Skip to main content
Log in

A Fuzzy Model of Glucose Regulation

  • Research Article
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

We present a detailed glucose regulation model using fuzzy inference system (FIS) descriptions of hormonal control action and the familiar Michaelis–Menten (M–M) kinetic description for glucose transport. The fuzzy M–M model is compared and contrasted with a well-known comprehensive glucose model. The two models give similar results for glucose response, endogenous glucose production, and total uptake. The fuzzy M–M model features a renal subsystem that provides 25% of the endogenous glucose production. The work demonstrates the successful application of fuzzy logic and fuzzy inference to biological modelling. The flexibility of fuzzy inference, a linguistic description technique, permits conceptually simple statements about nonlinear processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilson, J. D., Foster, D. W., Kronenberg, H. M., and Larsen, P. R., Principles of endocrinology. In Wilson, J. D., Foster, D. W., Kronenberg, H. M., and Larsen, P. R. (eds.), Williams Textbook of Endocrinology, 9th edn., W. B. Saunders, Philadelphia, pp. 1–10, 1998.

  2. Shulman, G. I., Barrett, E. J., and Sherwin, R. S., Integrated fuel metabolism. In Porte, D., and Sherwin, R. S. (eds.), Ellenberg and Rifkin’s Diabetes Mellitus, 5th edn., Appleton & Lange, Stamford, CT, pp. 1–17, 1997.

    Google Scholar 

  3. Cryer, P. E., and Polansky, K. S., Glucose homeostasis. In Wilson, J. D., Foster, D. W., Kronenberg, H. M., and Larsen, P. R. (eds.), Williams Textbook of Endocrinology, 9th edn., W. B. Saunders, Philadelphia, pp. 939–972, 1998.

    Google Scholar 

  4. Unger, R. H., and Foster, D. W., Diabetes mellitus. In Wilson, J. D., Foster, D. W., Kronenberg, H. M., and Larsen, P. R. (eds.), Williams Textbook of Endocrinology, 9th edn., W. B. Saunders, Philadelphia, pp. 973–1060, 1998.

    Google Scholar 

  5. Unger, R. H., and Orci, L., Glucagon. In Porte, D., and Sherwin, R. S. (eds.), Ellenberg and Rifkin’s Diabetes Mellitus, 5th edn., Appleton & Lange, Stamford, CT, pp. 115–139, 1997.

    Google Scholar 

  6. Diabetes Statistics, NIDDK National Diabetes Information Clearinghouse. Available at http://diabetes.niddk.nih.gov/dm/pubs/statistics/index.htm#7

  7. Pedrycz, W., Design of fuzzy control algorithms with the aid of fuzzy models. In Sugeno, M. (ed.), Industrial Applications of Fuzzy Control, North Holland, New York, pp. 153–173, 1985.

    Google Scholar 

  8. Nie, J., and Linkens, D. A., Fuzzy-Neural Control, Principles, Algorithms, and Applications, Prentice-Hall, New York, pp. 1–18, 1995.

    MATH  Google Scholar 

  9. Lewis, H. W., Some relevant aspects of fuzzy set theory. In The Foundations of Fuzzy Control, Plenum, New York, pp. 59–93, 1997.

  10. Pedrycz, W., and Gomide, F., Basic notions and concepts of fuzzy sets. In An Introduction to Fuzzy Sets: Analysis and Design, MIT Press, Cambridge, MA, pp. 3–29, 1998.

    Google Scholar 

  11. Rao, V. B., and Rao, H. V., C++ Neural Networks and Fuzzy Logic, 2nd edn., MIS, New York, pp. 31–50, 473–509, 1995.

    Google Scholar 

  12. Welstead, S. T., Neural Network and Fuzzy Logic Applications in C/C++, Wiley, New York, pp. 395–421, 1994.

    Google Scholar 

  13. Takagi, T., and Sugeno, M., Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15:116–132, 1985.

    MATH  Google Scholar 

  14. Sugeno, M., and Yasukawa, T., A fuzzy-logic based approach to qualitative modeling. IEEE Trans. Fuzzy Syst. 1:7–31, 1993.

    Article  Google Scholar 

  15. Hirota, K., The basis of fuzzy theory. In Hirota, K. (ed.), Solomon, H. (Trans.), Industrial Applications of Fuzzy Technology, Springer-Verlag, New York, pp. 1–10, 1993.

    Google Scholar 

  16. Bardossy, A., and Duckstein, L., Basic elements and definitions. In Fuzzy Rule-Based Modeling with Application to Geophysical, Biological, and Engineering Systems, CRC, Boca Raton, FL, pp. 5–42, 1995.

    Google Scholar 

  17. Cobelli, C., Federspil, G., Pacini, G., Salvan, A., and Scandellari, C., An integrated mathematical model of the dynamics of blood glucose and its hormonal control. Math. Biosci. 58:27–60, 1982.

