ≥ 2 is given by Assumption 1.

Proof We add and subtract (∇ · ε(u),wh) on the left to obtain

(∇ · ε(u),πdivwh) + (ε(u), ε(wh)) = (∇ · ε(u),πdivwh − wh)

+ (ε(u), ε(wh)) + (∇ · ε(u),wh).
(20)

Since ∇ · ε(u) ∈ L2(�;Rd), we can apply the projection π̃ L2
, from Assumption 1, to get

π̃ L2∇ · ε(u) ∈ Q̃h . By the assumed orthogonality in (17), we have
(
π̃ L2∇ · ε(u),πdivwh − wh

)
= 0, ∀ wh ∈ Vh .

Using Assumption 1 and (18), we obtain, for the first summand on the right of (20),
(
∇ · ε(u),πdivwh − wh

)
=

(
∇ · ε(u) − π̃ L2∇ · ε(u),πdivwh − wh

)

≤
∑
T∈Th

‖∇ · ε(u) − π̃ L2∇ · ε(u)‖0,T ‖πdivwh − wh‖0,T

≤
∑
T∈Th

chk−1
T |∇ · ε(u)|k−1,T hT ‖wh‖1,T

≤
∑
T∈Th

chkT |u|k+1,T ‖wh‖1,T .

(21)

For the last two summands of (20), we apply Gauss divergence theorem to get

(∇ · ε(u),wh) + (ε(u), ε(wh)) =
∫

∂�

ε(u) · n wh ds = 0 (22)

since wh = 0 on ∂�. Combining (20) with the bounds (21) and (22) the assertion is shown.
��
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Now, we continue to prove Theorem 2

proof of Theorem 2 Let uh be the solution of (10), with λ = ∞, and let vh ∈ V0
h be arbitrary.

Defining wh = uh − vh ∈ V0
h and applying the triangle inequality gives

‖u − uh‖1 = ‖u − wh − vh‖1 ≤ ‖u − vh‖1 + ‖wh‖1. (23)

In view of the interpolation estimate in Assumption 1, we are left to estimate ‖wh‖1. From
Korn’s inequality, we have

c‖wh‖21 ≤ ‖ε(wh)‖20.
From this, we conclude

2μc‖wh‖21 ≤ a(wh,wh)

= a(uh − vh,wh)

= a(uh − vh + u − u,wh)

≤ |a(u − vh,wh)| + |a(uh − u,wh)|.
(24)

For the first summand on the right of (24) we use Cauchy-Schwartz inequality to get

|a(u − vh,wh)| ≤ 2μ‖ε(u − vh)‖0‖ε(wh)‖0 ≤ 2μ‖u − vh‖1‖wh‖1. (25)

Before we come to the bound of the second summand in (24), we make some preliminary
calculations. Since uh is the solution of (10), choosing vh = wh ∈ V0

h gives

a(uh,wh) = a(uh,wh) + b(ph,wh) = (f,πdivwh). (26)

Further, since u is the solution to the equation (2) multiplication with πdivwh and integration
yields

−2μ
∫

�

∇ · ε(u)πdivwh dx −
∫

�

∇ p πdivwh dx =
∫

�

fπdivwh dx

by the compatibility of the reconstructionwith the kernel of the divergence, i.e., (15) and (16),
this gives

−2μ(∇ · ε(u),πdivwh) = (f,πdivwh)

Combining this with (26), we get

a(uh,wh) = −2μ(∇ · ε(u),πdivwh). (27)

Now, we can bound the second summand on the right of (24), using (27) we get

|a(uh − u,wh)| =
∣∣∣−2μ(∇ · ε(u),πdivwh) − 2μ(ε(u), ε(wh))

∣∣∣
≤ 2μ

∣∣∣(∇ · ε(u),πdivwh) + (ε(u), ε(wh))

∣∣∣.
By the previously shown lemma, i.e., (19), we can bound the right hand side to get

|a(uh − u,wh)| ≤ 2μc
∑
T∈Th

(
hkT |u|k+1,T ‖wh‖1,T

)

≤ 2μc

⎛
⎝ ∑

T∈Th

h2kT |u|2k+1,T

⎞
⎠

1
2

‖wh‖1.
(28)
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Now combining (24) with the two bounds (25) and (28), we get

‖wh‖1 ≤ c‖u − vh‖1 + c

⎛
⎝ ∑

T∈Th

h2kT |u|2k+1,T

⎞
⎠

1
2

.

