Skip to main content

Advertisement

Log in

Prediction of Forced Expiratory Volume in Pulmonary Function Test using Radial Basis Neural Networks and k-means Clustering

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this work, prediction of forced expiratory volume in pulmonary function test, carried out using spirometry and neural networks is presented. The pulmonary function data were recorded from volunteers using commercial available flow volume spirometer in standard acquisition protocol. The Radial Basis Function neural networks were used to predict forced expiratory volume in 1 s (FEV1) from the recorded flow volume curves. The optimal centres of the hidden layer of radial basis function were determined by k-means clustering algorithm. The performance of the neural network model was evaluated by computing their prediction error statistics of average value, standard deviation, root mean square and their correlation with the true data for normal, restrictive and obstructive cases. Results show that the adopted neural networks are capable of predicting FEV1 in both normal and abnormal cases. Prediction accuracy was more in obstructive abnormality when compared to restrictive cases. It appears that this method of assessment is useful in diagnosing the pulmonary abnormalities with incomplete data and data with poor recording.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Crapo, R., Pulmonary function testing. N. Engl. J. Med. 331:25–30, 1994. doi:10.1056/NEJM199407073310107.

    Article  Google Scholar 

  2. Miller, M. R., Hankinson, J., Brusasco, V., Burgos, F., Casaburi, R., Coates, A., Navajas, D., Pedersen, O. F., Pellegrino, R., Viegi, G., and Wanger, J., Standardisation of spirometry. Eur. Respir. J. 26:153–161, 2005. doi:10.1183/09031936.05.00034505.

    Article  Google Scholar 

  3. Aaron, S., Dales, R., and Cardinal, P., How accurate is spirometry at predicting respiratory pulmonary impairment? Chest. 115:869–873, 1999. doi:10.1378/chest.115.3.869.

    Article  Google Scholar 

  4. Timothy, B., and Perillo, I., An approach to interpreting spirometry. Am. Fam. Physician. 69:1108–1114, 2004.

    Google Scholar 

  5. Maureen, S., Jensen, R., Crichton, D., Beckert, L., Cardno, L., and Crapo, R., FEV6 Is an acceptable surrogate for FVC in the spirometric diagnosis of airway obstruction and restriction. Am. J. Respir. Crit. Care Med. 162:917–919, 2000.

    Google Scholar 

  6. Aggarwal, A., Gupta, D., and Jindal, S., The relationship between FEV1 and peak expiratory flow in patients with airway obstruction is poor. Chest. 130:1454–1461, 2006. doi:10.1378/chest.130.5.1454.

    Article  Google Scholar 

  7. Benardos, P. G., and Vosniakos, G. C., Optimizing feed forward artificial neural network architecture. Eng. Appl. Artif. Intell. 20:365–382, 2007. doi:10.1016/j.engappai.2006.06.005.

    Article  Google Scholar 

  8. Perchiazzi, G., Hogman, M., Rhylander, C., Giuliani, R., Fiore, T., and Hedenstierna, G., Assessment of respiratory system mechanics by artificial neural networks: an exploratory study. J. Appl. Physiol. 90:1817–1824, 2001. doi:10.1063/1.1330767.

    Article  Google Scholar 

  9. Lee, J., Blain, S., Casas, M., Kenny, D., and Berall, G., A radial basis classifier for the automatic detection of aspiration in children with dysphagia. J. Neuroeng. Rehabil. 3:1–17, 2006. doi:10.1186/1743-0003-3-1.

    Article  Google Scholar 

  10. Victor Marcos, J., Hornero, R., Alvarez, D., del Campo, F., Lopez, M., and Zamarron, C., Radial basis function classifiers to help in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry. Med. Bio. Eng. Comput. 46:323–332, 2007.

    Article  Google Scholar 

  11. Cooper, B. G., and Madsen, F., European respiratory buyers guide. 3:40–43, 2000.

  12. Juroszek, B., The influence of gas parameters on the result of spirometric test. Meas. Sci. Rev. 5:25–28, 2005.

    Google Scholar 

  13. Pierce, R., Spirometer: An essential clinical measurement. Aust. Fam. Physician. 34:535–539, 2005.

    Google Scholar 

  14. Pedersen, O. F., FEV6: a shortcut in spirometry? Eur. Respir. J. 27:245–247, 2006. doi:10.1183/09031936.06.00134405.

    Article  Google Scholar 

  15. Catelani, M., and Fort, A., Fault diagnosis of electronic analog circuits using a radial basis function network classifier. Measurement. 28:147–158, 2000. doi:10.1016/S0263-2241(00)00008-7.

    Article  Google Scholar 

  16. Minasny, B., Hopmans, J. W., Harter, T., Eching, S. O., Tuli, A., and Denton, M. A., Neural networks prediction of soil hydraulic functions for alluvial soils using multistep outflow data. Soil Sci. Soc. Am. J. 68:417–424, 2004.

    Google Scholar 

  17. Enright, P. L., Studnicka, M., and Zielinski, J., Spirometry to detect and manage chronic obstructive pulmonary disease and asthma in primary care settings. Eur. Respir. Monit. 31:1–14, 2005.

    Google Scholar 

  18. Ulmer, W. T., Lung function—clinical importance, problems, and new results. J. Physiol. Pharmacol. 54:11–13, 2003.

    Google Scholar 

  19. Buchtala, O., Klimek, M., and Sich, B., Evolutionary optimization of radial basis function classifiers for data mining applications. IEEE Trans. Syst. Man Cybernetics Part B. 35:5928–947, 2005.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. R. Sridharan for his help in collecting the spirometer data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swaminathan Ramakrishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manoharan, S.C., Ramakrishnan, S. Prediction of Forced Expiratory Volume in Pulmonary Function Test using Radial Basis Neural Networks and k-means Clustering. J Med Syst 33, 347 (2009). https://doi.org/10.1007/s10916-008-9196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-008-9196-y

Keywords

Navigation