    Article  MATH  Google Scholar 

  18. Cobelli, C., and Mari, A., Validation of mathematical models of complex endocrine-metabolic systems. A case study on a model of glucose regulation. Med. Biol. Eng. Comput. 21:390–399, 1983.

    Google Scholar 

  19. Bell, G. I., Kayano, T., Buse, J. B., Burant, C. F., Takeda, J., Lin, D., Fukumoto, H., Seino, S., Molecular biology of mammalian glucose transporters. Diabetes Care 13:198–208, 1990.

    Google Scholar 

  20. Gould, G. W., and Bell, G. I., Facilitative glucose transporters: An expanding family. TIBS 15:18–23, 1990.

    Google Scholar 

  21. Silverman, M., Structure and function of hexose transporters. Annu. Rev. Biochem. 60:757–794, 1991.

    Article  Google Scholar 

  22. Bell, G. I., Burant, C. F., Takeda, J., and Gould, G. W., Structure and function of mammalian facilitative sugar transporters. J. Biol. Chem. 268:19161–19164, 1993.

    Google Scholar 

  23. Thorens, B., Facilitated glucose transporters in epithelial cells. Annu. Rev. Physiol. 55:591–608, 1993.

    Article  Google Scholar 

  24. Shepherd, P. R., and Kahn, B. B., Glucose transporters and insulin action. N. Engl. J. Med. 341:248–257, 1999.

    Article  Google Scholar 

  25. Lienhard, G. E., Slot, J. W., James, D. E., and Mueckler, M. M., How cells absorb glucose. Sci. Am. 266:88–91, 1992.

    Article  Google Scholar 

  26. Marette, A., Richardson, J. M., Famlal, T., Balon, T. W., Vranic, M., Pessin, J. E., Klip, A., Abundance, localization, and insulin-induced translocation of glucose transporters in red and white muscle. Am. J. Physiol. 263:C443–C452, 1992.

    Google Scholar 

  27. Czech, M. P., Molecular actions of insulin on glucose transport. Annu. Rev. Nutr. 15:441–471, 1995.

    Article  Google Scholar 

  28. Reivich, M., Kuhl, D., Wolf, A., Greenberg, J., Phelps, M., Ido, T., Casella, V., Fowler, J., Hoffman, E., Alavi, A., Som, P., Sokoloff, L., The 18-FDG method for the measurement of local cerebral glucose utilization in man. Circ. Res. 44:127–137, 1979.

    Google Scholar 

  29. Bieger, W., Weicker, H., and Michl, J., Transport and utilization of amino acids and glucose in human monocytes: Activation of glucose metabolism by insulin. J. Clin. Endocrinol. Metab. 50:1121–1126, 1980.

    Google Scholar 

  30. Kayano, T., Fukumoto, H., Eddy, R. L., Fan, Y. S., Byers, M. G., Shows, T. B., Bell, G. I., Evidence for a family of human glucose transporter-like proteins. J. Biol. Chem. 263:15245–15248, 1988.

    Google Scholar 

  31. Fukumoto, H., Seino, S., Imura, H., Seino, Y., Eddy, R. L., Fukushima, Y., Byers, M. G., Shows, T. B., Bell, G. I., Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein. Proc. Natl. Acad. Sci. U.S.A. 85:5434–5438, 1988.

    Article  Google Scholar 

  32. Fukumoto, H., Kayano, T., Buse, J. B., Edwards, Y., Pilch, P. F., Bell, G. I., Seino, S., Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. J. Biol. Chem. 264:7776–7779, 1989.

    Google Scholar 

  33. Permutt, M. A., Koranyi, L., Keller, K., Lacy, P. E., Scharp, D. W., and Mueckler, M., Cloning and functional expression of a human pancreatic islet glucose-transporter cDNA. Proc. Natl. Acad. Sci. U.S.A. 86:8688–8692, 1989.

    Article  Google Scholar 

  34. Harik, S. I., Kalaria, R. N., Whitney, P. M., Anderson, L., Lundahl, P., Ledbetter, S. R., Perry, G., Glucose transporters are abundant in cells with “occluding” junctions at the blood–eye barriers. Proc. Natl. Acad. Sci. U.S.A. 87:4261–4264, 1990.

    Article  Google Scholar 

  35. Kayano, T., Burant, C. F., Fukumoto, H., Gould, G. W., Fan, Y. S., Eddy, R. L., Byers, M. G., Shows, JT. B., Seino, S., Bell, G. I., Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). J. Biol. Chem. 265:13276–13282, 1990.

    Google Scholar 

  36. Kuwabara, H., Evans, A. C., and Gjedde, A., Michaelis–Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with 18-FDG. J. Cereb. Blood Flow Metab. 10:180–189, 1990.