Substituting this in (23) yields

‖u − uh‖1 ≤ c‖u − vh‖1 + c

⎛
⎝ ∑

T∈Th

h2kT |u|2k+1,T

⎞
⎠

1
2

. (29)

To bound the best approximation error on V0
h in this inequality, we proceed using inf-sup

condition as in [3,Chapter 2, (1.16)] and the assumed interpolation estimate onVh inAssump-
tion 1, to get the estimate

inf
vh∈V0

h

‖u − vh‖1 ≤ c inf
vh∈Vh

‖u − vh‖1 ≤ c

⎛
⎝ ∑

T∈Th

h2kT |u|2k+1,T

⎞
⎠

1
2

.

Using this in (29) gives the desired estimate. ��

3.2 Nearly Incompressible Materials

For the nearly incompressible case, i.e., (λ �= ∞), we start by assuming a gradient force
f = ∇φ, for some φ ∈ L2(�). From Lemma 1, we have that the solution of (2) for such an f
is u = u⊥. The following result shows, that our mixed discretization (10) is gradient robust
in the sense of Definition 1.

Theorem 4 Let Assumptions 1 and 2 be satisfied. If the right hand side f ∈ H−1(�;Rd)

of equation (10) is a gradient field, i.e., f = ∇φ, for some φ ∈ L2(�), then the solution
(uh, ph) ∈ Vh × Qh of (10) with λ �= ∞ satisfies uh ∈ V⊥

h and the gradient robust bound

‖uh‖1 ≤ c
1

λ + μ
‖φ‖0. (30)

with a constant c independent of h.

Proof Consider vh = uh in equation (10) with f = ∇φ. Then integration by parts for the
right hand side, using the zero trace from (16), we get

a(uh,uh) + b(ph,uh) = −(φ,∇ · πdivuh). (31)

Since ∇ · πdivuh ∈ Qh we can rewrite the right hand side as

(φ,∇ · πdivuh) = (π L2
φ,∇ · πdivuh). (32)
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Since π L2∇ · uh ∈ Qh , we can use it to test the second line in (10) giving

(π L2∇ · uh, π L2∇ · uh) = (π L2∇ · uh,∇ · uh)
= 1

λ
(ph, π

L2∇ · uh)

= 1

λ
(ph,∇ · uh)

= 1

λ
b(ph,uh).

(33)

Substituting (32) and (33) in (31), we get

a(uh,uh) + λ(π L2∇ · uh, π L2∇ · uh) = −(π L2
φ,∇ · πdivuh). (34)

Now π L2
φ ∈ Qh and uh ∈ Vh hence, by (12), it holds

(π L2
φ,∇ · πdivuh) = (π L2

φ,∇ · uh).
Filling this into (34) gives

2μ (ε(uh), ε(uh)) + λ
(
π L2∇ · uh, π L2∇ · uh

)
= −

(
π L2

φ, π L2∇ · uh
)

. (35)

Using Cauchy-Schwartz inequality, we get

2μ‖ε(uh)‖20 + λ‖π L2∇ · uh‖20 ≤ ‖π L2
φ‖0‖π L2∇ · uh‖0 ≤ ‖φ‖0‖π L2∇ · uh‖0. (36)

Now, to estimate the H1-norm of uh , we notice that by the choice of f and (15), testing
the first equation in (10) with a function vh ∈ V0

h yields

a(uh, vh) = −b(ph, vh) − (φ,∇ · πdivvh) = 0

and thus uh ∈ V⊥
h . Hence by, e.g., [13, Lemma 3.58] it holds

‖uh‖1 ≤ c‖π L2∇ · uh‖0 (37)

with a constant c depending on the inf-sup constant β from (7), since π L2∇ · uh ∈ Qh .
Using Korn’s inequality, (36), and (37), we get

