Skip to main content
Log in

Collaborative Simulation of Soft-Tissue Deformation for Virtual Surgery Applications

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

A key challenge of collaborative surgical simulation is to maintain a high level of state consistency among the distributed users under the limitation of network transmission capacity. In this paper, a framework integrating a scalable deformable model and an extensible communication protocol is proposed to meet this challenge. The parameters of the deformable model are obtained by making reference to the biomechanical properties of human soft tissues. Efficient collaboration is achieved by developing the communication protocol and implementing a series of network management approaches, including service management, computation policies, coupling control, token control and availability mechanism. A prototype has been developed by using the client-server network architecture. Experimental results demonstrate that this framework can support collaborative surgical simulation with acceptable network latencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Marsh, J., Glencross, M., Pettifer, S., and Hubbold, R., A network architecture supporting consistent rich behavior in collaborative interactive applications. IEEE Trans. Vis. Comput. Graph. 12(3):405–416, 2006.

    Article  Google Scholar 

  2. Chui, Y. P., and Heng, P. A., Attitude dead-reckoning in a collaborative virtual environment using cumulative polynomial extrapolation of quaternions. Concurr. Comput.—Pract. Experience 16:1575–1599, 2004.

    Article  Google Scholar 

  3. Choi, K. S., Sun, H. Q., and Heng, P. A., An efficient and scalable deformable model for virtual reality based medical applications. Artif. Intell. Med. 32(1):51–69, (2004).

    Article  Google Scholar 

  4. Gibson, S., Samosky, J., and Mor, A., 3d chainmail: a fast algorithm for deforming volumetric objects. In: Proceedings of the Symposium on Interactive 3D Graphics, pp. 149–154. New York: ACM Press, 1997.

    Chapter  Google Scholar 

  5. Sela, G., Schein, S., and Elber, G., Real-time incision simulation using discontinuous free form deformation. In: Proceedings of Medical Simulation: International Symposium, pp. 114–123, 2004.

  6. Gibson, S., and Mirtich, B., A survey of deformable modeling in computer graphics. Theh.report no.TR-97-19, Cambridge, MA: Mistuishi Electric Research Lab., 1997.

  7. Gourret, J. P., Thalmann, N. M., and Thalmann, D., Simulation of object and human skin formations in a grasping task. In: Proceedings of In SIGGRAPH, pp. 21–30, 1989.

  8. Koch, R. M., Gross, M. H., Carls, F. R., Buren, D. F. V., Fankhauser, G., and Parish, Y. I. H., Simulating facial surgery using finite element models. In: Computer Graphics 30, Annual Conference Series, pp. 421–428, 1996.

  9. Bro-Nielsen, M., and Cotin, S., Real-time volumetric deformable models for surgery simulation using finite elements and condensation. Comput. Graph. Forum 15(3):57–66, 1996.

    Article  Google Scholar 

  10. Hauser, K. K., Shen, C., and O’Brien, J. F., Interactive deformation using modal analysis with constraints. In: Proceedings of Graphics Interface, pp. 247–256, 2003.

  11. Chui, C. K., Ong, J. S. K., Lian, Z. Y., Wang, Z., Teo, J., Zhang, J., Yan, C. H., Ong, S. H., Wang, S. C., Wong, H. K., Teo, C. L., and Teoh, S. H., Haptics in computer-mediated simulation: training in vertebroplasty surgery. Simul. Gaming 37(4):438–451, 2006.

    Article  Google Scholar 

  12. Crouch, J. R., Merriam, J. C., and CrouchIII, E. R., Finite element model of cornea deformation. In: Proceedings of Medical Image Computing and Computer-Assisted Intervention (MICCAI), pp. 591–598, 2005.

  13. Cotin, S., Delingette, H., and Ayache, N., Real-time elastic deformations of soft tissues for surgery simulation. IEEE Trans. Vis. Comput. Graph. 5(1):62–73, 1999.

    Article  Google Scholar 

  14. Picinobo, G., Lombardo, J., Delingette, H., and Ayache, N., Improving realism of a surgery simulator: linear anisotropic elasticity, complex interactions and force extrapolation. J. Vis. Comput. Animat. 13(3):147–167, 2002.