    Google Scholar 

  37. Blomqvist, G., Gjedde, A., Gutniak, M., Grill, V., Widen, L., Stone-Elander, S., Hellstrand, E., Facilitated transport of glucose from blood to brain in man and the effect of moderate hypoglycaemia on cerebral glucose utilization. Eur. J. Nucl. Med. 18:834–837, 1991.

    Article  Google Scholar 

  38. Farrell, C. L., Yang, J., and Pardridge, W. M., GLUT1 glucose transporter is present within apical and basolateral membranes of brain epithelial interfaces and in microvascular endothelia with and without tight junctions. J. Histochem. Cytochem. 40:193–199, 1992.

    Google Scholar 

  39. Shepherd, P. R., Gould, G. W., Colville, C. A., McCoid, S. C., Gibbs, E. M., and Kahn, B. B., Distribution of GLUT3 glucose transporter protein in human tissues. Biochem. Biophys. Res. Commun. 188:149–154, 1992.

    Article  Google Scholar 

  40. Gruetter, R., Novotny, E. J., Boulware, S. D., Rothman, D. L., Mason, G. F., Shulman, G. I., Tamborlane, W. V., Shulman, R. G., Noninvasive measurements of the cerebral steady-state glucose concentration and transport in humans by 13C nuclear magnetic resonance. In Drewes, L. R., and Betz, A. L. (eds.), Frontiers in Cerebral Vascular Biology: Transport and Its Regulation, Plenum, New York, pp. 35–40, 1993.

    Google Scholar 

  41. Haber, R. S., Weinstein, S. P., O’Boyle, E., and Morgello, S., Tissue distribution of the human GLUT3 glucose transporter. Endocrinology 132:2538–2543, 1993.

    Article  Google Scholar 

  42. Hasselbalch, S., Knudsen, G. M., Jakobsen, J., Holm, S., and Paulson, O. B., Estimation of unidirectional clearances of FDG and glucose across the blood–brain barrier in man. In Drewes, L. R., and Betz, A. L. (eds.), Frontiers in Cerebral Vascular Biology: Transport and Its Regulation, Plenum, New York, pp. 25–27, 1993.

    Google Scholar 

  43. Jansson, T., Wennergren, M., and Illsley, N. P., Glucose transporter protein expression in human placenta throughout gestation and in intrauterine growth retardation. J. Clin. Endocrinol. Metab. 77:1554–1562, 1993.

    Article  Google Scholar 

  44. Wright, E. M., The intestinal Na+/glucose cotransporter. Annu. Rev. Physiol. 55:575–589, 1993.

    Article  Google Scholar 

  45. Hahn, T., Hartmann, M., Blaschitz, A., Skofitsch, G., Graf, R., Dohr, G., Desoye, G., Localization of the high affinity facilitative glucose transporter protein GLUT1 in the placenta of human, marmoset monkey (Callithrix jacchus) and rat at different developmental stages. Cell Tissue Res. 280:49–57, 1995.

    Google Scholar 

  46. Klepper, J., Garcia-Alvarez, M., O’Driscoll, K. R., Parides, M. K., Wang, D., Ho, Y. Y., DeVivo, D. C., Erythrocyte 3-O-methyl-d-glucose uptake assay for diagnosis of glucose transporter protein syndrome. J. Clin. Lab. Anal. 13:116–121, 1999.

    Article  Google Scholar 

  47. Stuart, C. A., Wen, G., and Jiang, J., GLUT3 protein and mRNA in autopsy muscle specimens. Metab. Clin. Exp. 48:876–880, 1999.

    Google Scholar 

  48. Doege, H., Schurmann, A., Bahrenberg, G., Brauers, A., and Joost, H. G., GLUT8, a novel member of the sugar transport facilitator family with glucose transport activity. J. Biol. Chem. 275:16275–16280, 2000.

    Article  Google Scholar 

  49. Li, Y., Liu, Z., Liu, D., Zhang, J., Cheu, Z., and Li, L., Identification and function of glucose transporter 1 in human mesangial cells. Chin. Med. J. 114:824–828, 2001.

    Google Scholar 

  50. Strowitzki, T., Capp, E., von Wolff, M., and Muller-Hicker, J., Expression of glucose transporter 1 in human endometrial and decidual tissue. Gynecol. Endocrinol. 15:219–224, 2001.

    Google Scholar 

  51. Stumvoll, M., Meyer, C., Mitrakou, A., Nadkarni, V., and Gerich, J. E., Renal glucose production and utilization: New aspects in humans. Diabetologia 40:749–757, 1997.

    Article  Google Scholar 

  52. Lewis, G. F., Vranic, M., and Giacca, A., Glucagon enhances the direct suppressive effect of insulin on hepatic glucose production in humans. Am. J. Physiol. 272:E371–E378, 1997.