(μ + λ)‖uh‖21 ≤ cμ‖ε(uh)‖20 + λc‖π L2∇ · uh‖21
≤ c‖φ‖0‖uh‖1,

(38)

and thus the assertion is shown. ��

Theorem 5 Let Assumptions 1 and 2 be satisfied. Then the solutions (u, p) ∈ V × Q, of the
problem (2) and (uh, ph) ∈ Vh × Qh of (10) satisfy the error estimate

‖u − uh‖1 ≤ c hk
(
1 +

√
μ

λ

)
‖u‖k+1 + c

hk

λ
‖p‖k, (39)

provided the regularity (u, p) ∈ Hk+1(�;Rd) × Hk(�) is given, where k ≥ 2 is given by
Assumption 1.
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Proof As in the proof of Theorem 2, we could split the error

(u − uh, p − ph) = (u − vh, p − qh) + (vh − uh, qh − ph)

with arbitrary vh ∈ Vh and qh ∈ Qh . However, as it will turn out to be useful, we will select
qh = π L2

p and vh as a particular Fortin operator applied to u, i.e., satisfying the following
equation

(
ε(vh), ε(ϕh)

) + b( p̃h,ϕh) = (
ε(u), ε(ϕh)

) ∀ϕh ∈ Vh,

b(sh, vh) = b(sh,u) ∀sh ∈ Qh . (40)

Clearly, the solution to the continuous counterpart is (v, p̃) = (u, 0). Since the above equation
is uniquely solvable, see, e.g. [11, Theorem 4.2.3], we have the orthogonality b(π L2

p −
ph,u − vh) = 0 and the approximation error satisfies, e.g., [11, Theorem 5.2.2].

‖u − vh‖1 + ‖ p̃ − p̃h‖0 ≤ c inf
ϕh∈Vh

‖u − ϕh‖1 + c inf
sh∈Qh

‖0 − sh‖0, (41)

which gives

‖u − vh‖1 ≤ c inf
ϕh∈Vh

‖u − ϕh‖1 (42)

Due to the interpolation estimates in Assumption 1, we are left with bounding wh =
uh − vh ∈ Vh and rh = ph − qh ∈ Qh . We split wh = w0

h + w⊥
h ∈ V0

h ⊕ V⊥
h . By definition

of the bilinear forms a and b, i.e., (3) and (6), and the first line in (10) and (2), the remainder
wh and rh satisfy, for any discrete function ϕh ∈ Vh ,

a(wh,ϕh) + b(rh,ϕh) = a(uh − vh,ϕh) + b(ph − qh,ϕh)

= (f,πdivϕh − ϕh) + a(u − vh,ϕh) + b(p − qh,ϕh).
(43)

Analogously, from the second line in (10) and (2), we get for arbitrary sh ∈ Qh

b(sh,wh) − 1

λ
(rh, sh) = b(sh,uh − vh) − 1

λ
(ph − qh, sh)

= b(sh,uh) − 1

λ
(ph, sh) − (

b(sh, vh) − 1

λ
(qh, sh)

)

= b(sh,u − vh) − 1

λ
(p − qh, sh).

(44)

Testing (43) and (44) with ’h = wh and sh = rh we get

cμ‖wh‖21 + 1

λ
‖rh‖20 ≤ a(wh,wh) + 1

λ
(rh, rh)

= a(wh,wh) + b(rh,wh) − b(rh,wh) + 1

λ
(rh, rh)

= (f,πdivwh − wh) + a(u − vh,wh)

+ b(p − qh,wh) − b(rh,u − vh) + 1

λ
(p − qh, rh).

(45)
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Using (19) and (2), we obtain a bound on (f,πdivwh − wh) as follows

(f,πdivwh − wh) = −2μ(∇ · ε(u),πdivwh − wh) − (∇ p,πdivwh − wh)

= −2μ(∇ · ε(u),πdivwh) − 2μ (ε(u), ε(wh)) + b(p,πdivwh − wh)

≤ cμ
∑
T∈Th

hkT |u|k+1,T ‖wh‖1,T + b(p,πdivwh − wh)

≤ 2μc

⎛
⎝ ∑

T∈Th

h2kT |u|2k+1,T

⎞
⎠

1
2

‖wh‖1 + b(p,πdivwh − wh).

