Skip to main content

Advertisement

Log in

Classifying Epilepsy Diseases Using Artificial Neural Networks and Genetic Algorithm

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this study, FFT analysis is applied to the EEG signals of the normal and patient subjects and the obtained FFT coefficients are used as inputs in Artificial Neural Network (ANN). The differences shown by the non-stationary random signals such as EEG signals in cases of health and sickness (epilepsy) were evaluated and tried to be analyzed under computer-supported conditions by using artificial neural networks. Multi-Layer Perceptron (MLP) architecture is used Levenberg-Marquardt (LM), Quickprop (QP), Delta-bar delta (DBD), Momentum and Conjugate gradient (CG) learning algorithms, and the best performance was tried to be attained by ensuring the optimization with the use of genetic algorithms of the weights, learning rates, neuron numbers of hidden layer in the training process. This study shows that the artificial neural network increases the classification performance using genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Novak, D., et al., EEG and VEP signal processing. Czech Technical University in Prague Depmment of Cybernetics, date unknown.

  2. Hector, M. L., EEG recording. Butterworth & Co (Publishers) Ltd, 1980.

  3. Ghosh-Dastidar, S., Hojjat, A., and Nahid, D., Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Trans. Biomed. Eng. 55(2), 2008.

  4. Yazgan, E., and Korurek, M., Tıp Elektronigi, İTÜ Matbaası, 95–220, 1996.

  5. Vuckovic, A., Radivojevic, V. A., Chen, C. N., and Popovic, D., Automatic recognition of alertness and drowsiness from EEG by an artificial neural network. Med. Eng. Phys. 24:349–360, 2002.

    Article  Google Scholar 

  6. Tsoi, A. C., So, D. S. C., and Sergejew, A., Classification of electroencephalogram using artificial neural networks. In: Cowan, J. D., Tesauro, G., and Alspector, J. (Eds.), Advances in Neural Information Processing Systems. Morgan Kaufmann, 6:1151–1158, 1994.

  7. Tseng, S.-Y., Chen, R.-C., Chong, F.-C., and Kuo, T.-S., Evaluations of parametric methods in EEG signal analysis. Med. Eng. Phys. 17:71–78, 1995.

    Article  Google Scholar 

  8. Miller, A. S., Blott, B. H., and Hames, T. K., Review of neural network applications in medical imaging and signal processing. Med. Biol. Eng. Comput. 30:449–64, 1992.

    Article  Google Scholar 

  9. Webber, W. R. S., Lesser, R. P., Richardson, R. T., and Wilson, K., An approach to seizure detection using an artificial neural network (ANN). Electroencephalogr. Clin. Neurophysiol. 98:250–272, 1996.

    Article  Google Scholar 

  10. Petrosian, A., Prokhorov, D., Homan, R., Dashei, R., and Wunsch, D., Recurrent neural network based prediction of epileptic seizures in intra- and extracranial EEG. Neurocomputing. 30:201–218, 2000.

    Article  Google Scholar 

  11. Sinha, R. K., Backpropagation artificial neural network to detect hyperthermic seizures in rats. Online Journal of Health and Allied Sciences. 4:1, 2002.

    Google Scholar 

  12. Kiymik, M. K., Akin, M., and Subasi, A., Automatic recognition of alertness level by using wavelets transform and artificial neural network. J. Neurosci. Methods. 139:231–240, 2004.

    Article  Google Scholar 

  13. Sinha, R. K., Ray, A. K., and Agrawal, N. K., An artificial neural network to detect EEG seizures. Neurol. India. 52:399–400, 2004.

    Google Scholar 

  14. Subasi, A., Automatic detection of epileptic seizure using dynamic fuzzy neural networks. Expert Syst. Appl. 31:320–328, 2006.

    Article  Google Scholar 

  15. Keshri, A. K., Sinha, R. K., Hatwal, R., and Das, B. N., Epileptic spike recognition in electroencephalogram using deterministic finite automata. J. Med. Syst. 33:173–179, 2009.

    Article  Google Scholar 

  16. Olivier, C. L., Haas, K. J., Burnham, intelligent and adaptive systems in medicine. Taylor & Francis Group, 2008.

  17. Andrzejak, R., Lehnertz, K., Rieke, C., et al., Indications of nonlinear deterministic and finite dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state. Phys. Rev. E. 64:061907, 2001.