    Google Scholar 

  53. Stumvoll, M., Meyer, C., Kreider, M., Perriello, G., and Gerich, J., Effects of glucagon on renal and hepatic glutamine gluconeogenesis in normal postabsorptive humans. Metabolism 47:1227–1232, 1998.

    Article  Google Scholar 

  54. Meyer, C., Doustou, J., Nadkarni, V., and Gerich, J., Effects of physiological hyperinsulinemia on systemic, renal, and hepatic substrate metabolism. Am. J. Physiol. 275:F915–F921, 1998.

    Google Scholar 

  55. Cersosimo, E., Garlick, P., and Ferretti, J., Renal glucose production during insulin-induced hypoglycemia in humans. Diabetes 48:261–266, 1999.

    Google Scholar 

  56. Larsson, H., Berglund, G., and Ahren, B., Glucose modulation of insulin and glucagon secretion is altered in impaired glucose tolerance. J. Clin. Endocrinol. Metab. 80:1778–1782, 1995.

    Article  Google Scholar 

  57. Kraegan, E. W., Young, J. D., George, E. P., and Lazarus, L., Oscillations in blood glucose and insulin after oral glucose. Horm. Metab. Res. 4:409–413, 1972.

    Article  Google Scholar 

  58. Olefsky, J. M., and Reaven, G. M., Insulin and glucose responses to identical oral glucose tolerance tests performed forty-eight hours apart. Diabetes 23:449–453, 1974.

    Google Scholar 

  59. Kuhl, C., and Holst, J. J., Plasma glucagon and the insulin: Glucagon ratio in gestational diabetes. Diabetes 25:16–23, 1976.

    Google Scholar 

  60. Bloomgarden, Z. T., Liljenquist, J. E., Cherrington, A. D., and Rabinowitz, D., Persistent stimulatory effect of glucagon on glucose production despite downregulation. J. Clin. Endocrinol. Metab. 47:1152–1155, 1978.

    Article  Google Scholar 

  61. Radziuk, J., McDonald, T. J., Rubenstein, D., and Dupre, J., Initial splanchnic extraction of ingested glucose in normal man. Metabolism 27:657–669, 1978.

    Article  Google Scholar 

  62. Rizza, R. A., and Gerich, J. E., Persistent effect of sustained hyperglucagonemia on glucose production in man. J. Clin. Endocrinol. Metab. 48:352–355, 1979.

    Article  Google Scholar 

  63. Wolfe, R. R., Allsop, J. R., and Burke, J. F., Glucose metabolism in man: Responses to intravenous glucose infusion. Metabolism 28:210–220, 1979.

    Article  Google Scholar 

  64. Davis, M. R., and Shamoon, H., Counterregulatory adaptation to recurrent hypoglycemia in normal humans. J. Clin. Endocrinol. Metab. 73:995–1001, 1991.

    Article  Google Scholar 

  65. Davis, M. R., and Shamoon, H., Impaired glucose disposal following mild hypoglycemia in nondiabetic and type I diabetic humans. Metabolism 41:216–223, 1992.

    Article  Google Scholar 

  66. Davis, S. N., Cherrington, A. D., Goldstein, R. E., Jacobs, J., and Price, L., Effects of insulin on the counterregulatory response to equivalent hypoglycemia in normal females. Am. J. Physiol. 265:E680–E689, 1993.

    Google Scholar 

  67. Cohen, N., Rossetti, L., Shlimovich, P., Halberstam, M., Hu, M., and Shamoon, H., Counterregulation of hypoglycemia. Skeletal muscle glycogen metabolism during three hours of physiological hyperinsulinemia in humans. Diabetes 44:423–430, 1995.

    Google Scholar 

  68. Magnussen, I., Rothman, D. L., Gerand, D. P., Katz, L. D., and Shulman, G. I., Contribution of hepatic glycogenolysis to glucose production in humans in response to a physiological increase in plasma glucagon concentration. Diabetes 44:185–189, 1995.

    Google Scholar 

  69. Davis, S. N., Shavers, C., Mosqueda-Garcia, R., and Costa, F., Effects of differing antecedent hypoglycemia on subsequent counterregulation in normal humans. Diabetes 46:1328–1335, 1997.

    Google Scholar 

  70. Livesey, G., Wilson, P. D. G., Dainty, J. R., Brown, J. C., Faulks, R. M., Roe, M. A., Newman, T. A., Eagles, J., Mellon, G. A., Greenwood, R. H., Simultaneous time-varying systemic appearance of oral and hepatic glucose in adults monitored with stable isotopes. Am. J. Physiol. 275:E717–E728, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry Martin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ward, E., Martin, T. A Fuzzy Model of Glucose Regulation. J Med Syst 30, 187–203 (2006). https://doi.org/10.1007/s10916-005-7983-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-005-7983-2

Keywords

Navigation