Substituting this in (45), we get

cμ‖wh‖21 + 1

λ
‖rh‖20 ≤ 2μc

⎛
⎝ ∑

T∈Th

h2kT |u|2k+1,T

⎞
⎠

1
2

‖wh‖1

+
(
b(p,πdivwh − wh) + b(p − qh,wh) − b(rh,u − vh)

)

+
(
a(u − vh,wh) + 1

λ
(p − qh, rh)

)
.

(46)

The last line can be estimated as

a(u − vh,wh) + 1

λ
(p − qh, rh) ≤ cμ

2
‖u − vh‖21 + cμ

2
‖wh‖21 + 1

2λ
‖p − qh‖20 + 1

2λ
‖rh‖20.

From (12), we have that b(qh,πdivwh − wh) = 0. Hence the second line in (46) becomes

b(p,πdivwh − wh)+ b(p − qh,wh) − b(rh,u − vh)

= b(p − qh,π
divwh − wh) + b(p − qh,wh) − b(rh,u − vh)

= b(p − qh,π
divwh) − b(ph − qh,u − vh)

= b(π L2
p − qh,π

divwh) − b(ph − qh,u − vh)

= b(π L2
p − qh,wh) − b(ph − qh,u − vh)

where we used the properties of the L2 projection π L2
, the commutative diagram (12) and

∇ ·Mh ⊂ Qh . Now, we utilize the choice qh = π L2
p to further simplify the representation

of the second line in (46) to be

b(p,πdivwh − wh)+ b(p − qh,wh) − b(rh,u − vh)

= b(π L2
p − qh,wh) − b(ph − qh,u − vh)

= b(π L2
p − ph,u − vh)

= 0
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by our choice of vh . This provides the bound

cμ

2
‖wh‖21 + 1

2λ
‖rh‖20 ≤ 2μc

⎛
⎝ ∑

T∈Th

h2kT |u|2k+1,T

⎞
⎠

1
2

‖wh‖1

+ cμ

2
‖u − vh‖21 + 1

2λ
‖p − qh‖20.

(47)

Of course (47) provides a bound onwh but as it is suboptimal, in view of the λ dependence,
we continue by splitting wh = w0

h + w⊥
h .

We first bound ‖w0
h‖1. Consider cμ‖w0

h‖1 and using that a(w⊥
h ,w0

h) = 0, we have,
using (13), (43), and the choice of vh by (40) that

cμ‖w0
h‖21 ≤ a(w0

h,w
0
h) = a(wh,w0

h) = a(wh,w0
h) + b(rh,w0

h)

= ( f ,πdivw0
h − w0

h)

≤ (−2μ∇ · ε(u) + ∇ p,πdivw0
h − w0

h

)

≤ (−2μ∇ · ε(u),πdivw0
h − w0

h

) + (∇ p,πdivw0
h − w0

h

)

≤ (−2μ∇ · ε(u),πdivw0
h

) − μ
(
ε(u), ε(w0

h)
)

≤ μ
(−2∇ · ε(u),πdivw0

h

) − μ
(
ε(u), ε(w0

h)
)
.

Thus, by Lemma 3, we conclude

cμ‖w0
h‖21 ≤ μc

∑
T∈Th

hkT ‖u‖k+1,T ‖w0
h‖1,T ≤ cμhk‖u‖k+1‖w0

h‖1

and hence

‖w0
h‖1 ≤ chk‖u‖k+1. (48)

For ‖w⊥
h ‖1, we utilize w⊥

h ∈ V⊥
h , i.e.,

(∇ · wh, qh) =
(
∇ · w⊥

h , qh
)

∀qh ∈ Qh

meaning

π L2∇ · wh = π L2∇ · w⊥
h .

Using [13, Lemma 3.58], we get with a constant c depending on the inf-sup constant

‖w⊥
h ‖1 ≤ c‖π L2

(∇ · wh) ‖0
≤ c‖π L2∇ · uh − π L2∇ · vh‖0
≤ c

∥∥∥ ph
λ

− π L2∇ · u
∥∥∥
0

from the definition of vh in (40). Hence, noting that ∇ · u = 1
λ
p, we obtain

‖w⊥
h ‖1 ≤ c

λ
‖ph − qh‖0 = c

λ
‖rh‖0.

