Skip to main content

Advertisement

Log in

A Survey on Application of Quantitative Methods on Analysis of Brain Parameters Changing with Temperature

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Brain temperature fluctuations occur in consequence of physiological and pathophysiological conditions and indicate changes in brain metabolism, cerebral blood flow (CBF), brain functions and neural damage. Lowering the brain temperature of patients with traumatic brain injuries achieves considerable improvements. When the human brain is cooled down to 30°C, it switches to a sub functional regime where it can live longer with less oxygen, glucose and other supplies. Fluctuations in brain temperature cause changes in brain parameters which can be measured by electroencephalogram (EEG) and transcranial Doppler (TCD). It is very important to understand the temperature dependencies of brain’s electrical activity and blood flow and their interrelations considering the good clinical results achieved by lowering the brain temperature of neurologically injured patients. Since protecting the patient’s brain is of primary importance in many fields including cardiology, neurology, traumatology and anesthesia it can be clearly seen that this subject is very important. In this study, we survey the “state-of-the-art” in analysis of EEG and TCD brain parameters changing with temperature and present further research opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sanei, S., Chambers, J. A., EEG Signal Processing: New York: Wiley, 2007.

  2. Gils, M. V., Rosenfalck, A., White, S., Prior, P., Gade, J., Senhadji, L., Thomsen, C., Ghosh, I. R., Langford, R. M., Jensen, K., Signal Processing in Prolonged EEG Recordings During Intensive Care, Methods for Analysing and Displaying EEG Signals. IEEE Eng. Med. Biol. November/December, 56–63, 1997.

  3. Niedermeyer, E., The Normal EEG of the Waking Adult. In: NiedermeyerE., and Lopes da SilvaF. (Eds.), Electroencephalography: Basic Principles, Clinical Applications and Related FieldsLippincott Williams & Wilkins, Baltimore MD, pp. 149–173, 1999.

    Google Scholar 

  4. Kaplan, A. Y., and Shishkin, S. L., Application of the Change-Point Analysis to the Investigation of The Brain’s Electrical Activity, Chapter 7. In: BrodskyB. E., and DarkhovskyB. S. (Eds.), Nonparametric Statistical Diagnosis: Problems and MethodsKluwer, Dordrecht, The Netherlands, pp. 333–338, 2000.

    Google Scholar 

  5. Kıymık, M. K., Güler, İ., Dizibüyük, A., and Akın, M., Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application. Comput. Biol. Med. 35:603–616, 2005.

    Article  Google Scholar 

  6. Kalayci, T. ve Özdamar, Ö., Wavelet Preprocessing for Automated Neural Network Detection of EEG Spikes. IEEE Eng. Med. Biol., March/April, 160–166, 1995.

  7. Güler, İ., and Übeyli, E. D., Adaptive neuro-fuzzy inference system for classification of EEG signals using wavelet coefficients. J. Neurosci. Methods. 148 (2)113–121, 2005.

    Article  Google Scholar 

  8. Übeyli, E. D., and Güler, İ., Atardamarlardaki Daralma ve Tıkanıklığın Maksimum Olabilirlik Kestiriminin Kullanıldığı AR Metodu ile İncelenmesi. GÜ. Fen. Bilimleri. Dergisi. 16 (2)375–385, 2003.

    Google Scholar 

  9. Serhatlıoğlu, S., Hardalaç, F., and ve Güler, İ., Classification of transcranial Doppler signals using artificial neural network.. J. Med. Syst. 27 (2)205–214, 2003.

    Article  Google Scholar 

  10. Übeyli, E. D., and Güler, İ., Determination of stenosis and occlusion in arteries with the application of FFT, AR, and ARMA methods. J. Med. Syst. 27 (2)205–214, 2003.

    Article  Google Scholar 

  11. Güler, İ., and Übeyli, E. D., Implementing wavelet/probabilistic neural networks for Doppler ultrasound blood flow signals.. Expert. Syst. Appl. 33:162–170, 2007.

    Article  Google Scholar 

  12. Bernard, S. A., and Buist, M., Induced hypothermia in critical care medicine: A review. Crit. Care. Med. 31 (7)2041–2051, 2003.

    Article  Google Scholar 

  13. Soukup, J., Zauner, A., Doppenberg, M. R., Menzel, M., Gilman, C., Young, H. F., and ve Bullock, R., The importance of brain temperature in patients after severe head injury: relationship to intracranial pressure, cerebral perfusion pressure, cerebral blood flow, and outcome.. J. Neurotrauma. 19 (5)559–571, 2002.