    Article  Google Scholar 

  18. Online. Available: http://www.meb.unibonn.de/epileptologie/cms/front/content.php?idcat=193&lang=3&changelang=3. Last accessed on: July 23, 2009.

  19. Subasi, A., EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32:1084–1093, 2007.

    Article  Google Scholar 

  20. Güler, N. F., Koçer, S., Classification of EMG signals using FFT and PCA. J. Med. Syst. 29(3), 2005.

  21. Na, t-Ali (Ed.), Advanced Biosignal Processing. Springer-Verlag Berlin Heidelberg, 2009.

  22. Acır, N., Oztura, I., Kuntalp, M., et al., Automatic detection of epileptiform events in EEG by a three-stage procedure based on artificial neural networks. IEEE Trans. Biomed. Eng. 52:30–40, 2005.

    Article  Google Scholar 

  23. Rumelhart, D. E., and Mcclelland, J. L., Parallel distributed processing: Explorations in the microstructure of cognition. MIT Press, Cambridge, 1986. Vol. 1.

    Google Scholar 

  24. Hagan, M. T., Demuth, H. B., and Beale, M. H., Neural network design. PWS Publishing, Boston, 1996.

    Google Scholar 

  25. Levenberg, K., A method for the solution of certain nonlinear problems in least squares. Q. Appl. Math. 2:164–168, 1944.

    MathSciNet  MATH  Google Scholar 

  26. Marquardt, D. W., An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11:431–441, 1963.

    Article  MathSciNet  MATH  Google Scholar 

  27. Moller, M. F., A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw. 6:525–533, 1993.

    Article  Google Scholar 

  28. Jacobs, R. A., Increased rates of convergence through learning rate adaptation. Neural Netw. 1 (4)295–307, 1988.

    Article  Google Scholar 

  29. Fahlman, S. E., Faster-learning variations on back-propagation: An empirical study. In: Touretzky, D., Hinton, G, and Sejnowski, T., (Eds.), Proceedings of the 1988 Connectionist Models Summer School. Morgan Kaufmann, 38–51, 1989.

  30. Tout, K., Sinno, N., and Mikati, M., Prediction of the Epileptic Events ‘Epileptic Seizures’ by Neural Networks and Expert Systems, Proceedıngs Of World Academy Of Scıence, Engıneerıng And Technology 31, 2008.

  31. Hinchliffe, M., Dynamic modelling using genetic programming. Department of Chemical and Process Engineering University of New castle upon Tyne September 2001.

  32. Abdella, M., Marwala, T., Treatment of missing data using neural networks and genetic algorithms, Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, July 31 - August 4, 2005.

  33. Krishna Mohana Raoa, G., Rangajanardhaa, G., Hanumantha Raoc, D., and Sreenivasa Raoa, M., Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm. J. Mater. Process. Technol. 209:1512–1520, 2009.

    Article  Google Scholar 

  34. Güler, N. F., and Koçer, S., Use of support vector machinesneural network in diagnosis of neuromuscular disorders. J. Med. Syst. 29(3), 2005.

  35. Semmlow, L. J., Biosignal and Biomedical İmage Processing Matlab Based Application 198–206, 1998.

  36. Webber, W. R. S., Lesser, R. P., Richardson, R. T., and Wılson, K., An approach to seizure detection using an artificial neural network (ANN). Electroencephalogr. Clin. Neurophysiol. 98:250–272, 1996.

    Article  Google Scholar 

  37. Mutlu S., Application of artificial intelligence techniques to EEG signal, Master Thesis, Gazi Üniversitesi, Ankara, 2008.

  38. Reeves, C. R., and Steele, N. C., Genetic algorithms and the design of artificial neural networks. IEEE ‘Microarch’ 15–20, 1991.

  39. Wu, J.-X., Zhou, Z.-H., and Chen, Z.-Q., Ensemble of GA based Selective Neural Network Ensembles, Proceedings of the 8th International Conference on Neural Information Processing, Shanghai, China, 1477–1482, 2001.

  40. Ozturk, N., Use of genetic algorithm to design optimal neural network structure. Eng. Comput. 7:979–997, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabri Koçer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koçer, S., Canal, M.R. Classifying Epilepsy Diseases Using Artificial Neural Networks and Genetic Algorithm. J Med Syst 35, 489–498 (2011). https://doi.org/10.1007/s10916-009-9385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9385-3

Keywords

Navigation