We conclude from (47)

‖rh‖20 ≤ cμλh2k‖u‖2k+1 + c‖p − qh‖20
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and thus we obtain the final bound on w⊥
h

‖w⊥
h ‖1 ≤ c

λ
‖rh‖0

≤ c

√
μ

λ
hk‖u‖k+1 + c

λ
‖p − qh‖0.

(49)

Now, we can bound ‖wh‖1 using (48) and (49)

‖wh‖1 ≤ ‖w0
h‖1 + ‖w⊥

h ‖1
≤ chk‖u‖k+1 + c

λ
‖rh‖0

≤ chk‖u‖k+1 + c

√
μ

λ
hk‖u‖k+1 + c

λ
‖p − qh‖0

≤ c

(
1 +

√
μ

λ

)
hk‖u‖k+1 + c

λ
‖p − qh‖0.

(50)

Finally, we arrive at the desired bound

‖u − uh‖1 ≤ ‖u − vh‖1 + ‖wh‖1
≤ c

(
1 +

√
μ

λ

)
hk‖u‖k+1 + c

λ
hk‖p‖k

(51)

by definition of qh and Assumption 1. ��

4 Numerical Results

For our computation, we use DOpElib [14] based on the deal.II [15] finite element library
with rectangular meshes. All examples are posed on square domains and the meshes are
obtained by bisection.

For the computation we considered the inf-sup stable Taylor-Hood element (Q2 × Q1),
for comparison of our results with [2]. Further, we utilized the inf-sup stable discretization
Q2×DGP1 (discontinuous P1 pressure) and its gradient robust modification by interpolation
into BDM2 as discussed in Example 1.

First, we present an example for incompressible materials.

Example 2 For the first numerical example, we consider a small variation of Example 5.1 in
[1], where the displacement and pressure on the domain � = (0, 1)2 is given as

u(x, y) =
[
200x2y(1 − x)2(1 − y)(1 − 2y)

−200y2x(1 − y)2(1 − x)(1 − 2x)

]
(52)

p(x, y) = −10

((
x − 1

2

)3

y2 + (1 − x)3
(
y − 1

2

)3

+ 1

8

)
. (53)

for the incompressible linear elasticity equation

−2μ∇ · ε(u) + ∇ p = f,

∇ · u = 0
(54)

with homogeneous boundary conditions on u and thus define f , of course the pressure is
defined up to a constant only.
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Fig. 2 Comparing displacement
error in H1 norm vs. 1

μ for
Example 2 with and without
gradient robust modification for
64 square elements

Comparing (9) with Fig. 2, we notice that the H1-norm displacement error without inter-
polation asymptotically grows linearly w.r.t 1

μ
as predicted due to the appearance of the

pressure term 1
μ

inf
qh∈Qh

‖p − qh‖0 in (9). The error is independent of μ, highlighting the

prediction of Theorem 2.
For future examples, we consider nearly incompressible materials given by equation (2).

Example 3 For the second numerical example, we set the right hand side f = ∇φ;φ =
x6 + y6 on the domain � = (0, 1)2 and consider nearly incompressible elasticity, i.e.,

−2μ∇ · ε(u) − ∇ p = f,

∇ · u − 1

λ
p = 0

with homogeneous boundary conditions on u as in [2, Example 2].

From Lemma 1, the solution for Example 3 in the limiting case (λ = ∞) is given as
u∞ = 0 and p∞ = x6 + y6. From equation (30), we have the bound for the solution uλ

h as

‖u∞ − uλ
h‖1 = ‖uλ

h‖1 ≤ c

λ + μ
‖φ‖0

on the discrete function for a gradient robust discretization. For μ = 10−5, we have λ+μ ≈
λ,∀λ ≥ 1. Hence, we see a green line with positive slope in Fig. 3a for the gradient robust
method, while the non robust method shows an almost constant ‖uλ