    Article  Google Scholar 

  14. Deboer, T., Electroencephalogram theta frequency changes in paralel with euthermic brain temperature. Brain. Res. 930:212–215, 2002.

    Article  Google Scholar 

  15. Hovland, A., Nielsen, E. W., Klüver, J., and Salvesen, R., EEG should be performed during induced hypothermia. Resuscitation. 68:143–146, 2006.

    Article  Google Scholar 

  16. Deboer, T., and Tobler, I., Temperature dependence of EEG frequencies during natural hypothermia. Brain. Res. 670:153–156, 1995.

    Article  Google Scholar 

  17. Jiang, J.-Y., Yu, M.-K., and ve Zhu, C., Effect of long-term mild hypothermia therapy in patients with severe traumatic brain injury: 1-year follow-up review of 87 Cases. J. Neurosurg. 93:546–549, 2000.

    Article  Google Scholar 

  18. Marion, D. W., Penrod, L. E., Kelsey, S. F., Obrist, W. D., Kochanek, P. M., Palmer, A. M., Wisniewski, S. R., and DeKosky, S. T., Treatment of traumatic brain injury with moderate hypothermia. N. Engl. J. Med. 336 (8)540–546, 1997.

    Article  Google Scholar 

  19. Metz, C., Holzschuh, M., Bein, T., Woertgen, C., Frey, A., Frey, I., Taeger, K., and ve Brawanski, A., Moderate hypothermia in patients with severe head injury: Cerebral and extracerebral effects. J. Neurosurg. 85:533–541, 1996.

    Article  Google Scholar 

  20. Inoue, Y., Shiozaki, T., Tasaki, O., Hayakata, T., Ikegawa, H., Yoshiya, K., Fujinaka, T., Tanaka, H., Shimazu, T., and ve Sugimoto, H., Changes in cerebral blood flow from the acute to the chronic phase of severe head injury.. J. Neurotrauma. 22 (12)1411–1418, 2005.

    Article  Google Scholar 

  21. Soustiel, J. F., Glenn, T. C., Shik, V., Boscardin, J., Mahamid, E., and ve Zaaroor, M., Monitoring of cerebral blood flow and metabolism in traumatic brain injury. J. Neurotrauma. 22 (9)955–965, 2005.

    Article  Google Scholar 

  22. Steiner, L. A., and ve Andrews, P. J. D., Monitoring the injured brain: ICP and CBF.. Br. J. Anaesth. 97 (1)26–38, 2006.

    Article  Google Scholar 

  23. Gal, R., Cundrle, I., Zimova, I., and Smrcka, M., Mild hypothermia therapy for patients with severe brain injury. Clin. Neurol. Neurosurg. 104:318–321, 2002.

    Article  Google Scholar 

  24. Clifton, G. L., Choi, S. C., Miller, E. R., Levin, H. S., Smith, K. R., Muizelaar, J. P., Wagner, F. C., Marion, D. W., and ve Luerssen, T. G., Intercenter variance in clinical trials of head trauma-experience of the national acute brain injury study: Hypothermia. J. Neurosurg. 95:751–755, 2001.

    Article  Google Scholar 

  25. Zhi, D., Zhang, S., and ve Lin, X., Study on therapeutic mechanism and clinical effect of mild hypothermia in patients with severe head injury. Surg. Neurol. 59:381–385, 2003.

    Article  Google Scholar 

  26. Clifton, G. L., Miller, E. R., Choi, S. C., Levin, H. S., McCauley, S., Smith, K. R., Muizelaar, P., Wagner, F. C., Marion, D. W., Luersen, T. G., Chesnut, R. M., and ve Schwartz, M., Lack of effect of induction of hypothermia after acute brain injury. N. Engl. J. Med. 344 (8)556–563, 2001.

    Article  Google Scholar 

  27. Shiozaki, T., Sugimoto, H., Taneda, M., Yoshida, H., Iwai, A., Yoshioka, T., and ve Sugimoto, T., Effect of mild hypothermia on uncontrollable intracranial hypertension after severe head injury. J. Neurosurg. 79:363–368, 1993.

    Article  Google Scholar 

  28. Ibayashi, S., Takano, K., Ooboshi, H., Kitazono, T., Sadoshima, S., and ve Fujishima, M., Effect of selective brain hypothermia on regional cerebral blood flow and tissue metabolism using brain thermo-regulator in spontaneously hypertensive rats. Neurochem. Res. 25 (3)369–375, 2000.

    Article  Google Scholar 

  29. Otawara, Y., Ogasawara, K., Yukawa, H., Tomitsuka, N., Kubo, Y., Ogawa, A., and ve Suzuki, M., Brain temperature and cerebral blood flow imaging in patients with severe subarachnoid hemorrhage: Report of two cases. Surg. Neurol. 60:549–52, 2003.