    Article  Google Scholar 

  15. Nedel, L. P., and Thalmann, D., Real-time muscle deformation using mass-spring system. In: Proceedings of Computer Graphics International, pp. 156–165, 1998.

  16. Kuhnapfel, U., Cakmak, H. K., and Maass, H., Endoscopic surgery training using virtual reality and deformable tissue simulation. Comput. Graphics 24(5):671–682, 2000.

    Article  Google Scholar 

  17. House, D., and Breen, D., Cloth modeling and animation. (A K PETERS LTD. ISBN: 1-56881-090-3, 2000)

  18. Etzmuss, O., Gross, J., and Strasser, W., Deriving a particle system from continuum mechanics for the animation of deformable objects. IEEE Trans. Vis. Comput. Graph. 9(4):538–550, 2003.

    Article  Google Scholar 

  19. Baraff, D., and Witkin, A., Large steps in cloth simulation. In: Proceedings of SIGGRAPH, pp. 43–54, 1998.

  20. Schuckmann, C., Schummer, J., and Seitz, P., Modeling collaboration using shared objects. In: Proceedings of the international ACM SIGGROUP conference on supporting group work, pp. 591–598, 1999.

  21. Bai, J., Zhang, Y., and Dai, B., Design and development of an interactive medical teleconsultation system over the world wide web. IEEE Trans. Inf. Technol. Biomed. 2(2):74–79, 1998.

    Article  Google Scholar 

  22. Makris, L., Kamilatos, I., Kopsacheilis, E. V., and Strintzis, M. G., Teleworks: a cscw application for remote medical diagnosis support and teleconsultation. IEEE Trans. Inf. Technol. Biomed. 2(2):62–73, 1998.

    Article  Google Scholar 

  23. Carlsson, C., and Hagsand, O., Dive: a platform for multi-user virtual environments. Comput. Graphics 17(6):663–9, 1993.

    Article  Google Scholar 

  24. Stytz, M. R., Distributed virtual environments. Comput. Graph. Appl. 16(3):19–31, 1996.

    Article  Google Scholar 

  25. Greenhalgh, C., and Benford, S., Massive, a collaborative virtual environment for teleconferencing. ACM Trans. Comput.-Hum. Interact. 2(3):239–261, 1996.

    Article  Google Scholar 

  26. Wedlake, M., Li, K., and Guibal, F., The navl distributed virtual reality system. Lect. Notes Comput. Sci. 1554:177–193, 1999.

    Article  Google Scholar 

  27. Hesina, G., Schmalstieg, D., Fuhrmann, A., and Purgathofer, W., Distributed open inventor: a practical approach to distributed 3d graphics. In: Proceedings of ACMVRST’99, 1999, pp. 74–80, 1999.

  28. Louchen, J., Provot, X., and Crochemore, D., Evolutionary identification of cloth animation models. In: Proceedings of Eurographics Workshop on Computer Animation and Simulation, pp. 44–54, 1995.

  29. Deussen, O., Kobbelt, L., and Tucke, P., Using simulated annealing to obtain good nodal approximations of deformable bodies. In: Proceedings of Eurographics Workshop on Computer Animation and Simulation, pp. 30–43, 1995.

  30. Lundy, M., and Mees, A., Convergence of an annealing algorithm. Math. Program. 34(1):111–124, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  31. Schmid, D. C., Stal, M., Rohnert, H., and Buschmann, F., Pattern-oriented software architecture: patterns for concurrency and distributed objects. New York: Wiley & Sons, 2000.

    Google Scholar 

  32. Mero, M., and Susin, A., 3d deformable multiresolution interactive lv model. Comput. Cardiol. 29:617–620, 2002.

    Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported in part by the Research Grants Council of the Hong Kong Special Administrative Region (Project no. CUHK4461/05M, PolyU 5147/06E and PolyU 5145/05E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Qin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, J., Choi, KS. & Heng, PA. Collaborative Simulation of Soft-Tissue Deformation for Virtual Surgery Applications. J Med Syst 34, 367–378 (2010). https://doi.org/10.1007/s10916-008-9249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-008-9249-2

Keywords

Navigation