h‖1 �= 0. However, for
λ = 105 we have 1

λ+μ
≈ c(constant) ∀0 < μ ≤ 1, which is seen in the flat green line in

Fig. 3b.
For non-gradient robust methods, we have

‖uλ
h‖1 ≤ c

μ

(
1

λ
+ 1

)
‖φ‖0

from equation (9). For μ = 10−5, the term
( 1

λ
+ 1

) → 1 as λ → ∞. The same is shown
by the flat red line in Fig. 3a. However, for λ = 10−5, we have ‖uλ

h‖1 ≤ c
μ
‖φ‖0. Which is

shown by the red line with negative slope in Fig. 3b.
It should be noted in this example, that the (blue with triangles) line for the non-gradient

robust Q2 × DGP1 method coincides with the (green with dots) line for the gradient robust
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Fig. 3 Comparing displacement error in H1 norm for Example 3with andwithout gradient robustmodification
for 64 square elements

modification. However, this appears to be due to the particular problem data hiding the non-
gradient robustness of theQ2 ×DGP1 discretization. That indeed, the standardQ2 ×DGP1
method is not gradient robust is shown in the following example.

Example 4 For the third numerical example, we consider the right hand side f = ∇φ;φ =
− (

10(x − 0.5)3y2 + (1 − x)3(y − 0.5)3 + 1/8
)
in Example 3 while keeping the homoge-

neous boundary values, and the equation, for u.

Figure 4 shows our previous statement, that Example 3 failed to show the missing gradient
robustness of the standardQ2 ×DGP1 discretization. Indeed, in this example, bothQ2 ×Q1

and Q2 × DGP1 discretization show the undesirable blowup for μ → 0 and the constant
value as λ → ∞, while the gradient robust modification shows the desired convergence.

Example 5 For the fourth numerical example, we consider, again, the nearly incompressible
case with homogeneous boundary conditions on u, the values of u∞ and thus f are given as
in Example 2 and the domain � = (0, 1)2.

In this example, for λ = ∞, the solution u∞ is known, i.e., it is given in (52). We denote
the solution, for λ �= ∞, as

(
uλ, pλ

)
. We compute the error ‖u∞ − uλ

h‖1 in our numerical
results,whereuλ

h is the discrete approximated solution for a given value ofλ. Since, Theorem5
provides an estimate, for ‖uλ − uλ

h‖1, we use the triangle inequality to get

‖u∞ − uλ
h‖1 ≤ ‖u∞ − uλ‖1 + ‖uλ − uλ

h‖1,

≤ ‖u∞ − uλ‖1 + c

(
1 +

√
μ

λ

)
h2‖uλ‖3 + ch2

λ
‖pλ‖2.

(55)

Figure 5b follows the same pattern as Fig. 4b. However, there is a slight difference between
Figs. 4a and 5a, which can be explained by (55). In the limit λ → ∞ and fixed μ = 10−5,

we have
(
1 +

√
μ
λ

)
→ 1 and ‖u∞ − uλ‖1 → 0, and we observe

‖u∞ − uλ
h‖1 → ‖u∞ − u∞

h ‖1 ≤ ch2‖u∞‖3 (56)
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Fig. 4 Comparing displacement error in H1 norm for Example 4with andwithout gradient robustmodification
for 64 square elements

Fig. 5 Comparing displacement error in H1 norm for Example 5with andwithout gradient robustmodification
for 64 square elements

for fixed refinement as it is shown in Fig. 5a. Figure5a further confirms (56) as we can see
the orderO(h2) for ‖u∞ −uλ

h‖1 for large values of λ. In Fig. 5b, we observe the convergence‖u∞ − uλ
h‖1 → ‖u∞ − uλ‖ as h → 0 and the decay of the error ‖u∞ − uλ‖ → 0 as λ → 0

Example 6 Finally, wewould like to compare our results with the thermo-elastic solids exam-
ple given in [2, Sect. 6]. The gradient force f is given by a temperature θ as

f = − (2μ + 3λ) α∇θ.