    Article  Google Scholar 

  30. Otawara, Y., Ogasawara, K., Kubo, Y., Tomitsuka, N., Ogawa, A., and ve Suzuki, M., Brain and systemic temperature in patients with severe subarachnoid hemorrhage. Surg. Neurol. 60:159–64, 2003.

    Article  Google Scholar 

  31. Kuhnen, G., Bauer, R., and Walter, B., Controlled brain hypothermia by extracorporeal carotid blood cooling at normothermic trunk temperatures in pigs. J. Neurosci. Methods. 89:167–174, 1999.

    Article  Google Scholar 

  32. Pokela, M., Heikkinen, J., Biancari, F., Rönkä, E., Kaakinen, T., Vainionpää, V., Kiviluoma, K. T., Romsi, P., Leo, E., Hirvonen, J., Lepola, P., Rimpiläinen, J., and ve Juvonen, T. S., Topical head cooling during rewarming after experimental hypothermic circulatory arrest. Ann. Thorac. Surg. 75:1899–911, 2003.

    Article  Google Scholar 

  33. Zhu, M., Ackerman, J. J. H., Sukstanskii, A. L., and ve Yablonskiy, D. A., How the body controls brain temperature: The temperature shielding effect of cerebral blood flow. J. Appl. Physiol. 101 (5)1481–1488, 2006.

    Article  Google Scholar 

  34. Pemberton, P. L., and ve Dinsmore, J., The use of hypothermia as a method of neuroprotection during neurosurgical procedures and after traumatic brain injury: A survey of clinical practice in Great Britain and Ireland. Anaesthesia. 58:363–384, 2003.

    Article  Google Scholar 

  35. Jia, X., Koenig, M. A., Shin, H.-C., Zhen, G., Yamashita, S., Thakor, N. V., and Geocadin, R. G., Quantitative EEG and neurological recovery with therapeutic hypothermia after asphyxial cardiac arrest in rats. Brain. Res. 1111:166–175, 2006.

    Article  Google Scholar 

  36. Bernard, S. A., Jones, B. M. C., and Horne, M. K., Clinical trial of induced hypothermia in comatose survivors of out-of-hospital cardiac arrest. Ann. Emerg. Med. 30 (2)146–153, 1997.

    Article  Google Scholar 

  37. Bernard, S. A., Gray, T. W., Buist, M. D., Jones, B. M., Silvester, W., Gutteridge, G., and Smith, K., Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N. Engl. J. Med. 346 (8)557–563, 2002.

    Article  Google Scholar 

  38. Shankaran, S., Laptook, A. R., Ehrenkranz, R. A., Tyson, J. E., McDonals, S. A., Donovan, E. F., Fanaroff, A. A., Poole, W. K., Wright, L. L., Higgins, R. D., Finer, N. N., Carlo, W. A., Duara, S., Oh, W., Cotten, C. M., Stevenson, D. K., Stoll, B. J., Lemons, J. A., Guillet, R., and Jobe, A. H., Whole-body hypothermia for neonates with hypoxic–ischemic encephalopathy. N. Engl. J. Med. 353 (15)1574–1584, 2005.

    Article  Google Scholar 

  39. Zeiner, A., Holzer, M., Sterz, F., Behringer, W., Schörkhuber, W., Müllner, M., Frass, M., Siostrzonek, P., Ratheiser, K., Kaff, A., and Laggner, A. N., Mild resuscitative hypothermia to improve neurological outcome after cardiac arrest: A Clinical Feasibility Trial. Stroke. 31:86–94, 2000.

    Google Scholar 

  40. Hoagland, H., Brain mechanism and brain wave frequencies. Am. J. Physiol. 123:R102, 1938.

    Google Scholar 

  41. Hoagland, H., Brain wave frequencies and brain chemistry. Arch. Neurol. Psychiat. 62:511–513, 1949.

    Google Scholar 

  42. Hoagland, H., Pacemaker of human brain waves in normal and in general paretics. Am. J. Physiol. 116:R604–R615, 1936.

    Google Scholar 

  43. Deboer, T., Brain temperature dependent changes in the electroencephalogram power spectrum of humans and animals. J Sleep Res. 7:254–262, 1998.

    Article  MathSciNet  Google Scholar 

  44. Burger, R., Zuechner, M., Bendszus, M., Vince, G. H., and Roosen, K., Moderate hypothermia improves neurobehavioral deficits after an epidural focal mass lesion in rodents. J. Neurotrauma. 20 (6)543–558, 2003.