The material used is a nearly incompressible hard rubber with Young’s Modulus E = 5 ×
107[Pa], Poisson ratio ν = 0.4999 and the thermal expansion coefficient α = 8×10−5[1/K].
Hence the Lamé parameters are λ = 8.332 × 1010[Pa] and μ = 1.6667 × 107[Pa]. We take
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Fig. 6 Comparing displacement error in H1 norm for the robust modification of Example 5 for μ = 10−5

Fig. 7 Displacement vector for different number of elements withQ2 ×DGP1 ×Q2 with BDM Interpolation

the domain � = (0, L)2 with L = 0.1[m]. The temperature field is obtained as the solution
to the stationary heat equation:

−∇ · γ∇θ = f ,

where γ = 0.2[W/(mK)] is the thermal conductivity coefficient and f = 4 ×
exp(−40r2)[W/m3] is the heat source, with r2 = (x − 0.5L)2 + (y − 0.5L)2. Homo-
geneous Dirichlet boundary conditions are applied on both temperature and displacement. It
is important to note that θ ∈ H1(�) and thus f ∈ L2(�;R2). For numerical computation,
we additionally solve the temperature equation by a standard H1-conforming finite element
discretization. Hence, the finite element spaces now consist of three components, the first
two denote the displacement and pressure discretization as before. The third element, always
Q2, is used to solve the equation for the temperature θ .

In Fig. 7, we can see that we achieve a well represented solution for the displacement with
only 64 elements using a gradient robust method, and the magnitude is already captured with
only 16 elements. In comparison, the non gradient robust methods require 256 and 1024
elements, respectively, to get a solution of similar shape and magnitude, see Figs. 8 and 9.
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Fig. 8 Displacement vector for different number of elements with Q2 × Q1 × Q2

Fig. 9 Displacement vector for different number of elements with Q2 × DGP1 ×Q2

5 Conclusion

In this paper, we have shown that a gradient robust modification of nearly incompressible
elasticity is possible by the same techniques proposed for incompressible flows. For this gra-
dient robust methods, we have shown convergence estimates of optimal order w.r.t the mesh
size and optimal dependence on the Lamé-constants. Several numerical examples highlighted
the proven convergence rates.

Acknowledgements The authors thank Luca Heltai for helpful discussions on the implementation of the
pressure robust interpolation in deal.ii.

Author Contributions All authors contributed equally to the writing of the manuscript. The computations
where performed by Seshadri R. Basava.

Funding Open Access funding enabled and organized by Projekt DEAL. This work was funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – Projektnummer 392587580 – SPP
1748

Data Availability The software used to create the numerical results is available on request.

Declarations

Competing interests The authors have no relevant financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is

123



93 Page 20 of 20 Journal of Scientific Computing (2023) 95 :93

not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Linke, A.: On the role of the Helmholtz decomposition in mixed methods for incompressible flows and
a new variational crime. Comput. Methods Appl. Mech. Eng. 268, 782–800 (2014). https://doi.org/10.
1016/j.cma.2013.10.011

2. Fu, G., Lehrenfeld, C., Linke, A., Streckenbach, T.: Locking-free and gradient-robust H(div)-conforming
HDG methods for linear elasticity. J. Sci. Comput. 86(3), 39–30 (2021). https://doi.org/10.1007/s10915-
020-01396-6

3. Girault, V., Raviart, P.-A.: Finite Element Methods for Navier–Stokes Equations. Springer Series in
Computational Mathematics, vol. 5. Springer, Berlin (1986). https://doi.org/10.1007/978-3-642-61623-
5

4. Linke, A., Merdon, C., Wollner, W.: Optimal L2 velocity error estimate for a modified pressure-robust
Crouzeix–Raviart Stokes element. IMA J. Numer. Anal. 37(1), 354–374 (2017). https://doi.org/10.1093/
imanum/drw019

5. Lederer, P.L., Linke, A., Merdon, C., Schöberl, J.: Divergence-free reconstruction operators for pressure-
robust Stokes discretizations with continuous pressure finite elements. SIAM J. Numer. Anal. 55(3),
1291–1314 (2017). https://doi.org/10.1137/16M1089964

6. Linke, A., Matthies, G., Tobiska, L.: Robust arbitrary order mixed finite element methods for the incom-
pressible Stokes equations with pressure independent velocity errors. ESAIMMath.Model. Numer. Anal.
50(1), 289–309 (2016). https://doi.org/10.1051/m2an/2015044

7. Lederer, P.L., Rhebergen, S.: A pressure-robust embedded discontinuous Galerkin method for the Stokes
problem by reconstruction operators. SIAM J. Numer. Anal. 58(5), 2915–2933 (2020). https://doi.org/
10.1137/20M1318389

8. Apel, T., Kempf, V.: Pressure-robust error estimate of optimal order for the Stokes equations: domains
with re-entrant edges and anisotropic mesh grading. Calcolo 58(2), 15–20 (2021). https://doi.org/10.
1007/s10092-021-00402-z

9. Kreuzer, C., Verfürth, R., Zanotti, P.: Quasi-optimal and pressure robust discretizations of the stokes
equations by moment- and divergence-preserving operators. Comput. Methods Appl. Math. 21(2), 423–
443 (2021). https://doi.org/10.1515/cmam-2020-0023

10. Braess, D.: Finite Elements, 3rd edn., p. 365. Cambridge University Press, Cambridge (2007). https://
doi.org/10.1017/CBO9780511618635. Theory, fast solvers, and applications in elasticity theory

11. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications. Springer Series in
Computational Mathematics, vol. 44, p. 685. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36519-5

12. Matthies, G., Tobiska, L.: The inf-sup condition for the mapped Qk -P
disc
k−1 element in arbitrary space

dimensions. Computing 69(2), 119–139 (2002). https://doi.org/10.1007/s00607-002-1451-3
13. John, V.: Finite Element Methods for Incompressible Flow Problems. Springer Series in Computational

Mathematics, vol. 51. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45750-5
14. Goll, C., Wick, T., Wollner, W.: DOpElib: differential equations and optimization environment—a goal

oriented software library for solving pdes and optimization problems with pdes. Arch. Numer. Softw.
5(2), 1–14 (2017). https://doi.org/10.11588/ans.2017.2.11815

15. Arndt, D., Bangerth, W., Blais, B., Fehling, M., Gassmöller, R., Heister, T., Heltai, L., Köcher, U.,
Kronbichler, M., Maier, M., Munch, P., Pelteret, J.-P., Proell, S., Simon, K., Turcksin, B., Wells, D.,
Zhang, J.: The deal.II library, version 9.3. J. Numer. Math. 29(3), 171–186 (2021). https://doi.org/
10.1515/jnma-2021-0081

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cma.2013.10.011
https://doi.org/10.1016/j.cma.2013.10.011
https://doi.org/10.1007/s10915-020-01396-6
https://doi.org/10.1007/s10915-020-01396-6
https://doi.org/10.1007/978-3-642-61623-5
https://doi.org/10.1007/978-3-642-61623-5
https://doi.org/10.1093/imanum/drw019
https://doi.org/10.1093/imanum/drw019
https://doi.org/10.1137/16M1089964
https://doi.org/10.1051/m2an/2015044
https://doi.org/10.1137/20M1318389
https://doi.org/10.1137/20M1318389
https://doi.org/10.1007/s10092-021-00402-z
https://doi.org/10.1007/s10092-021-00402-z
https://doi.org/10.1515/cmam-2020-0023
https://doi.org/10.1017/CBO9780511618635
https://doi.org/10.1017/CBO9780511618635
https://doi.org/10.1007/978-3-642-36519-5
https://doi.org/10.1007/978-3-642-36519-5
https://doi.org/10.1007/s00607-002-1451-3
https://doi.org/10.1007/978-3-319-45750-5
https://doi.org/10.11588/ans.2017.2.11815
https://doi.org/10.1515/jnma-2021-0081
https://doi.org/10.1515/jnma-2021-0081

	Gradient Robust Mixed Methods for Nearly Incompressible Elasticity
	Abstract
	1 Introduction
	2 Gradient Robustness and Discretization
	2.1 Gradient Robustness
	2.2 Abstract Discretization
	2.3 Reconstruction Operator and Assumptions

	3 Error Analysis
	3.1 Incompressible Materials
	3.2 Nearly Incompressible Materials

	4 Numerical Results
	5 Conclusion
	Acknowledgements
	References