    Article  Google Scholar 

  45. Burger, R., Vince, H., Meixensberger, J., and Roosen, K., Hypothermia influences time course of intracranial pressure, brain temperature, EEG and microcirculation during ischemia–reperfusion. Neurochem. Res. 20 (1)52–60, 1998.

    Google Scholar 

  46. Fritz, H., Bauer, R., Walter, B., Schlonski, O., Hoyer, D., Zwiener, U., and ve Reinhart, K., Hypothermia related changes in electrocortical activity at stepwise increase of intracranial pressure in piglets. Exp. Toxicol. Pathol. 51 (2)163–171, 1999.

    Google Scholar 

  47. Nakamura, T., Nagao, S., Kawai, N., Honma, Y., and ve Kuyama, H., Significance of multimodal cerebral monitoring under moderate therapeutic hypothermia for severe head injury. Acta Neurochir. Suppl. 71:85–7, 1998.

    Google Scholar 

  48. Rosomoff, H. L., and ve Holaday, H. A., Cerebral blood flow and cerebral oxygen consumption during hypothermia. Am. J. Physiol. 179:85–88, 1954.

    Google Scholar 

  49. Marion, D. W., Obrist, W. D., Carlier, P. M., Penrod, L. E., and ve Darby, J. M., The use of moderate therapeutic hypothermia for patients with severe head injuries: A preliminary report. J. Neurosurg. 79:354–362, 1993.

    Article  Google Scholar 

  50. Evans, D. H., and McDicken, W. N., Doppler ultrasound: physics., instrumentation and signal processing. Wiley, Chichester, 2000.

    Google Scholar 

  51. Burrows, F. A., and Bissonette, B., Cerebral blood flow velocity patterns during cardiac surgery utilizing profound hypothermia with lowflow cardiopulmonary bypass or circulatory arrest in neonates and infants. Can. J. Anaesth. 40 (4)298–307, 1993.

    Article  Google Scholar 

  52. Hillier, S. C., Burrows, F. A., Bissonette, B., and ve Taylor, R. H., Cerebral hemodynamics in neonates and infants undergoing cardiopulmonary bypass and profound hypothermic circulatory arrest: Assessment by transcranial Doppler sonography. Anesth. Analg. 72:723–8, 1991.

    Article  Google Scholar 

  53. Chan, K. H., Dearden, N. M., and Miller, J. D., The significance of posttraumatic increase in cerebral blood flow velocity a transcranial Doppler ultrasound study. Neurosurgery. 30 (5)697–700, 1992.

    Article  Google Scholar 

  54. Polito, A., Ricci, Z., Chiara, L. D., Giorni, C., Iacoella, C., Sanders, S. P., and ve Picardo, S., Cerebral blood flow during cardiopulmonary bypass in pediatric cardiac surgery: the role of transcranial Doppler—A systematic review of the literature. Cardiovasc. Ultrasound. 4:47, 2006.

    Article  Google Scholar 

  55. Iida, K., Kurisu, K., Arita, K., and ve Ohtani, M., Hyperemia prior to acute brain swelling during rewarming of patients who have been treated with moderate hypothermia. J. Neurosurg. 98:793–799, 2003.

    Article  Google Scholar 

  56. Asil, T., Transkraniyal Doppler ve Klinik Kullanımı. Trakya Üniversitesi Tıp Fakültesi Dergisi, 19(3–4):171–176, 2002.

  57. Güler, İ., Hardalaç, F., and Kaymaz, M., Comparison of FFT and adaptive ARMA methods in transcranial Doppler signals recorded from the cerebral vessels. Comput. Biol. Med. 32:445–453, 2002.

    Article  Google Scholar 

  58. Stover, J. F., Steiger, P., and Stocker, R., Treating intracranial hypertension in patients with severe traumatic brain injury during neurointensive care. Eur. J. Trauma. 4:308–330, 2005.

    Article  Google Scholar 

  59. Claassen, J., Mayer, S. A., Kowalski, R. G., Emerson, R. G., and ve Hirsch, L. J., Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 62:1743–1748, 2004.

    Google Scholar 

  60. Rolfe, S., Hypothermia&The Trauma Patient. University Medical Center http://www.umcsn.com/health_info/article.asp?Category=All&ArticleID=388, 2008.

  61. Plattner, O., Kurz, A., Sessler, D. I., Ikeda, T., Christensen, R., Marder, D., and Clough, D., Efficacy of intraoperative cooling methods. Anesthesiology. 87 (5)1089–1095, 1997.

    Article  Google Scholar 

  62. Clifton, G. L., Is keeping cool still hot? An update on hypothermia in brain injury. Curr. Opin. Crit. Care. 10:116–119, 2004.

    Article  Google Scholar 

  63. Pateli, P., Brain protection—The clinical reality. Rev. Mex. Anestesiol. 30 (1)S101–S107, 2007.

    Google Scholar 

  64. Gugino, L. D., Neurophysiological monitoring in vascular surgery. BaillieÁre’s Clin. Anaesthesiol. 14 (1)17–62, 2000.

    Google Scholar 

  65. Clifton, G. L., Allen, S., Barrodale, P., Plenger, P., Berry, J., Koch, S., Fletcher, J., Hayes, R. L., and Choi, S. C., A phase II study of moderate hypothermia in severe brain injury. J. Neurotrauma. 10 (3)263–271, 1993.

    Article  Google Scholar 

  66. The Hypothermia After Cardiac Arrest Group, Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med. 346 (8)549–556, 2002.

    Article  Google Scholar 

  67. Nolan, J. P., Morley, P. T., Vanden Hoek, T. L., and Hickey, R. W., Therapeutic hypothermia after cardiac arrest, an advisory statement by the advanced life support task force of the international liaison committee on resuscitation. Circulation. 108:118–121, 2003.

    Article  Google Scholar 

  68. Shin, H.-C., Jia, X., Nickl, R., Geocadin, R. G., and ve Thakor, N. V., A subband-based information measure of EEG during brain injury and recovery after cardiac arrest. IEEE Trans. Biomed. Eng. 55 (8)1985–1990, 2008.

    Article  Google Scholar 

  69. Jia, X., Koenig, M. A., Nickl, R., Zhen, G., Thakor, N. V., and Geocadin, R. G., Early electrophysiologic markers predict functional outcome associated with temperature manipulation after cardiac arrest in rats. Crit. Care Med. 36 (6)1909–1916, 2008.

    Article  Google Scholar 

  70. Jia, X., Koenig, M. A., Shin, H.-C., Zhen, G., Pardo, C. A., Hanley, D. F., Thakor, N. V., and ve Geocadin, R. G., Improving neurological outcomes post-cardiac arrest in a rat model: immediate hypothermia and quantitative EEG monitoring. Resuscitation. 76 (3)431–442, 2008.

    Article  Google Scholar 

  71. Tong, S., Bezerianos, A., Malhotra, A., Zhu, Y., and Thakor, N., Parameterized entropy analysis of EEG following hypoxic–ischemic brain injury. Physics. Lett. A. 314:354–361, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  72. Shin, H.-C., Tong, S., Yamashita, S., Jia, X., Geocadin, R. G., and ve Thakor, N. V., Quantitative EEG and effect of hypothermia on brain recovery after cardiac arrest. IEEE Trans. Biomed. Eng. 53 (6)1016–1023, 2006.

    Article  Google Scholar 

  73. Bezerianos, A., Tong, S., and ve Thakor, N., Time-dependent entropy estimation of EEG rhythm changes following brain ischemia. Ann. Biomed. Eng. 31:221–232, 2003.

    Article  Google Scholar 

  74. Thakor, N. V., Shin, H.-C., Tong, S., ve Geocadin, R. G., Quantitative EEG assessment. IEEE Eng. Med. Biol. Mag., July/August, 20–25, 2006.

  75. Jia, X., Koenig, M. A., Venkatraman, A., Thakor, N. V., and Geocadin, R. G., Post-cardiac arrest temperature manipulation alters early EEG bursting in rats. Resuscitation. 78 (3)367–73, 2008.

    Article  Google Scholar 

  76. Sinha, R. K., and Ray, A. M., Effect of acute and chronic heat exposure on frequency of EEG components in different sleep-wake state in young rats. Iran. Biomed. J. 8 (2)69–75, 2004.

    Google Scholar 

  77. Ahiska, R., Yavuz, A. H., Kaymaz, M., and Güler, İ., Control of a thermoelectric brain cooler by adaptive neuro-fuzzy inference system. Instrum. Sci. Technol. 36 (6)636–655, 2008.

    Article  Google Scholar 

Download references

Acknowledgement

This study is supported by Gazi University Scientific and Research Project Fund (project no. 07/2007-33).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İnan Güler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirhan, A., Kaymaz, M., Ahıska, R. et al. A Survey on Application of Quantitative Methods on Analysis of Brain Parameters Changing with Temperature. J Med Syst 34, 1059–1071 (2010). https://doi.org/10.1007/s10916-009-9324-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9324-3

Keywords

Navigation